Predicting the Wavelength of Vegetation Patterns using Mathematical Models

Jonathan A. Sherratt

Department of Mathematics and Maxwell Institute for Mathematical Sciences Heriot-Watt University

Venice Winter School, January 2016

This talk can be downloaded from my web site

www.ma.hw.ac.uk/ \sim jas

Outline

- Ecological Background
- Detailed Calculation of Possible Wavelengths
- Effects of Changing Rainfall Levels
- Wavelength Selection: Two Examples
- Further Reading

Outline

- Ecological Background
- Detailed Calculation of Possible Wavelengths

Further Reading

- 3 Effects of Changing Rainfall Levels
- Wavelength Selection: Two Examples
- Further Reading

Ecological Background

Detailed Calculation of Possible Wavelengths Effects of Changing Rainfall Levels Wavelength Selection: Two Examples Further Reading

Vegetation Patterns

Vegetation Patterns

High rainfall: uniform vegetation

Very low rainfall: no vegetation

Further Reading

Wavelength Selection: Two Examples

Vegetation Patterns

Pattern Wavelength: A Quantitative Statisti Mathematical Model of Klausmeier Typical Solution of the Model

Vegetation Patterns

High rainfall: uniform vegetation

Low rainfall: patterned vegetation

W National Park, Niger Average patch width 50 m

Very low rainfall: no vegetation

Vegetation Patterns

Bushy vegetation in Niger

Mitchell grass in Australia
(Western New South Wales)

- Banded vegetation patterns are found on gentle slopes in semi-arid areas of Africa, Australia and Mexico
- Plants vary from grasses to shrubs and trees

Vegetation Patterns

Pattern Wavelength: A Quantitative Statistic Mathematical Model of Klausmeier Typical Solution of the Model Homogeneous Steady States

Why Do Plants Form Patterns?

Data from Burkina Faso Rietkerk et al Plant Ecology 148: 207-224, 2000

More plants ⇒ more roots and organic matter in soil ⇒ more infiltration of rainwater

Pattern Wavelength: A Quantitative Statistic

 The wavelength of vegetation bands is probably the most accessible quantitative statistic for vegetation patterns.

 Our topic: how to predict pattern wavelength using mathematical models

Mathematical Model of Klausmeier

$$\label{eq:Rate of change = Rainfall - Evaporation} \begin{array}{ll} - \mbox{ Uptake by } + \mbox{ Flow} \\ \mbox{ of water } & \mbox{ plants } & \mbox{ downhill } \end{array}$$

$$\label{eq:Rate of change = Growth, proportional - Mortality} & + \mbox{ Random } \\ & \mbox{plant biomass} & \mbox{to water uptake} & \mbox{dispersal} \\ \end{aligned}$$

$$\partial w/\partial t = A - w - wu^2 + \nu \partial w/\partial x$$

$$\partial u/\partial t = wu^2 - Bu + \partial^2 u/\partial x^2$$

Mathematical Model of Klausmeier

$$\label{eq:Rate of change = Growth, proportional - Mortality} & + \mbox{ Random } \\ & \mbox{plant biomass} & \mbox{to water uptake} & \mbox{dispersal} \\ \end{aligned}$$

$$\partial w/\partial t = A - w - wu^2 + \nu \partial w/\partial x$$

 $\partial u/\partial t = wu^2 - Bu + \partial^2 u/\partial x^2$

The nonlinearity in wu^2 arises because the presence of plants increases water infiltration into the soil.

Mathematical Model of Klausmeier

$$wu^2 = w \cdot u \cdot \left(\begin{array}{c} \text{infiltration} \\ \text{rate} \end{array} \right)$$

The nonlinearity in wu^2 arises because the presence of plants increases water infiltration into the soil.

