Vegetation Patterns in Semi-Deserts

Jonathan A. Sherratt

Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University

University of Stirling, 28 May 2014

This talk can be downloaded from my web site

www.ma.hw.ac.uk/ \sim jas

Vegetation Patterns

Bushy vegetation in Niger

Mitchell grass in Australia (Western New South Wales)

- Banded vegetation patterns are found on gentle slopes in semi-arid areas of Africa, Australia and Mexico
- Plants vary from grasses to shrubs and trees
- Typical wavelength 1km for shrubs and trees

Why Do Plants Form Patterns?

Data from Burkina Faso Rietkerk et al Plant Ecology 148: 207-224, 2000

More plants ⇒ more roots and organic matter in soil ⇒ more infiltration of rainwater

Why Do Plants Form Patterns Banded Patterns on Slopes Key Ecological Questions

Banded Patterns on Slopes

Key Ecological Questions

- At what rainfall level is there a switch from uniform vegetation to patterns?
- At what rainfall level is there a transition to desert?
- How does the spacing of the vegetation bands depend on rainfall, herbivory and slope?

Mathematical Model of Klausmeier

$$\begin{tabular}{lll} Rate of change = Growth, proportional & - Mortality & + Random \\ plant biomass & to water uptake & dispersal \\ \end{tabular}$$

$$\partial w/\partial t = A - w - wu^2 + \nu \partial w/\partial x$$

$$\partial u/\partial t = wu^2 - Bu + \partial^2 u/\partial x^2$$

Mathematical Model of Klausmeier

 $\label{eq:Rate of change = Growth, proportional - Mortality} & + \mbox{ Random } \\ & \mbox{plant biomass} & \mbox{to water uptake} & \mbox{dispersal} \\ \end{aligned}$

$$\partial w/\partial t = A - w - wu^2 + \nu \partial w/\partial x$$

 $\partial u/\partial t = wu^2 - Bu + \partial^2 u/\partial x^2$

The nonlinearity in wu^2 arises because the presence of plants increases water infiltration into the soil.

Mathematical Model of Klausmeier

$$wu^2 = w \cdot u \cdot \left(\begin{array}{c} \text{infiltration} \\ \text{rate} \end{array} \right)$$

The nonlinearity in wu^2 arises because the presence of plants increases water infiltration into the soil.

www.ma.hw.ac.uk/~jas

Variations in Rainfall: Simulations

Numerical simulations of patterns with varying rainfall show sudden changes and hysteresis.

Domain length 150, periodic bc's

Ecological Background

Pattern Existence and Stability

Detailed study using numerical continuation enables calculation of the region of parameter space in which patterns exist, and the sub-region in which they are stable.

Software for this type of calculation is available at

www.ma.hw.ac.uk/wavetrain

Variations in Rainfall: Explanation

Other Examples of Landscape-Scale Patterns

The stability region explains the sudden jumps and hysteresis.

Domain length 150, periodic bc's

Tipping Points for Patterns

The parameter region for pattern existence/stability indicates the tipping points for pattern emergence and for desertification.

References

- J.A. Sherratt: An analysis of vegetation stripe formation in semi-arid landscapes. *J. Math. Biol.* 51, 183-197 (2005).
- J.A. Sherratt, G.J. Lord: Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. *Theor. Pop. Biol.* 71, 1-11 (2007).
- J.A. Sherratt: Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments I. *Nonlinearity* 23, 2657-2675 (2010).
- J.A. Sherratt: Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments II: patterns with the largest possible propagation speeds. *Proc. R. Soc. Lond.* A 467, 3272-3294 (2011).
- J.A. Sherratt: Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments III: the transition between homoclinic solutions. *Physica D* 242, 30-41 (2013).
- J.A. Sherratt: Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments IV: slowly moving patterns and their stability. SIAM J. Appl. Math. 73, 330-350 (2013).
- J.A. Sherratt: History-dependent patterns of whole ecosystems. *Ecological Complexity* 14, 8-20 (2013).
- J.A. Sherratt: Pattern solutions of the Klausmeier model for banded vegetation in semi-arid environments V: the transition from patterns to desert. *SIAM J. Appl. Math.* 73, 1347-1367 (2013).

Tree Patches in Savannah Grasslands

(Olivier Lejeune et al, Phys. Rev. E 66: 010901, 2002)

Pattern of Fog-Dependent Vegetation in Chile

Aerial photo over Atacama Desert, Northern Chile (Borthagaray et al, J. Theor. Biol. 265: 18-26, 2010)

Ribbon Forest in Colorado, USA

Photo taken by David Buckner

Mudflat Pattern in The Netherlands

(Weerman et al, Am. Nat. 176: E15-E32, 2010)

Mussel Bed Pattern in the Wadden Sea

In the Wadden Sea, mussel beds self-organise into striped patterns

www.ma.hw.ac.uk/~jas

Aerial photo of a mussel bed

Mussel Bed Pattern in the Wadden Sea

In the Wadden Sea, mussel beds self-organise into striped patterns

25 m by 25 m

Aerial photo of a mussel bed

Other Examples of Landscape-Scale Patterns

List of Frames

- Why Do Plants Form Patterns?
- Banded Patterns on Slopes
- Key Ecological Questions

A Simple Mathematical Model

- Mathematical Model of Klausmeier
- Typical Solution of the Model

Variations in Rainfall

- Variations in Rainfall: Simulations
 - Pattern Existence and Stability
 - Variations in Rainfall: Explanation
 - Tipping Points for Patterns

References

References

Other Examples of Landscape-Scale Patterns

Photo Gallery of Landscape-Scale Patterns

