
System E:

Expansion Variables for Flexible Typing with

Linear and Non-linear Types and Intersection Types?

Sébastien Carlier1, Jeff Polakow1, J. B. Wells1, and A. J. Kfoury2

1 Heriot-Watt University, http://www.macs.hw.ac.uk/ultra/
2 Boston University, http://www.cs.bu.edu/~kfoury/

Abstract. Types are often used to control and analyze computer pro-
grams. Intersection types give great flexibility, but have been difficult
to implement. The ! operator, used to distinguish between linear and
non-linear types, has good potential for better resource-usage tracking,
but has not been as flexible as one might want and has been difficult
to use in compositional analysis. We introduce System E, a type sys-
tem with expansion variables, linear intersection types, and the ! type
constructor for creating non-linear types. System E is designed for max-
imum flexibility in automatic type inference and for ease of automatic
manipulation of type information. Expansion variables allow postponing
the choice of which typing rules to use until later constraint solving gives
enough information to allow making a good choice. System E removes
many difficulties that expansion variables had in the earlier System I
and extends expansion variables to work with ! in addition to the inter-
section type constructor. We present subject reduction for call-by-need
evaluation and discuss program analysis in System E.

1 Discussion

1.1 Background and Motivation

Many current forms of program analysis, including many type-based analyses,
work best when given the entire program to be analyzed [21, 7]. However, by
their very nature, large software systems are assembled from components that
are designed separately and updated at different times. Hence, for large soft-
ware systems, a program analysis methodology will benefit greatly from being
compositional, and thereby usable in a modular and incremental fashion.

Type systems for programming languages that are flexible enough to allow
safe code reuse and abstract datatypes must support some kind of polymor-
phic types. Theoretical models for type polymorphism in existing programming
languages (starting in the 1980s through now) have generally obtained type
polymorphism via ∀ (“for all”) [15, 6] and ∃ (“there exists”) quantifiers [13] or
closely related methods. Type systems with ∀ and ∃ quantifiers alone tend to

? Supported by grants: EC FP5 IST-2001-33477, EPSRC GR/L 41545/01, NATO
CRG 971607, NSF 0113193 (ITR), Sun Microsystems EDUD-7826-990410-US.



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 2

be inadequate for representing modular program analysis results, because such
systems fail to have principal typings [22, 7] where each typable term has a best
typing that logically implies all of its other typings. (Do not confuse this with
the much weaker property often (mis)named “principal types” associated with
the Hindley/Milner type system [12, 5] used by Haskell, OCaml, Standard ML,
etc.) In contrast, intersection type systems often have principal typings (see [8]
for a discussion), leading to our interest in them.

Beyond basic type safety, type-based analyses can find information useful for
other purposes such as optimization or security analysis. Linear type systems,
with a ! operator for distinguishing between linear and non-linear types, are good
for more accurate tracking of resource usage, but have not been as flexible as one
might want [19, 20, 17, 16, 11]. Also, polymorphic linear type systems usually
rely on quantifiers and thus are not suited for compositional analysis.

Several years ago, we developed a polymorphic type system for the λ-calculus
called System I [8]. System I uses intersection types together with the new tech-
nology of expansion variables and has principal typings. Although the resulting
program analysis can be done in a fully modular manner, there are many draw-
backs to System I. The types are nearly linear (actually affine, i.e., used once or
discarded) and multiple use of anything requires having intersection types with
one branch for each use. An implication is that for any k there are simply-typable
λ-terms that are not typable at rank k in System I. In contrast, rank 0 usually
has the power of simple types and rank 2 usually contains the typing power of
the Hindley/Milner system. System I does not have subject reduction, a basic
property desired for any type system. And also, quite painfully, the substitutions
used in type inference for System I do not support composition.

Some of System I’s problems seemed solvable by allowing non-linear types.
Also, we wanted analysis systems that can track resource usage. Toward these
goals, we investigated combining the (nearly) linear intersection types of System I
with the ! operator of linear type systems for controlled introduction of non-linear
types. Because implementing intersection types has historically been hard, an
additional goal was easier implementation. Our investigation led to System E.