Mathematical Model of Klausmeier

$$\label{eq:Rate of change = Rainfall - Evaporation} \begin{array}{ll} - \mbox{ Uptake by } + \mbox{ Flow} \\ \mbox{ of water } & \mbox{ plants } & \mbox{ downhill } \end{array}$$

$$\label{eq:Rate of change = Growth, proportional - Mortality} & + \mbox{ Random } \\ & \mbox{plant biomass} & \mbox{to water uptake} & \mbox{dispersal} \\ \end{aligned}$$

$$\partial w/\partial t = A - w - wu^2 + \nu \partial w/\partial x$$

 $\partial u/\partial t = wu^2 - Bu + \partial^2 u/\partial x^2$

Parameters: A: rainfall B: plant loss ν : slope

Further Reading

Vegetation Patterns Pattern Wavelength: A Quantitative Statistic Mathematical Model of Klausmeier Typical Solution of the Model Homogeneous Steady States

Further Reading

Vegetation Patterns Pattern Wavelength: A Quantitative Statistic Mathematical Model of Klausmeier Typical Solution of the Model Homogeneous Steady States

Detailed Calculation of Possible Wavelengths Effects of Changing Rainfall Levels Wavelength Selection: Two Examples Further Reading

Typical Solution of the Model

Typical Solution of the Model in Two Dimensions

Homogeneous Steady States

- The starting point for mathematical study of vegetation patterns is to determine homogeneous steady states
- Recall the model equations:

$$\frac{\partial w}{\partial t} = A - w - wu^{2} + \nu \frac{\partial w}{\partial x}$$

$$\frac{\partial u}{\partial t} = wu^{2} - Bu + \frac{\partial^{2} u}{\partial x^{2}}$$

For homogeneous steady states
$$A = w + wu^2$$
, $Bu = wu^2$
 $\Rightarrow u = 0$, $w = A$ or $uw = B$, $A - w - B^2/w = 0$

Homogeneous Steady States

- The starting point for mathematical study of vegetation patterns is to determine homogeneous steady states
- Recall the model equations:

$$\frac{\partial w}{\partial t} = A - w - wu^{2} + \nu \frac{\partial w}{\partial x}$$

$$\frac{\partial u}{\partial t} = wu^{2} - Bu + \frac{\partial^{2} u}{\partial x^{2}}$$

For homogeneous steady states
$$A = w + wu^2$$
, $Bu = wu^2$
 $\Rightarrow u = 0$, $w = A$ or $uw = B$, $A - w - B^2/w = 0$

• For all parameter values, there is a stable "desert" steady state u = 0, w = A

Homogeneous Steady States

- The starting point for mathematical study of vegetation patterns is to determine homogeneous steady states
- Recall the model equations:

$$\frac{\partial w}{\partial t} = A - w - wu^{2} + \nu \frac{\partial w}{\partial x}$$

$$\frac{\partial u}{\partial t} = wu^{2} - Bu + \frac{\partial^{2} u}{\partial x^{2}}$$

For homogeneous steady states
$$A = w + wu^2$$
, $Bu = wu^2$
 $\Rightarrow u = 0$, $w = A$ or $uw = B$, $A - w - B^2/w = 0$

- For all parameter values, there is a stable "desert" steady state u = 0, w = A
- When $A \ge 2B$, there are also two non-trivial steady states satisfying $w^2 Aw + B^2 = 0$, u = B/w

Stability of Homogeneous Steady States I

 Patterns can arise when a homogeneous steady state is unstable

- To determine stability:
 - (i) Linearise the model about the steady state

$$\begin{array}{rcl} \partial \hat{\boldsymbol{w}}/\partial t & = & -(1+u_s^2)\hat{\boldsymbol{w}} - 2B\hat{\boldsymbol{u}} + \nu\partial\hat{\boldsymbol{w}}/\partial x \\ \partial \hat{\boldsymbol{u}}/\partial t & = & u_s^2\hat{\boldsymbol{w}} + B\hat{\boldsymbol{u}} + \partial^2\hat{\boldsymbol{u}}/\partial x^2 \\ & & (\hat{\boldsymbol{w}} = \boldsymbol{w} - \boldsymbol{w}_s, \quad \hat{\boldsymbol{u}} = \boldsymbol{u} - \boldsymbol{u}_s) \end{array}$$

