Models of Wound Healing

Jonathan A. Sherratt

Department of Mathematics Heriot-Watt University

Summer School on Mathematics in Biomedical Engineering, University of Warwick, 12 July 2007

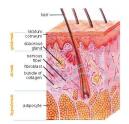
Outline

Modelling Epidermal Wound Healing

- 2 Model Analysis: The Speed of Epidermal Repair
- Modelling Scar Formation
- Applying the Model to Anti-Scarring Therapies

Modelling Epidermal Wound Healing	The Structure of the Skin
Model Analysis: The Speed of Epidermal Repair	Epidermal Wound Healing
Modelling Scar Formation	A Mathematical Model
Applying the Model to Anti-Scarring Therapies	Reduction to One Equation

Modelling Epidermal Wound Healing


- 2 Model Analysis: The Speed of Epidermal Repair
- 3 Modelling Scar Formation
- 4 Applying the Model to Anti-Scarring Therapies

The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

The Structure of the Skin

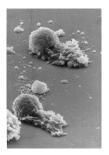
The skin consists of two layers: epidermis and dermis

The epidermis consists of closely packed cells, arranged in layers

The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

Epidermal Wound Healing

Epidermal wounds are very shallow (no bleeding), e.g. blisters

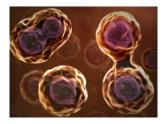

The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

Epidermal Wound Healing

Epidermal wounds are very shallow (no bleeding), e.g. blisters

Healing is due to

cell movement


The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

Epidermal Wound Healing

Epidermal wounds are very shallow (no bleeding), e.g. blisters

Healing is due to

- cell movement
- increased cell division near the wound edge

The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

Epidermal Wound Healing

Epidermal wounds are very shallow (no bleeding), e.g. blisters

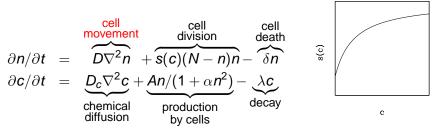
Healing is due to

- cell movement
- increased cell division near the wound edge

Cell division is upregulated by chemicals produced by the cells

The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

A Mathematical Model

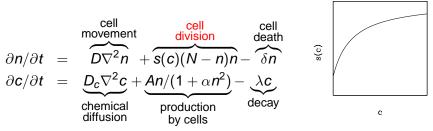

Cell division is upregulated by chemicals produced by the cells Model variables: $n(\underline{x}, t)$ and $c(\underline{x}, t)$.

The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

A Mathematical Model

Cell division is upregulated by chemicals produced by the cells Model variables: $n(\underline{x}, t)$ and $c(\underline{x}, t)$.

Model equations:

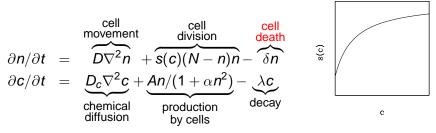


The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

A Mathematical Model

Cell division is upregulated by chemicals produced by the cells Model variables: $n(\underline{x}, t)$ and $c(\underline{x}, t)$.

Model equations:

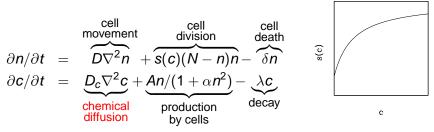


The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

A Mathematical Model

Cell division is upregulated by chemicals produced by the cells Model variables: $n(\underline{x}, t)$ and $c(\underline{x}, t)$.

Model equations:

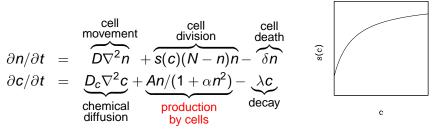


The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

A Mathematical Model

Cell division is upregulated by chemicals produced by the cells Model variables: $n(\underline{x}, t)$ and $c(\underline{x}, t)$.