1.2 Expansion and Expansion Variables

We solve the problems mentioned above with a new type system named Sys-
tem E that improves on previous work in the way it uses expansion variables
(E-variables) to support expansion. This section gives a gentle, informal intro-
duction to the need for expansion and how E-variables help.

Consider two typing derivations structured as follows, where λ and @ repre-
sent uses of the appropriate typing rules:

M : λf.

@

f λx.

x

N : λg.

λy.

@

g @

g y



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 3

In a standard intersection type system, the derived result types could be these:

M : ((α → α) → β)
︸ ︷︷ ︸

τ1

→ β N : (β′ → γ′) .∩ (α′ → β′) → α′ → γ′

︸ ︷︷ ︸

τ2

In order to type the application M @ N , we must somehow “unify” τ1 and τ2.
We could first unify the types (β′ → γ′) and (α′ → β′) to collapse the intersec-
tion type (β′ → γ′) .∩ (α′ → β′), but this would lose information and is not the
approach we want to follow for full flexibility. Historically, in intersection type
systems the solution has been to do expansion [4] on the result type of M :

M : ((α1 → α1) .∩ (α2 → α2) → β) → β (1)

Then, the substitution (α1 := α′, β′ := α′, α2 := α′, γ′ := α′, β := α′ → α′) makes
the application M @ N typable.

What justified the expansion we did to the result type of M? The expansion
operation above effectively altered the typing derivation for M by inserting a
use of intersection introduction at a nested position in the previous derivation,
transforming it into the following new derivation, where .∩ marks a use of the
intersection-introduction typing rule:

λf.

@

f .∩

λx.

x

λx.

x

Expansion variables are a new technology for simplifying expansion and mak-
ing it easier to implement and reason about. Expansion variables are placeholders
for unknown uses of other typing rules, such as intersection introduction, which
are propagated into the types and the type constraints used by type inference al-
gorithms. The E-variable-introduction typing rule works like this (in traditional
notation, not as stated later in the paper), where “e A” sticks the E-variable e
on top of every type in the type environment A:

(E-variable) A ` M : τ
e A ` M : e τ

Type-level substitutions in System E substitute types for type variables, and
expansions for expansion variables. An expansion is a piece of syntax standing for
some number of uses of typing rules that act uniformly on every type in a judge-
ment. The most trivial expansion, �, is the identity. Intersection types can also
be introduced by expansion; for example, given M : (e (α → α) → β)→β, apply-
ing the substitution e:=� .∩ � to this typing yields M : ((α → α) .∩ (α → α) → β)→
β. Substitutions are also a form of expansion; if we apply the substitution
e := (α := α1) .∩ (α := α2) to M , we get the expanded typing given for M in
(1) above.



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 4

Including substitutions as a form of expansion makes expansion variables
effectively establish “namespaces” which can be manipulated separately. For
example, applying the substitution (e1 := (α := α1), e2 := (α := α2)) to the type
(e1 α) .∩ (e2 α) yields the type α1

.∩ α2.
The syntactic expansion ω (introduced as expansion syntax in [3]) is also

included, along with a typing rule that assigns the type ω (introduced in [4]) to
any term. If we apply the substitution e := ω to the typing of M above, inside
the typing derivation the result type for λx.x becomes ω. Operationally, a term
which has type ω can only be passed around and must eventually be discarded.

The types in System E are by default linear. For example, (α1 → α1) .∩
(α2 → α2) is the type of a function to be used exactly twice, once at type α1→α1,
and once at α2→α2. The ! operator creates a non-linear type allowing any num-
ber of uses, including 0. Subtyping rules for weakening (discarding), dereliction
(using once), and contraction (duplicating) give this meaning to non-linear types.
Introduction of ! is another possible case of expansion in System E.

The structure of expansions pervades every part of the design of System E.
The main sorts of syntactic entities are types, typing constraints, skeletons (Sys-
tem E’s proof terms), and expansions. Each of these sorts has cases for E-variable
application, intersection, ω, and the ! operator. Other derived notions such as
type environments also effectively support each of these operations. This com-
mon shared structure is the key to why System E works.