Stability of Homogeneous Steady States II

- To determine stability:
 - (i) Linearise the model about the steady state
 - (ii) Consider sinusoidal solutions:

$$(\hat{u}, \hat{w}) = \underbrace{(u_s, w_s)}_{\substack{\text{steady}\\ \text{state}}} + \underbrace{(\tilde{u}, \tilde{w})}_{\substack{\text{small}\\ \text{constants}}} \cdot \underbrace{e^{\lambda t}}_{\substack{\text{cos}\\ \text{cos}}} \cdot \underbrace{\sin(2\pi f x)}_{\substack{\text{cos}\\ \text{frequency } f}}$$

Substituting into the model gives $\lambda(f)$ ("dispersion relation")

(iii) The steady state is unstable if Re $\lambda(f) > 0$ for some f

Stability of Homogeneous Steady States III

The steady state loses stability as rainfall A is decreased

Stability of Homogeneous Steady States IV

In many cases the pattern wavelength corresponds to the most unstable frequency (wavelength=1/frequency).

Stability of Homogeneous Steady States IV

In many cases the pattern wavelength corresponds to the most unstable frequency (wavelength=1/frequency).

When *A* is just small enough for patterns, the most unstable frequency gives a reliable guide to wavelength. For smaller *A*, wavelength selection is more complicated.

Outline

- Ecological Background
- Detailed Calculation of Possible Wavelengths
- 3 Effects of Changing Rainfall Levels
- 4 Wavelength Selection: Two Examples
- Further Reading


```
WATER FLOW
```


Travelling Wave Equations

The patterns move at constant shape and speed $\Rightarrow u(x,t) = U(z), w(x,t) = W(z), z = x - ct$ $d^2 U/dz^2 + c dU/dz + WU^2 - BU = 0$ $(\nu + c)dW/dz + A - W - WU^2 = 0$

Patterns are periodic (limit cycle) solutions of these equations Calculation of all possible patterns is done in three steps.

Step 1: Calculate the Locus of Hopf Bifurcations

Patterns are periodic (limit cycle) solutions of the equations

$$d^2U/dz^2 + c dU/dz + WU^2 - BU = 0$$
$$(\nu + c)dW/dz + A - W - WU^2 = 0$$

Patterns lie on a solution branch that starts at a Hopf bifurcation point (in most cases)

Step 1: Calculate the locus of Hopf bifurcations in the *A–c* plane

Step 1: Calculate the Locus of Hopf Bifurcations

Step 2: Calculate Some Branches of Pattern Solutions

Step 2: Calculate some branches of pattern solutions. These end at a homoclinic solution

Step 3: Calculate the Locus of Homoclinic Solutions

Step 3: Calculate the homoclinic locus, approximated by the locus of patterns of a fixed, very long period

Step 3: Calculate the Locus of Homoclinic Solutions

Step 3: Calculate the homoclinic locus, approximated by the locus of patterns of a fixed, very long period

Pattern Stability

Not all of the possible patterns are stable as solutions of the model equations.

Pattern Stability

Not all of the possible patterns are stable as solutions of the model equations.

The parameter region with stable patterns is known as the "Busse balloon".

Pattern Stability

Not all of the possible patterns are stable as solutions of the model equations.

Key Result

For many rainfall levels, there are stable patterns with a range of wavelengths.

