
A Polar Type System

Trevor Jim

AT&T Labs

— presented by —

Assaf Kfoury

These are slides of a talk presented at the Workshop on Inter-
section Types and Related Systems (ITRS ’00), with accompanying
notes.

The title is “A Polar Type System,” and it describes work by
Trevor Jim (AT&T Labs). [The work was done at MIT.]

The talk was given by Assaf Kfoury (Boston University), on
Saturday, 15 July 2000 at the University of Geneva, Switzerland.



Summary

Partial type inference for ∀, ∧

Complete inference for System P

• Stronger than ML

• ∀, ∧ at unbounded depth

Key idea/intuition: POLARITY

We describe a partial type inference algorithm for the system
with universal quantification and intersection types. To understand the
algorithm better, we construct a type system (System P) for which the
algorithm is complete. (Helps to compare to other type systems, etc.)
System P can type more terms than ML [let-desugaring] and allows
quantifiers and intersections at unbounded depth in types. The key
idea behind the algorithm and type system is an intuition about the
role of polarity in type inference.



Polarity in Inference

Goal of type inference: find

most general type

σ → τ

So, minimize requirements σ

and, maximize capabilities τ

Why is polarity important in type inference? Algorithms work
by divide-and-conquer: infer types of pieces, combine to get type of
whole. Therefore, must get the most general type of each piece, or
the whole approach falls apart.

Consider σ → τ . This is a contract, it says “supply me
with a σ and I will give you a τ .” The σ in the negative position
is a requirement that must be fulfilled before the capability τ can
be used. To get the most general type, you should try to minimize
requirements and maximize capabilities.

This is completely obvious (not new) and satisfied by just about
every inference algorithm out there.



Polarity and ∀, ∧
How to type ω ≡ λx.xx ?

• (∀t.t) → (∀t.t)
• (∀t.t → t) → (∀t.t → t)
• (s ∧ s → t) → t

• ∀s, t.(s ∧ s → t) → t

Although the intuition is obvious, we are going to apply it in
what appears to be a novel way: we will use it to design a type
inference algorithm and type system. We take as given that we want
to use ∀, ∧. Now consider our favorite term, ω.

The first type might be used in System F: (∀t.t) → (∀t.t).
The problem is, the requirement is too strong, very few terms have
type (∀t.t). We could weaken the requirement (resulting in the
second type) but the capability weakens as well. Consequence: no
(good) notion of most general type for this term.

Things are better in the intersection type system, where there
is a principal type. But the notion of “principal” is overly complicated.

Best of all is the combined discipline, which has principal types
and they are simpler than in the intersection system. Of course, ∀
appears at positive positions and ∧ appears at negative positions in
principal types. This maximizes (∀, infinite intersection) capabilities,
minimizes (∧, finite intersection) requirements.



Algorithm, I

To infer type of MN :

1. Infer M : σ → τ

2. Infer N : σ′

3. Find solution S |= σ′ ≤ σ

4. Conclude MN : S(τ )

OK, let’s apply our intuition to type inference. There is re-
ally only one interesting case to type inference: application (described
informally here). It matches up requirements and capabilities.

We begin by running our inference algorithm on the pieces, M
and N . This gives us the most general types, σ → τ and σ′ .
(The outputs of the algorithm are shown in boxes.) Naturally, ∀’s
will appear in positive positions and ∧’s in negative positions in these
types.

Now we need to fit the pieces together: we want a solution to
σ′ ≤ σ. (This is the subtype satisfaction problem.) As usual,
we want a best solution, and moreover, we want it to satisfy our
polarity intuition. In particular, we want S(τ) to have ∀’s in
positive positions only, and ∧’s in negative positions only.

We take the easy way out: we instantiate type variables to
simple types only. (For both INST rule and S here!) Then, there is a
best solution S, and S(τ) will obey our polarity intuition.



Algorithm, II

To infer the type of y id :

1. id : ∀u.u → u

2. y : (∀u.u → u) → v ` y id : v

If we only consider solutions using simple types, how do we get
quantifiers and intersections at arbitrary depth, as we claimed?

We use a kind of “local type inference” (see Pierce and Turner
for comparison). To infer the type of MN , we look more closely and
type xM1 · · · Mn instead.

Here we first infer the type of the argument id, then record an
assumption about the head of the application, y: it takes an argu-
ment of the argument type to a fresh type variable v. (No subtype
satisfaction is needed if the head of the application is a variable.)

Note, the assumption is a negative type and the conclusion is
a positive type. Thus when we abstract over y we’ll get a positive
type. . .



Algorithm, III
To infer type of (λy.y id)ω :

1. (λy.y id) :
∀v.((∀u.u → u) → v) → v

2. ω : ∀s, t.(s ∧ s → t) → t

3. S |= ∀s, t.(s ∧ s → t) → t

≤ (∀u.u → u) → v

We still need subtype satisfaction if the head of the application
is a lambda abstraction. Here we use the example from the previous
slide: we abstract over the variable y. By the usual (ABS) and (GEN)
rules we get the type shown here.

The argument ω has the principal type shown (we won’t go
through the details).

Now to infer the type of the application we have to solve the
subtype satisfaction problem shown. (This is just an instance of the
slide Algorithm, I.)



Subtype satisfaction

Convert σ ≤ τ to an equivalent

unification problem. Key rules:

• σ ≤ (τ1 ∧ τ2)
⇒ σ ≤ τ1, σ ≤ τ2

• (∀tσ) ≤ τ ⇒ ∃t. (σ ≤ τ )

We solve subtype satisfaction by transforming the problem to
an equivalent unification problem (it has the same set of solutions).
The key rules involve intersections and quantifiers.

To solve an inequality with an intersection on the right, solve
two simpler inequalities. (A source of exponential blowup.)