1.3 Summary of Contributions

We introduce System E and present its important properties. The proofs are in
a separate long paper. System E improves on previous work as follows:

1. System E is the first type system to combine expansion variables, intersection
types, the ! operator, and subtyping. Although not formally proved, we are
confident that nearly every type system from the intersection type literature
(without ∀ quantifiers) can be embedded in System E by putting enough !s
in the types. System E has the polyvariant analysis power of intersection
types together with the resource tracking power of linear types.

2. System E more cleanly integrates the notion of expansion from the intersec-
tion type literature (see [18] for an overview) with substitution. Unlike in
System I, expansion is interleaved with substitution and, as a result, both
expansions and substitutions are composable. Non-composable substitutions
in System I made both proofs and implementations difficult.

3. System E cleanly supports associativity and commutativity of the intersec-
tion type constructor together with related laws that smoothly integrate
intersection types with the ! type constructor.

4. System E generalizes previous notions of expansion. In System E’s approach,
expansion variables stand for any use of typing rules that operate uniformly
on the result and environment types and do not change the untyped λ-term
in the judgement. In System E, such rules include not only the intersection
introduction rule but also rules for ! and type-level substitution. System E
is the first to support such flexible expansion.



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 5

5. System E removes other difficulties of its predecessor System I. There are
no restrictions on placement of expansion variables or intersection type con-
structors. System E has subject reduction for call-by-need evaluation. (It
does not have subject reduction for call-by-name evaluation because the
type system can track resource usage precisely enough to distinguish.)

6. The uniform handling of expansion variables throughout System E makes
implementation simple. Demonstrating this, we present output in this paper
from our type inference implementation, which can be used at this URL:
http://www.macs.hw.ac.uk/ultra/compositional-analysis/system-E/

7. System E is parameterized on its subtyping relation. We present 3 different
subtyping relations relations with different amounts of typing power.

8. System E has additional features for flexible use. Its typing judgements have
separate subtyping constraints to support either eager or lazy constraint
solving together with its suspended expansion rule. To help both proofs and
implementations, System E’s judgements have two different kind of proof
terms, one for the analyzed program and one for the proof structure.

2 Preliminary Definitions

This section defines generic mathematical notions. Let h, i, j, m, n, p, and q
range over {0, 1, 2, . . .} (the natural numbers). Given a function f , let f [a 7→ b] =
(f \ { (a, c) (a, c) ∈ f })∪ {(a, b)}. Given a relation −r−→, let −r−� be its transitive,
reflexive closure, w.r.t. the right carrier set. Given a context C, let C[U ] stand for
C with the single occurrence of � replaced by U . For example, (λx.�)[x] = λx.x.

If S names a set and ϕ is defined as a metavariable ranging over S, let S∗

be the set of sequences over S as per the following grammar, quotiented by the
subsequent equalities, and let ~ϕ be a metavariable ranging over S∗:

~ϕ ∈ S∗ ::= ε | ϕ | ~ϕ1 · ~ϕ2

ε · ~ϕ = ~ϕ ~ϕ · ε = ~ϕ (~ϕ1 · ~ϕ2) · ~ϕ3 = ~ϕ1 · (~ϕ2 · ~ϕ3)

For example, ~n ranges over {0, 1, 2, . . .}∗ (sequences of natural numbers). Length
1 sequences are equal to their sole member.

3 Syntax

This section defines the syntactic entities by starting from the abstract syn-
tax grammars and metavariable conventions in fig. 1 and then modifying those
definitions by the equalities and well-formedness conditions that follow.