Model equations:

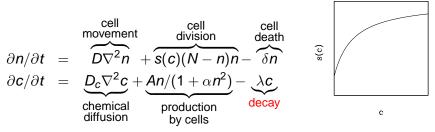


The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

A Mathematical Model

Cell division is upregulated by chemicals produced by the cells Model variables: $n(\underline{x}, t)$ and $c(\underline{x}, t)$.

Model equations:



The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

A Mathematical Model

Cell division is upregulated by chemicals produced by the cells Model variables: $n(\underline{x}, t)$ and $c(\underline{x}, t)$.

Model equations:

The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

Reduction to One Equation

$$\frac{\partial n}{\partial t} = D\nabla^2 n + \mathbf{s}(\mathbf{c})(N-n)n - \delta n$$

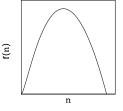
$$\frac{\partial c}{\partial t} = D_c \nabla^2 \mathbf{c} + An/(1+\alpha n^2) - \lambda \mathbf{c}$$

The chemical kinetics are very fast \Rightarrow *A*, λ large. So to a good approximation $c = (A/\lambda) \cdot n/(1 + \alpha n^2)$.

メロトメタト 注

The Structure of the Skin Epidermal Wound Healing A Mathematical Model Reduction to One Equation

Reduction to One Equation


$$\frac{\partial n}{\partial t} = D\nabla^2 n + s(c)(N-n)n - \delta n$$

$$\frac{\partial c}{\partial t} = D_c \nabla^2 c + An/(1+\alpha n^2) - \lambda c$$

The chemical kinetics are very fast \Rightarrow A, λ large. So to a good approximation $c = (A/\lambda) \cdot n/(1 + \alpha n^2)$.

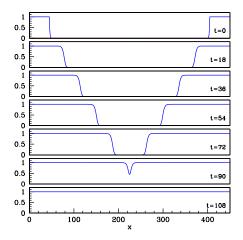
$$\Rightarrow \partial n/\partial t = D\nabla^2 n + f(n)$$

where

$$f(n) = s\left(\frac{An}{\lambda(1+\alpha n^2)}\right)(N-n)n - \delta n$$

Typical Model Solution Travelling Wave Solutions Applications to Wound Healing Deducing the Chemical Profile

Outline



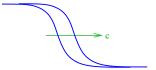
- 2 Model Analysis: The Speed of Epidermal Repair
- 3 Modelling Scar Formation
- Applying the Model to Anti-Scarring Therapies

Typical Model Solution Travelling Wave Solutions Applications to Wound Healing Deducing the Chemical Profile

Typical Model Solution

Typical Model Solution Travelling Wave Solutions Applications to Wound Healing Deducing the Chemical Profile

Travelling Wave Solutions


During most of the healing, the solution moves with constant speed and shape.

This is a "travelling wave solution"

$$n(x,t) = N(x-at)$$

where *a* is the wave speed. We will write z = x - at. Then $\partial n / \partial x = dN / dz$ and $\partial n / \partial t = -a dN / dz$

$$\Rightarrow D\frac{d^2N}{dz^2} + a\frac{dN}{dz} + f(N) = 0$$

- * ロ * * 個 * 三座

Typical Model Solution Travelling Wave Solutions Applications to Wound Healing Deducing the Chemical Profile

The Speed of Travelling Waves

We know that $N \rightarrow 0$ as $z \rightarrow \infty$. Recall that

$$D\frac{d^2N}{dz^2} + a\frac{dN}{dz} + f(N) = 0$$

Therefore when *N* is small

$$D\frac{d^2N}{dz^2} + a\frac{dN}{dz} + f'(0)N = 0$$

to leading order. This has solutions $N(z) = N_0 e^{\lambda z}$ with

$$\lambda^{2} + a\lambda + 1 = 0 \Rightarrow \lambda = \frac{1}{2} \left(-a \pm \sqrt{a^{2} - 4Df'(0)} \right)$$

Typical Model Solution Travelling Wave Solutions Applications to Wound Healing Deducing the Chemical Profile