PDE model:
$$u_t = u_{zz} + cu_z + f(u, w)$$

$$w_t = \nu w_z + cv_z + g(u, w)$$
Periodic wave satisfies: $0 = U_{zz} + cU_z + f(U, W)$

$$0 = \nu W_z + cW_z + g(U, W)$$

Consider
$$u(z,t) = U(z) + e^{\lambda t} \overline{u}(z)$$
 with $|\overline{u}| \ll |U|$
 $w(z,t) = W(z) + e^{\lambda t} \overline{w}(z)$ with $|\overline{w}| \ll |W|$

$$\Rightarrow$$
 Eigenfunction eqn: $\lambda \overline{u} = \overline{u}_{zz} + c\overline{u}_z + f_u(U, W)\overline{u} + f_w(U, W)\overline{w}$
 $\lambda \overline{w} = \nu \overline{w}_z + c\overline{w}_z + g_u(U, W)\overline{u} + g_w(U, W)\overline{w}$

Boundary conditions:
$$\overline{u}(0) = \overline{u}(L)e^{i\gamma}$$
 $(0 \le \gamma < 2\pi)$

$$\overline{w}(0) = \overline{w}(L)e^{i\gamma} \quad (0 \le \gamma < 2\pi)$$

PDE model:
$$u_t = u_{zz} + cu_z + f(u, w)$$

$$w_t = \nu w_z + cv_z + g(u, w)$$

Periodic wave satisfies:
$$0 = U_{zz} + cU_z + f(U, W)$$

$$0 = \nu W_z + cW_z + g(U, W)$$

Consider
$$u(z,t) = U(z) + e^{\lambda t} \overline{u}(z)$$
 with $|\overline{u}| \ll |U|$
 $w(z,t) = W(z) + e^{\lambda t} \overline{w}(z)$ with $|\overline{w}| \ll |W|$

$$W(2,t) = W(2) + C W(2) \quad \text{with } |W| \leq |W|$$

$$\Rightarrow$$
 Eigenfunction eqn: $\lambda \overline{u} = \overline{u}_{zz} + c\overline{u}_z + f_u(U, W)\overline{u} + f_w(U, W)\overline{w}$
 $\lambda \overline{w} = \nu \overline{w}_z + c\overline{w}_z + g_u(U, W)\overline{u} + g_w(U, W)\overline{w}$

Boundary conditions:
$$\overline{u}(0) = \overline{u}(L)e^{i\gamma}$$
 $(0 \le \gamma < 2\pi)$

$$\overline{w}(0) = \overline{w}(L)e^{i\gamma} \quad (0 < \gamma < 2\pi)$$

PDE model:
$$u_t = u_{zz} + cu_z + f(u, w)$$

 $w_t = \nu w_z + cv_z + g(u, w)$

Periodic wave satisfies:
$$0 = U_{zz} + cU_z + f(U, W)$$

$$0 = \nu W_z + cW_z + g(U, W)$$

Consider
$$u(z,t) = U(z) + e^{\lambda t} \overline{u}(z)$$
 with $|\overline{u}| \ll |U|$
 $w(z,t) = W(z) + e^{\lambda t} \overline{w}(z)$ with $|\overline{w}| \ll |W|$

$$\Rightarrow$$
 Eigenfunction eqn: $\lambda \overline{u} = \overline{u}_{zz} + c\overline{u}_z + f_u(U, W)\overline{u} + f_w(U, W)\overline{w}$
 $\lambda \overline{w} = \nu \overline{w}_z + c\overline{w}_z + g_u(U, W)\overline{u} + g_w(U, W)\overline{w}$

Boundary conditions:
$$\overline{u}(0) = \overline{u}(L)e^{i\gamma}$$
 $(0 \le \gamma < 2\pi)$

$$\overline{w}(0) = \overline{w}(L)e^{i\gamma} \quad (0 < \gamma < 2\pi)$$

PDE model:
$$u_t = u_{zz} + cu_z + f(u, w)$$

 $w_t = \nu w_z + cv_z + g(u, w)$

Periodic wave satisfies:
$$0 = U_{zz} + cU_z + f(U, W)$$

$$0 = \nu W_z + cW_z + g(U, W)$$

Consider
$$u(z,t) = U(z) + e^{\lambda t} \overline{u}(z)$$
 with $|\overline{u}| \ll |U|$
 $w(z,t) = W(z) + e^{\lambda t} \overline{w}(z)$ with $|\overline{w}| \ll |V|$