Operator precedence is defined here, including for ordinary function appli-
cation (f(a)) and modification (f [a 7→ b]), and for operations defined later such
as expansion application ([E] X) and term-variable substitution (M1[x:=M2]).
The precedence groups are as follows, from highest to lowest:



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 6

The sorts and their abstract syntax grammars and metavariables:

x, y, z ∈ Term-Variable ::= xi

V ∈ Value ::= x | λx.M
M, N, P ∈ Term ::= V | M @ N

Ct ∈ Term-Context ::= � | λx.C t | Ct @ M | M @ Ct

e, f, g ∈ E-Variable ::= ei

α ∈ T-Variable ::= ai

ν ∈ Env-Subtyping ::= x : τ
φ ∈ ET-Assignment ::= α := τ | e := E
S ∈ ET-Substitution ::= � | φ, S
τ ∈ Type ::= τ1 .∩ τ2 | e τ | ! τ | ω | α | τ1 → τ2

E ∈ Expansion ::= E1
.∩ E2 | e E | ! E | ω | S

∆ ∈ Constraint ::= ∆1
.∩ ∆2 | e ∆ | ! ∆ | ω | τ1 l τ2

Q ∈ Skeleton ::= Q1 .∩ Q2 | e Q | ! Q | ωM | Q̄
Q̄ ∈ SimpleSkeleton ::= x:τ | λx.Q | Q1 @ Q2 | Q:τ | Qν | 〈Q, E〉

Metavariables ranging over multiple sorts:

v ::= e | α T ::= τ | ∆ W ::= M | E | Q U ::= M | τ | E | ∆ | Q
Φ ::= E | τ Y ::= τ | E | ∆ X ::= τ | E | ∆ | Q

Fig. 1. Syntax grammars and metavariable conventions.

group 1: Q:τ , Qν , f(a), f [a 7→ b], M1[x := M2], v := Φ
group 2: e X , ! X , [E] X , (φ, S)
group 3: X1

.∩ X2, e/S
group 4: τ1 → τ2, M @ N , Q1 @ Q2

group 5: τ1 l τ2, λx.M , λx.Q

For example, e α1
.∩ α2→α3 = ((e α1) .∩ α2)→α3, and (e α1lα2) = ((e α1)lα2),

and λx. x:α1 @ y:α2 = λx. (x:α1 @ y:α2). Application is left-associative so that
M1 @ M2 @ M3 = (M1 @ M2) @ M3 (similarly for skeletons) and function types
are right-associative so that τ1 → τ2 → τ3 = τ1 → (τ2 → τ3).

3.1 Equalities

Terms and skeletons are quotiented by α-conversion as usual, where λx.M and
λx. Q bind the variable x.

For types and constraints, the definition provided by fig. 1 is modified by
imposing several equalities for E-variable application, the .∩ and ! operators, and
the ω constant. The .∩ operator is associative and commutative with ω as its
unit. E-variable application and ! both distribute over .∩ and ω. (The constant
ω can be viewed as a 0-ary version of .∩.) The ! operator is idempotent and
applications of E-variables and ! can be reordered. Formally, these rules hold:

T1
.∩ T2 = T2

.∩ T1 e ω = ω e (T1
.∩ T2) = e T1

.∩ e T2

T1
.∩ (T2

.∩ T3) = (T1
.∩ T2) .∩ T3 ! ω = ω ! (T1

.∩ T2) = ! T1
.∩ ! T2

ω .∩ T = T ! ! T = ! T e ! T = ! e T



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 7

Both α-conversion and the additional rules for types and constraints are
imposed as equalities, where “=” is mathematical equality (as it should be). For
example, ω .∩ α = α. After this modification, the syntactic sorts are not initial
algebras. The underlying formalism to realize this could be, e.g., that types are
equivalence classes closed under the rules. This level of detail is left unspecified.

Because we have imposed equalities (α-conversion and the rules for .∩, ω, !,
and E-variable application in types and constraints), we can not use structural
recursion and induction for definitions and proofs. To solve this, we define a size
function and prove an induction principle. Details are in the long paper.

3.2 Additional Notions

Extending E-variable application to sequences, let ε X = X and (~e · e) X =
~e (e X). Similarly, for environment subtyping, let Qε = Q and Qν·~ν = (Qν)~ν .

Let M [x := N ] denote the usual notion of term-variable substitution in un-
typed terms. Let FV(M) denote the free term variables of M .