The Speed of Travelling Waves

We know that $N \rightarrow 0$ as $z \rightarrow \infty$. Recall that

$$D\frac{d^2N}{dz^2} + a\frac{dN}{dz} + f(N) = 0$$

Therefore when *N* is small

$$D\frac{d^2N}{dz^2} + a\frac{dN}{dz} + f'(0)N = 0$$

to leading order. This has solutions $N(z) = N_0 e^{\lambda z}$ with

$$\lambda^2 + a\lambda + 1 = 0 \Rightarrow \lambda = \frac{1}{2} \left(-a \pm \sqrt{a^2 - 4Df'(0)} \right).$$

If $a < 2\sqrt{Df'(0)}$ then λ is complex \Rightarrow the solutions oscillate about N = 0, which does not make sense biologically

Typical Model Solution Travelling Wave Solutions Applications to Wound Healing Deducing the Chemical Profile

The Speed of Travelling Waves

We know that $N \rightarrow 0$ as $z \rightarrow \infty$. Recall that

$$D\frac{d^2N}{dz^2} + a\frac{dN}{dz} + f(N) = 0$$

Therefore when *N* is small

$$D\frac{d^2N}{dz^2} + a\frac{dN}{dz} + f'(0)N = 0$$

to leading order. This has solutions $N(z) = N_0 e^{\lambda z}$ with

$$\lambda^{2} + a\lambda + 1 = 0 \Rightarrow \lambda = \frac{1}{2} \left(-a \pm \sqrt{a^{2} - 4Df'(0)} \right)$$

If $a < 2\sqrt{Df'(0)}$ then λ is complex \Rightarrow the So we require solutions oscillate about N = 0, which $a \ge 2\sqrt{Df'(0)}$. does not make sense biologically

Typical Model Solution Travelling Wave Solutions Applications to Wound Healing Deducing the Chemical Profile

Applications to Wound Healing

For the wound healing model

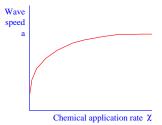
$$f'(0) = Ns(0) - \delta$$

 \Rightarrow wave speed $a = 2\sqrt{D(Ns(0) - \delta)}$

Typical Model Solution Travelling Wave Solutions Applications to Wound Healing Deducing the Chemical Profile

Therapeutic Addition of Chemical

Now consider adding extra chemical to the wound as a therapy The equation for the chemical changes to


$$\partial \mathbf{c}/\partial t = An/(1 + \alpha n^2) - \lambda \mathbf{c} + \gamma$$

 \Rightarrow f(n) changes to

$$s\left(\frac{\gamma}{\lambda}+\frac{An}{\lambda(1+\alpha n^2)}\right)(N-n)n-\delta n$$

$$\Rightarrow$$
 $f'(0)$ changes to $Ns(\gamma/\lambda) - \delta$

$$\Rightarrow$$
 wave speed $a = 2\sqrt{D(Ns(\gamma/\lambda) - \delta)}$

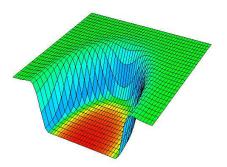
Typical Model Solution Travelling Wave Solutions Applications to Wound Healing Deducing the Chemical Profile

Deducing the Chemical Profile

Since we know c as a function of n, there is also a travelling wave of chemical, whose form we can deduce. The chemical profi le has a peak in the wave front.

Typical Model Solution Travelling Wave Solutions Applications to Wound Healing Deducing the Chemical Profile

Deducing the Chemical Profile


Since we know c as a function of n, there is also a travelling wave of chemical, whose form we can deduce. The chemical profi le has a peak in the wave front.

c n

Typical Model Solution Travelling Wave Solutions Applications to Wound Healing Deducing the Chemical Profile

Deducing the Chemical Profile

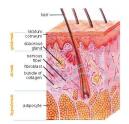
Since we know c as a function of n, there is also a travelling wave of chemical, whose form we can deduce. The chemical profi le has a peak in the wave front.