$$w(z,t) = W(z) + e^{\lambda t} \overline{w}(z)$$
 with $|\overline{w}| \ll |W|$

$$\Rightarrow$$
 Eigenfunction eqn: $\lambda \overline{u} = \overline{u}_{zz} + c\overline{u}_z + f_u(U, W)\overline{u} + f_w(U, W)\overline{w}$
 $\lambda \overline{w} = \nu \overline{w}_z + c\overline{w}_z + g_u(U, W)\overline{u} + g_w(U, W)\overline{w}$

Boundary conditions:
$$\overline{u}(0) = \overline{u}(L)e^{i\gamma}$$
 $(0 \le \gamma < 2\pi)$

$$\overline{w}(0) = \overline{w}(L)e^{i\gamma} \quad (0 \le \gamma < 2\pi)$$

PDE model:
$$u_t = u_{zz} + cu_z + f(u, w)$$

 $w_t = \nu w_z + cv_z + g(u, w)$

Periodic wave satisfies:
$$0 = U_{zz} + cU_z + f(U, W)$$

$$0 = \nu W_z + cW_z + g(U, W)$$

Consider
$$u(z,t) = U(z) + e^{\lambda t} \overline{u}(z)$$
 with $|\overline{u}| \ll |U|$
 $w(z,t) = W(z) + e^{\lambda t} \overline{w}(z)$ with $|\overline{w}| \ll |W|$

$$\Rightarrow \text{ Eigenfunction eqn: } \lambda \overline{u} = \overline{u}_{zz} + c\overline{u}_z + f_u(U, W)\overline{u} + f_w(U, W)\overline{w}$$
$$\lambda \overline{w} = \nu \overline{w}_z + c\overline{w}_z + g_u(U, W)\overline{u} + g_w(U, W)\overline{w}$$

$$\lambda w = \nu w_z + c w_z + g_u(O, vv)u + g_w(O, vv)v$$

Boundary conditions:
$$\overline{u}(0) = \overline{u}(L)e^{i\gamma}$$
 $(0 \le \gamma < 2\pi)$

$$\overline{w}(0) = \overline{w}(L)e^{i\gamma} \quad (0 \le \gamma < 2\pi)$$

Eigenfunction eqn:
$$\lambda \overline{u} = \overline{u}_{zz} + c\overline{u}_z + f_u(U, W)\overline{u} + f_w(U, W)\overline{w}$$

$$\lambda \overline{w} = \nu \overline{w}_z + c\overline{w}_z + g_u(U, W)\overline{u} + g_w(U, W)\overline{w}$$

Here
$$0 < z < L$$
, with $(\overline{u}, \overline{w})(0) = (\overline{u}, \overline{w})(L)e^{i\gamma}$ $(0 \le \gamma < 2\pi)$

Eigenfunction eqn:
$$\lambda \overline{u} = \overline{u}_{zz} + c\overline{u}_z + f_u(U, W)\overline{u} + f_w(U, W)\overline{w}$$

$$\lambda \overline{w} = \nu \overline{w}_z + c\overline{w}_z + g_u(U, W)\overline{u} + g_w(U, W)\overline{w}$$

Here
$$0 < z < L$$
, with $(\overline{u}, \overline{w})(0) = (\overline{u}, \overline{w})(L)e^{i\gamma}$ $(0 \le \gamma < 2\pi)$

Eigenfunction eqn:
$$\lambda \overline{u} = \overline{u}_{zz} + c\overline{u}_z + f_u(U, W)\overline{u} + f_w(U, W)\overline{w}$$

$$\lambda \overline{w} = \nu \overline{w}_z + c\overline{w}_z + g_u(U, W)\overline{u} + g_w(U, W)\overline{w}$$