Let term be the least-defined function such that:

term(x:τ ) = x term(Q:τ ) = term(Q)
term(λx. Q) = λx.term(Q) term(Qν) = term(Q)
term(Q1 @ Q2) = term(Q1) @ term(Q2) term(! Q) = term(Q)
term(〈Q, E〉) = term(Q) term(ωM ) = M
term(e Q) = term(Q)
term(Q1

.∩ Q2) = term(Q1) if term(Q1) = term(Q2)

A skeleton Q is well formed iff term(Q) is defined. For example, Q = x:τ1 .∩ y:τ2

is not well formed if x 6= y, because term(Q) is not defined.

Convention 3.1 Henceforth, only well formed skeletons are considered.

4 Expansion Application and Type-Level Substitution

This section defines the fundamental operation of expansion application which is
the basis of the key features of System E. Expansion is defined, basic properties
of expansion are presented, syntactic sugar for writing substitutions (a special
case of expansions) is defined, and then examples are presented.

Definition 4.1 (Expansion Application). Figure 2 defines the application of
an expansion to E-variables, types, expansions, constraints, and skeletons.

Lemma 4.2 (Expansion Application Properties).

1. X and [E] X have the same sort (τ , E, ∆, or Q).
2. Expansion application preserves untyped terms, i.e., term([E] Q) = term(Q).
3. The substitution constant � acts as the identity on types, expansions, con-

straints and skeletons, i.e., [�] X = X.



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 8

[�] α = α [v := Φ, S] v = Φ
[�] e = e� [v := Φ, S] v′ = [S] v′ if v 6= v′

[S] (X1 .∩ X2) = [S] X1 .∩ [S] X2 [E1 .∩ E2] X = [E1] X .∩ [E2] X
[S] eX = [[S] e] X [e E] X = e [E] X
[S] ! X = ! [S] X [! E] X = ! [E] X
[S] ω = ω [ω] Y = ω

[S] ωM = ωM [ω] Q = ωterm(Q)

[S] (τ1 → τ2) = [S] τ1 → [S] τ2 [S] (τ1 l τ2) = [S] τ1 l [S] τ2

[S] x:τ = x:[S] τ [S] � = S
[S] λx.Q = λx. [S] Q [S] (v := Φ, S′) = (v := [S] Φ, [S] S′)

[S] (Q1 @ Q2) = [S] Q1 @ [S] Q2 [S] Q:τ = ([S] Q):[S] τ

[S] 〈Q,E〉 = 〈Q, [S] E〉 [S] Qx:τ = ([S] Q)x:[S] τ

Fig. 2. Expansion application.

Lemma 4.3 (Expansion Application Composition). Given any E1, E2, X,
[[E1] E2] X = [E1] [E2] X.

Let E1; E2 = [E2] E1 (composition of expansions). By lem. 4.3, the “;” oper-
ator is associative. Although E1; E2 is not much shorter than [E2] E1, it allows
writing, e.g., S1; S2; S3; S4; S5, which is easier to follow than [S5] [S4] [S3] [S2] S1.

An assignment φ may stand for S = (φ, �) and is to be interpreted that
way if at all possible. The higher precedence of (v :=Φ) over (φ, S) applies here.
For example, e1 := e2 := S2, e3 := S3 stands for (e1 := (e2 := S2)), e3 := S3 which
stands for (e1 := ((e2 := S2), �)), (e3 := S3), �.

Let e/S stand for (e:=e S). Thus, e/S stands for ((e := e S), �) when possible.
The “/” notation builds a substitution that affects variables underneath an E-
variable, because [e/S] e X = e [S] X and [e/S] X = X if X 6= e X ′. For example,
S = (e0/(a1 := τ1), a0 := τ0) stands for S = (e0 := e0 (a1 := τ1, �), a0 := τ0, �)
and in this case [S] (e0 a1 → a0) = e0 τ1 → τ0. We extend this notation to E-
variable sequences so that ~e · e/S stands for ~e/e/S and ε/S stands for S.