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Bimulation of Scar Formation

Outline

2 Model Analysis: The Speed of Epidermal Repair

Modelling Scar Formation

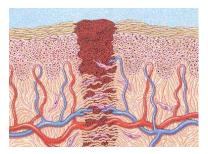

4 Applying the Model to Anti-Scarring Therapies

The Structure of the Skin Basic Process of Scar Form Key Ingredients of a Model Simulation of Scar Formatio

The Structure of the Skin

The skin consists of two layers: epidermis and dermis

The dermis consists fi broblasts cells, collagen fi bres, blood vessels and nerve endings.


- * ロ * * 個 * 三重

Modelling Epidermal Wound Healing Model Analysis: The Speed of Epidermal Repair Modelling Scar Formation

Applying the Model to Anti-Scarring Therapies

Dermal Wound Healing

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Simulation of Scar Formation

The fi rst response to injury is the formation of a blood clot, composed of fi brin. Fibroblasts then migrate into the wound from surrounding dermis, replacing the fi brin with collagen-based scar tissue.

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Simulation of Scar Formation

Scar vs Normal Dermis

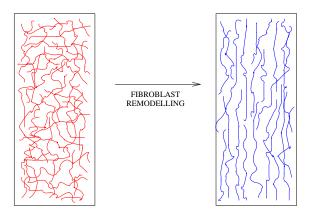
Differences between scar tissue and normal dermis include

- Higher collagen density
- Thicker collagen fi bres
- Lower tensile strength
- Different pattern of collagen alignment

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Simulation of Scar Formation

Scar vs Normal Dermis

Differences between scar tissue and normal dermis include


- Higher collagen density
- Thicker collagen fi bres
- Lower tensile strength
- Different pattern of collagen alignment: normal tissue has randomly aligned fi bres; scar tissue has fi bres primarily perpendicular to the basement membrane

Modelling Epidermal Wound Healing Model Analysis: The Speed of Epidermal Repair Modelling Scar Formation

Applying the Model to Anti-Scarring Therapies

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Simulation of Scar Formation

Basic Process of Scar Formation

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Simulation of Scar Formation

Key Ingredients of a Model

- Fibroblasts tend to move along extracellular matrix fi bres ("contact guidance")
- New collagen fi bres are produced in the direction of cell movement
- Existing collagen fi bres are reoriented towards cell movement

Model Formulation

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Simulation of Scar Formation

We treat cells as discrete objects in a continuum of extracellular matrix.

Model Formulation

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Simulation of Scar Formation

We treat cells as discrete objects in a continuum of extracellular matrix.

Fibroblasts: Represented by a position and direction of movement. We use realistic cell numbers.

Model Formulation

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Simulation of Scar Formation

We treat cells as discrete objects in a continuum of extracellular matrix.

Fibroblasts: Represented by a position and direction of movement. We use realistic cell numbers.

Extracellular matrix: Two types: collagen and fi brin. Mathematically they are represented as vectors with magnitude ↔ collagen/fi brin density, and direction ↔ collagen/fi brin orientation. Modelling Epidermal Wound Healing Model Analysis: The Speed of Epidermal Repair Modelling Scar Formation

ing the Model to Anti-Scarring Therapies

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Simulation of Scar Formation

Simulation of Scar Formation

Modelling Epidermal Wound Healing Model Analysis: The Speed of Epidermal Repair Modelling Scar Formation

Applying the Model to Anti-Scarring Therapies

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Simulation of Scar Formation

Simulation of Scar Formation

The Structure of the Skin Basic Process of Scar Formation Key Ingredients of a Model Simulation of Scar Formation