Here
$$0 < z < L$$
, with $(\overline{u}, \overline{w})(0) = (\overline{u}, \overline{w})(L)e^{i\gamma}$ $(0 \le \gamma < 2\pi)$

(based on Jens Rademacher, Bjorn Sandstede, Arnd Scheel Physica D 229 166-183, 2007)

 solve numerically for the periodic wave by continuation from a Hopf bifn point in the travelling wave eqns

$$0 = U_{zz} + cU_z + f(U, W)$$

$$0 = \nu W_z + cW_z + g(U, W) \quad (z = x - ct)$$

(based on Jens Rademacher, Bjorn Sandstede, Arnd Scheel Physica D 229 166-183, 2007)

- solve numerically for the periodic wave by continuation from a Hopf bifn point in the travelling wave eqns
- of for $\gamma = 0$, discretise the eigenfunction equations in space, giving a (large) matrix eigenvalue problem

$$\lambda \overline{u} = \overline{u}_{zz} + c\overline{u}_z + f_u(U, W)\overline{u} + f_w(U, W)\overline{w}, \quad \overline{u}(0) = \overline{u}(L)e^{i\gamma}$$

$$\lambda \overline{w} = \nu \overline{w}_z + c\overline{w}_z + g_u(U, W)\overline{u} + g_w(U, W)\overline{w}, \quad \overline{w}(0) = \overline{w}(L)e^{i\gamma}$$

(based on Jens Rademacher, Bjorn Sandstede, Arnd Scheel Physica D 229 166-183, 2007)

- solve numerically for the periodic wave by continuation from a Hopf bifn point in the travelling wave eqns
- of for $\gamma = 0$, discretise the eigenfunction equations in space, giving a (large) matrix eigenvalue problem
- \odot continue the eigenfunction equations numerically in γ , starting from each of the periodic eigenvalues

$$\lambda \overline{u} = \overline{u}_{zz} + c\overline{u}_z + f_u(U, W)\overline{u} + f_w(U, W)\overline{w}, \quad \overline{u}(0) = \overline{u}(L)e^{i\gamma}$$

$$\lambda \overline{w} = \nu \overline{w}_z + c\overline{w}_z + g_u(U, W)\overline{u} + g_w(U, W)\overline{w}, \quad \overline{w}(0) = \overline{w}(L)e^{i\gamma}$$

(based on Jens Rademacher, Bjorn Sandstede, Arnd Scheel Physica D 229 166-183, 2007)

- solve numerically for the periodic wave by continuation from a Hopf bifn point in the travelling wave eqns
- ② for $\gamma = 0$, discretise the eigenfunction equations in space, giving a (large) matrix eigenvalue problem
- \odot continue the eigenfunction equations numerically in γ , starting from each of the periodic eigenvalues

This gives the eigenvalue spectrum, and hence (in)stability

(based on Jens Rademacher, Bjorn Sandstede, Arnd Scheel Physica D 229 166-183, 2007)

This gives the eigenvalue spectrum, and hence (in)stability

Stability in a Parameter Plane

By following this procedure at each point on a grid in parameter space, regions of stability/instability can be determined.

In fact, stable/unstable boundaries can be computed accurately by numerical continuation of the point at which

$$Re\lambda = Im\lambda = \gamma = \partial^2 Re\lambda/\partial \gamma^2 = 0$$

(Eckhaus instability point)

Stability in a Parameter Plane

Outline

- Ecological Background
- Detailed Calculation of Possible Wavelengths
- 3 Effects of Changing Rainfall Levels
- Wavelength Selection: Two Examples
- Further Reading

The Onset of Patterning

The Onset of Patterning

The Onset of Patterning

The Onset of Patterning

The Onset of Patterning

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The tipping point occurs when the homogeneous steady state becomes unstable.