Example 4.4. E-variables effectively establish namespaces and substituting an
expansion for an E-variable can merge namespaces. Define the following:

τ1 = e1 a0 → a0 S1 = (e1 := �) S2 = (a0 := τ2)

Then these facts hold:

[S2] τ1 = e1 a0 → τ2 [S1] τ1 = a0 → a0

[S2] [S1] τ1 = τ2 → τ2 S1; S2 = (e1 := (a0 := τ2), a0 := τ2)

In [S2] τ1, the T-variable a0 inside the E-variable e1 is effectively distinct from
the T-variable a0 outside e1, so the substitution only replaces the outer a0.
The operation [S1] τ1 replaces e1 by the empty expansion (which is actually



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 9

the identity substitution), and this effectively lifts the inner a0 into the root
namespace, so that [S2] [S1] τ1 replaces both occurrences of a0.

Example 4.5. The composition S; S ′ may take operations in one namespace in
S and duplicate them to multiple namespaces in S; S ′. Define the following:

τ1 = e1 a0 → a0 S3 = (e1 := e2 �) S4 = (e2/(a0 := τ1))

Then these facts hold:

[S4] [S3] τ1 = e2 τ1 → a0 S3; S4 = (e1 := e2 (a0 := τ1), e2/(a0 := τ1))

Both S4 and its assignment (a0 :=τ1) appear in S3; S4. In general, arbitrary pieces
of S′ may appear in S; S′ copied to multiple places. Thus, an implementation
should either compose lazily or share common substructures.

Example 4.6. Substitutions can act differently on distinct namespaces and then
merge the namespaces afterward. This is essential for composing substitutions.
The key design choice making this work is making substitutions be the leaves of
expansions. Define the following:

τ = e1 a0 → a0 S5 = e1/(a0 := τ ′) S6 = (e1 := �)

These facts hold:

[S5] τ = e1 τ ′ → a0

[S6] τ = a0 → a0 [S6] [S5] τ = τ ′ → a0

S5; S6 = (e1 := (a0 := τ ′), e1 := �) [S5; S6] τ = τ ′ → a0

A “flat” substitution notion (as in System I [8]) which does not interleave ex-
pansions and substitutions can not express the composition S5; S6.

The substitution S5; S6 has an extra assignment (e1:=�) at the end which has
no effect (other than uglifying the example), because it follows the assignment
(e1 := (a0 := τ ′)). The substitution S5; S6 is equivalent to the substitution S7 =
(e1 := (a0 := τ ′)), in the sense that [S5; S6] X = [S7] X for any X other than
a skeleton with suspended expansions. Expansion application could have been
defined to clean up redundant assignments, but at the cost of complexity.

5 Type Environments and Typing Rules

This section presents the type environments and typing rules of System E. Also,
the role of skeletons is explained.

A type environment is a total function from term variables to types which
maps only a finite number of variables to types other than ω. Let A and B range
over type environments. Make the following definitions:

[E] A = { (x, [E] A(x)) x ∈ Term-Variable }
A .∩ B = { (x, A(x) .∩ B(x)) x ∈ Term-Variable}

e A = [e �] A = { (x, e A(x)) x ∈ Term-Variable}
!A = [! �] A = { (x, ! A(x)) x ∈ Term-Variable}

envω = { (x, ω) x ∈ Term-Variable}



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 10

(abstraction)
(M . Q) : 〈A ` τ 〉 / ∆

(λx.M . λx. Q) : 〈A[x 7→ ω] ` A(x) → τ 〉 / ∆

(application)
(M1 . Q1) : 〈A1 ` τ2 → τ1〉 / ∆1; (M2 . Q2) : 〈A2 ` τ2〉 / ∆2

(M1 @ M2 . Q1 @ Q2) : 〈A1
.∩ A2 ` τ1〉 / ∆1

.∩ ∆2

(variable)
(x . x:τ ) : 〈(x : τ) ` τ 〉 / ω

(omega)
(M . ωM ) : 〈envω ` ω〉 / ω

(intersection)
(M . Q1) : 〈A1 ` τ1〉 / ∆1; (M . Q2) : 〈A2 ` τ2〉 / ∆2

(M . Q1
.∩ Q2) : 〈A1

.∩ A2 ` τ1
.∩ τ2〉 / ∆1

.∩ ∆2

(bang)
(M . Q) : 〈A ` τ 〉 / ∆

(M . ! Q) : 〈! A ` ! τ〉 / ! ∆
(E-variable)