Movies of Wound Healing Simulation

Click here to play the fi rst movie

Click here to play the second movie

- * ロ * * 御 * 三連

Applying the Model to Anti-Scarring Therapies Conclusion	Modelling Epidermal Wound Healing Model Analysis: The Speed of Epidermal Repair Modelling Scar Formation Applying the Model to Anti-Scarring Therapies	TGF- β 1 and Scar Formation The Effects of TGF- β 1 in Dermal Wound Healing Unravelling TGF- β 1's Role in Scarring Conclusion	
--	---	---	--

Outline

Modelling Epidermal Wound Healing

- 2 Model Analysis: The Speed of Epidermal Repair
- 3 Modelling Scar Formation

 $\label{eq:total_total_total} \begin{array}{l} \text{TGF-}_{\beta1} \text{ and Scar Formation} \\ \text{The Effects of TGF-}_{\beta1} \text{ in Dermal Wound Healing} \\ \text{Unravelling TGF-}_{\beta1} \text{'s Role in Scarring} \\ \text{Conclusion} \end{array}$

< < >> < <</>

TGF- β 1 and Scar Formation

Experimental work on rats shows that TGF- β 1 promotes scar formation and that competitive inhibition of TGF- β 1 using mannose-6-phosphate reduces scarring.

(First report: Shah et al, Lancet 339, 213-4 1992).

This is the basis for the drug Judivex (Renovo PLC): phase II clinical trials are in progress. The related drug Juvista (also Renovo PLC) has a similar biochemical basis, and phase II clinical trials have been successful.

(See www.renovo.co.uk).

 $TGF,\beta1$ and Scar Formation The Effects of $TGF-\beta1$ in Dermal Wound Healing Unravelling $TGF-\beta1$'s Role in Scarring Conclusion

TGF- β 1 and Scar Formation

Experimental work on rats shows that TGF- β 1 promotes scar formation and that competitive inhibition of TGF- β 1 using mannose-6-phosphate reduces scarring.

(First report: Shah et al, Lancet 339, 213-4 1992).

This is the basis for the drug Judivex (Renovo PLC): phase II clinical trials are in progress. The related drug Juvista (also Renovo PLC) has a similar biochemical basis, and phase II clinical trials have been successful.

(See www.renovo.co.uk).

Question: what is the mechanism of TGF- β 1's effect on scarring?

TGF- β 1 and Scar Formation The Effects of TGF- β 1 in Dermal Wound Healing Unravelling TGF- β 1's Role in Scarring Conclusion

The Effects of TGF- β 1 in Dermal Wound Healing

Standard literature indicates that TGF- β 1 controls four important aspects of fi broblast behaviour during dermal wound healing:

- Proliferation
- Cell motility
- Collagen production
- Frequency of cell reorientation

 $\label{eq:constraint} \begin{array}{l} {\rm TGF-}\beta1 \mbox{ and Scar Formation} \\ {\rm The Effects of TGF-}\beta1 \mbox{ in Dermal Wound Healing} \\ {\rm Unravelling TGF-}\beta1 \mbox{'s Role in Scarring} \\ {\rm Conclusion} \end{array}$

Unravelling TGF- β 1's Role in Scarring

Normal healing

Removing TGF- β 1's effect on proliferation, motility & collagen prod

More frequent cell reorientation

Model Analysis: The Speed of Epidermal Repair The Effects	d Scar Formation of TGF- β 1 in Dermal Wound Healing TGF- β 1's Role in Scarring
---	--

TGF- β 1 regulates the degree of scarring via its effects on the frequency of fi broblast reorientation.

 $\label{eq:constant} \begin{array}{l} {\rm TGF}{-\beta}1 \mbox{ and Scar Formation} \\ {\rm The Effects of TGF}{-\beta}1 \mbox{ in Dermal Wound Healing} \\ {\rm Unravelling TGF}{-\beta}1's \mbox{ Role in Scarring} \\ {\rm Conclusion} \end{array}$

List of Frames

Applying the Model to Anti-Scarring Therapies

- TGF-β1 and Scar Formation
- The Effects of TGF^β1 in Dermal Wound Healing
- Unravelling TGF-β1's Role in Scarring
- Conclusion