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

www.macs.hw.ac.uk/~jas

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

The Onset of Patterning

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

At high rainfall levels, vegetation is uniform. The transition to patterns is a "tipping point"

www.macs.hw.ac.uk/~jas

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning Desertification History-Dependent Patterns Mathematical Explanation of Hysteresis Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

Desertification

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

Time

The Onset of Patterning Desertification History-Dependent Patterns Mathematical Explanation of Hysteresis Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning
Desertification
History-Dependent Patterns
Mathematical Explanation of Hysteresis
Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning Desertification History-Dependent Patterns Mathematical Explanation of Hysteresis Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning Desertification History-Dependent Patterns Mathematical Explanation of Hysteresi Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning Desertification History-Dependent Patterns Mathematical Explanation of Hysteresi Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning Desertification History-Dependent Patterns Mathematical Explanation of Hysteresis Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning Desertification History-Dependent Patterns Mathematical Explanation of Hysteresi Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning Desertification History-Dependent Patterns Mathematical Explanation of Hysteresis Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning
Desertification
History-Dependent Patterns
Mathematical Explanation of Hysteresis
Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning Desertification History-Dependent Patterns Mathematical Explanation of Hysteresis Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning Desertification History-Dependent Patterns Mathematical Explanation of Hysteresis Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

The Onset of Patterning Desertification History-Dependent Patterns Mathematical Explanation of Hysteresis Ecological Conclusions

Desertification

At very low rainfall, vegetation cannot survive even in patterns, and there is another tipping point, giving full-blown desert.

Stability in a Parameter Plane

The Onset of Patterning
Desertification
History-Dependent Patterns
Mathematical Explanation of Hysteresi
Ecological Conclusions

History-Dependent Patterns (Animation)

The Onset of Patterning
Desertification
History-Dependent Patterns
Mathematical Explanation of Hysteresis
Ecological Conclusions

Mathematical Explanation of Hysteresis

Wavelength changes abruptly at the edge of the Busse Balloon.

Mathematical Explanation of Hysteresis

Wavelength changes abruptly at the edge of the Busse Balloon.

The Busse Balloon can be calculated using the software package WAVETRAIN (www.ma.hw.ac.uk/wavetrain)

Data on the Effects of Changing Rainfall

Data from 1950-1995 (C. Valentin & J.M. d'Herbès, Catena 37:231, 1999)

The Onset of Patterning
Desertification
History-Dependent Patterns
Mathematical Explanation of Hysteresis
Ecological Conclusions

Ecological Conclusions

The mathematical model has predicted answers to the following key ecological questions:

- At what rainfall level is there a switch from uniform vegetation to patterns?
- At what rainfall level is there a transition to desert?
- What determines the wavelength of vegetation bands?

Ecological Conclusions

The mathematical model has predicted answers to the following key ecological questions:

- At what rainfall level is there a switch from uniform vegetation to patterns?
- At what rainfall level is there a transition to desert?
- What determines the wavelength of vegetation bands?
 Wavelength depends on both parameters and patterning history.

Outline

- Ecological Background
- Detailed Calculation of Possible Wavelengths
- 3 Effects of Changing Rainfall Levels
- Wavelength Selection: Two Examples
- Further Reading

Ecological Background Detailed Calculation of Possible Wavelengths Effects of Changing Rainfall Levels Wavelength Selection: Two Examples Further Reading

The Origin of Vegetation Patterns How to Predict Pattern Wavelength Wavelength for Degradation of Uniform Vegetation When Does Vegetation Colonise Bare Ground? Comparison of Wavelengths

The Origin of Vegetation Patterns

Vegetation patterns develop via either degradation of uniform vegetation, or colonisation of bare ground.

The Origin of Vegetation Patterns

Vegetation patterns develop via either degradation of uniform vegetation, or colonisation of bare ground.

The Origin of Vegetation Patterns

How to Predict Pattern Wavelength Wavelength for Degradation of Uniform Vegetation When Does Vegetation Colonise Bare Ground? Comparison of Wavelengths

The Origin of Vegetation Patterns

Vegetation patterns develop via either degradation of uniform vegetation, or colonisation of bare ground.