To solve an inequality with a quantifier on the left, show that
there is a SIMPLE type that can be instantiated for the variable to
solve the simpler inequality. (Recall instantiation is restricted to simple
types!)



Examples

(λy.y id)ω : ∀t.t → t

((λx.λy.yx) id)ω not typable.

The algorithm succeeds on the first term. Notice that the nor-
mal form of the term is the identity, so it is not surprising that principal
type is the type of the polymorphic identity function.

The second term, on the other hand, does not type. It is a
β-expansion of the first term. It does not type because the variable
y has “lost” the information that it will be applied to the polymorphic
identity. This information was crucial in allowing ω to be the actual
argument for the formal y.



System P

A ` Mi : τi

A ` xM1 · · · Mn : τ

where

A(x) ≤− τ1 → · · · → τn → τ

and τ is a simple type.

System P is a type system designed after the type inference
algorithm just introduced. The algorithm is complete for System P,
hence System P helps explain the algorithm and relate it to other
systems.

The key rule lets us type applications of variables specially, and
it is given here. It would be a derived rule in the combined type system,
but must be handled specially here due to polarities.

Note that every derived type (the τi) is positive. Therefore
the type τ1 → · · · → τn → τ is negative. That’s why we
don’t have a judgment A ` x : τ1 → · · · → τn → τ .
Instead, we only allow x to assume this type when it is syntactically
evident that it is applied to arguments of the right type.



Polymorphic Recursion

A, x : σ ` M : σ

A ` µx.M : σ

A, x : σ ` M : τ

A ` µx.M : τ
τ ≤ σ

We discuss polymorphic recursion in passing.
The first rule is the usual style of polymorphic recursion. It inter-

acts badly with polymorphism: in ML inference becomes undecidable.
Notice that it violates the polarity discipline: the type σ appears both
negatively (in the type environment) and positively.

A version compatible with the polarity discipline is given below.
It allows a negative assumption (in the environment) to be discharged
by a positive conclusion via the subtyping relation.

The importance of this is, it gives more support for my intuition:
1) Polymorphic recursion violates polarity intuition and is undecidable
2) My version that obeys polarity intuition is decidable and (slightly?)
more powerful than simple recursion.

AND it indicates a general technique for other type systems/static
analyses to pursue.



“Turning the Crank”

If a type system satisfies

• inference is decidable

• M typable ⇒ SN(M)

• Type(NF(M)) ≤ Type(M)

then build a stronger system

with decidable inference

Finally, we give a general recipe for strengthening type systems.
It is not particular to system P; see for example MacQueen and Tofte.
However we will see it is similar to the idea in System P of using
surrounding clues to infer stronger types (as in the variable application
rule). [It uses reduction to get MORE clues.]

Note, we may wish to use the idea with other forms of reduction.
For example, use βI-reduction if erasure is bothersome. To handle
recursion, don’t do unfolding.



The Idea

Design the cranked system so

Type(M)=Type(NF(M))

Naive algorithm:

1. Reduce to NF

2. Use non-cranked inference

Sounds good, but, reduction to NF might not terminate.



Key Case: Application

To infer type of MN :

1. Infer M : σ → τ

2. Infer N : σ′

3. Check σ′ ≤ σ (so SN(MN))

4. Infer NF(MN) : τ ′

So we have to go carefully.
IF we infer types of function and argument separately, and ty-

pability guarantees SN, THEN we can β-reduce each and get a better
type for each. (So lines 1 and 2 involve β-reduction.)

Then if their types match up, they are SN when applied. Reduce
to NF and infer the type of the result.

(This is just an informal explanation. The details will differ for
each type system. I usually use judgments of the form A ` M ⇒
M′ : τ where the term M′ on the right of the ⇒ is the normal
form of M . Thus inference/checking and reduction happen in an
intertwined fashion.)



Cranking Simple Types
(λx.(λy.x)(xz))z not typable

BUT: (λx.(λy.x)(xz)) typable

its NF is (λx.x)
(λx.x)z typable

SO: (λx.(λy.x)(xz))z typable

by turning the crank

In the original term, one step of reduction produces a self-
application of z, so the term is not simply-typable.

If the function is reduced first, however, the self-application goes
away and the term is simply-typable.

Hence the term is typable in the cranked system.



Cranking System P
((λx.λy.yx) id)ω not typable

BUT: (λx.λy.yx) id typable

its NF is (λy.y id)
(λy.y id)ω typable

so ((λx.λy.yx) id)ω typable by

turning the crank in P

Things are more interesting in System P. In this example there
is no erasure. Instead, reduction makes the application of y to the
polymorphic identity manifest.



Open Problems, I

Better algorithms for subtype

satisfaction (e.g., remove

limitation to simple types)

Applications to other static

analyses

If/when we find a way to solve subtype satisfaction that pro-
duces more general solutions (removing the restriction to simple types)
and stays within our polarity discipline, we can just plug it in to get a
more powerful type system/inference algorithm.

Type systems are closely related to other static analyses (e.g.,
control flow analyses) and our techniques may be applicable to them.



Open Problems, II

Is P type sound?

What is a denotational model

of “turning the crank” ?

What is the complexity of

checking/inference?

Since P lives inside of a type sound system, type soundness of
P is not a big concern. (But I conjecture P is type sound.)

Obviously the model of the simply typed lambda calculus is not
going to work for the cranked system. We don’t even know if the
notion is sensible without a denotational model.

The complexity of checking or inference for “turning the crank”
is clearly beyond elementary recursive. For System P alone, one can try
to study a ranked hierarchy. Rank 2 is the same as ML, I conjecture
that each step up in the hierarchy costs an additional exponential.
(Check out the subtype satisfaction algorithm to see the source of the
exponential, and get an upper bound.)