Distance uphill, x

Ecological Background Detailed Calculation of Possible Wavelengths Effects of Changing Rainfall Levels Wavelength Selection: Two Examples Further Reading The Origin of Vegetation Patterns How to Predict Pattern Wavelength Wavelength for Degradation of Uniform Vegetation When Does Vegetation Colonise Bare Ground? Comparison of Wavelengths

How to Predict Pattern Wavelength

Pattern wavelength is history-dependent

How to Predict Pattern Wavelength

Pattern wavelength is history-dependent

How to Predict Pattern Wavelength

Pattern wavelength is history-dependent

 \parallel

We must focus on the onset of patterning

/

Degradation of uniform vegetation Colonisation of bare ground

Wavelength for Degradation of Uniform Vegetation

For degradation of uniform vegetation, pattern wavelength can be calculated via the stability of the homogeneous steady state: wavelength=1/(most unstable frequency).

When Does Vegetation Colonise Bare Ground?

$\mathsf{Downhill} \longleftrightarrow \mathsf{Uphill}$

Very low rainfall: an isolated vegetation patch dies out

Time

Slightly larger rainfall: both edges move uphill

Larger rainfall: the patch expands both uphill and downhill

When Does Vegetation Colonise Bare Ground?

The key critical case is when the downhill edge is stationary

When Does Vegetation Colonise Bare Ground?

The key critical case is when the downhill edge is stationary

Wavelength can be calculated via numerical simulations in which rainfall A is chosen so that the downhill edge is stationary $(A = A_{crit}, say)$.

Comparison of Wavelengths

Comparison of Wavelengths

Comparison of Wavelengths

Degradation of uniform vegetation and colonisation of bare ground give patterns with different wavelengths.

Outline

- Ecological Background
- Detailed Calculation of Possible Wavelengths
- 3 Effects of Changing Rainfall Levels
- Wavelength Selection: Two Examples
- 5 Further Reading

Further Reading

- Dagbovie AS, Sherratt JA (2014) Pattern selection and hysteresis in the Rietkerk model for banded vegetation in semi-arid environments. J R Soc Interface 11:20140465
- Klausmeier CA (1999) Regular and irregular patterns in semiarid vegetation. Science 284:1826-1828.
- Sherratt JA (2005) An analysis of vegetation stripe formation in semi-arid landscapes. J. Math. Biol. 51:183-197.
- Sherratt JA (2013) History-dependent patterns of whole ecosystems. Ecological Complexity 14:8-20.
- Siero E, Doelman A, Eppinga MB, Rademacher J, Rietkerk M, Siteur K (2015) Stripe pattern selection by advective reaction-diffusion systems: resilience of banded vegetation on slopes. Chaos 25:036411
- Siteur K, Siero E, Eppinga MB, Rademacher J, Doelman A, Rietkerk M (2014) Beyond Turing: the response of patterned ecosystems to environmental change. Ecological Complexity 20:81-96

List of Frames

Ecological Background

- Vegetation Patterns
- Pattern Wavelength: A Quantitative Statistic
- Mathematical Model of Klausmeier
- Typical Solution of the Model
- Homogeneous Steady States

Detailed Calculation of Possible Wavelengths

- Banded Patterns on Slopes Move Uphill
- Travelling Wave Equations
- Pattern Stability

Effects of Changing Rainfall Levels

- The Onset of Patterning
- Desertification
- History-Dependent Patterns
- Mathematical Explanation of Hysteresis
- Ecological Conclusions

Wavelength Selection: Two Examples

- The Origin of Vegetation Patterns
- How to Predict Pattern Wavelength
- Wavelength for Degradation of Uniform Vegetation
- When Does Vegetation Colonise Bare Ground?
- Comparison of Wavelengths

Further Reading