(M . Q) : 〈A ` τ 〉 / ∆

(M . e Q) : 〈e A ` e τ〉 / e ∆

(suspended
expansion)

(M . Q) : 〈A ` τ 〉 / ∆

(M . 〈Q,E〉) : 〈[E]A ` [E]τ〉 / [E]∆

(result
subtyping)

(M . Q) : 〈A ` τ1〉 / ∆

(M . Q:τ2) : 〈A ` τ2〉 / ∆ .∩ (τ1 l τ2)

(environment
subtyping)

(M . Q) : 〈A ` τ1〉 / ∆

(M . Qx:τ2) : 〈A[x 7→ τ2] ` τ1〉 / ∆ .∩ (τ2 l A(x))

Fig. 3. Typing rules.

Let (x1 : τ1, · · · , xn : τt) abbreviate envω[x1 7→ τ1] · · ·[xn 7→ τn]. Observe, for ev-
ery E1, E2, A, and x, that [E1

.∩ E2] A = [E1] A .∩ [E2] A, that (e A)(x) = e A(x),
that (! A)(x) = ! A(x), that envω = [ω]A, that [E] A[x 7→ τ ] = ([E] A)[x 7→ [E] τ ],
and that [E] (A .∩ B) = [E] A .∩ [E] B.

The typing rules of System E are given in fig. 3. The typing rules derive
judgements of the form (M . Q) : 〈A ` τ〉 / ∆. The pair 〈A ` τ〉 of a type
environment A and a result type τ is called a typing. The intended meaning of
(M .Q) : 〈A` τ〉/∆ is that Q is a proof that M has the typing 〈A`τ〉, provided
that the constraint ∆ is solved w.r.t. some subtyping relation.

The precise semantic meaning of a typing 〈A ` τ〉 depends on the subtyping
relation that is used. The typing rules avoid specifying whether a constraint ∆ is
solved to allow the use of different subtyping relations, depending on the user’s
needs. Subtyping relations for System E are discussed in sec. 6.

A skeleton Q is a special kind of term that compactly represents a tree of
typing rule uses that derives a judgement for the untyped term given by term(Q).
Thus, a skeleton is basically a typing derivation.

Definition 5.1 (Valid Skeleton). A skeleton Q is valid iff there exist M , A,
τ , and ∆ such that (M . Q) : 〈A ` τ〉 / ∆.

Lemma 5.2 (Valid Skeletons Isomorphic to Typing Derivations). If
(M1 .Q) : 〈A1`τ1〉/∆1 and (M2 .Q) : 〈A2`τ2〉/∆2, then term(Q) = M1 = M2,
A1 = A2, τ1 = τ2, and ∆1 = ∆2.



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 11

Subtyping rules for �refl,�nlin,�flex:

τ � τ
(refl-�)

τ1 � τ2 τ2 � τ3

τ1 � τ3
(trans-�)

τ1 � τ2

e τ1 � e τ2
(e-�)

τ3 � τ1 τ2 � τ4

τ1 → τ2 � τ3 → τ4
(→-�)

τ1 � τ3 τ2 � τ4

τ1
.∩ τ2 � τ3

.∩ τ4
( .∩-�)

τ1 � τ2

! τ1 � ! τ2
(! -�)

Subtyping rules for �nlin,�flex:

! τ � ω
(weak-�)

! τ � τ
(derel-�)

! τ � ! τ .∩ ! τ
(contr-�)

Subtyping rules for �flex:

e (τ1 → τ2) � e τ1 → e τ2
(e-→-�)

! (τ1 → τ2) � ! τ1 → ! τ2
(! -→-�)

ω � ω → ω
(ω-→-�)

(τ1 → τ3) .∩ (τ2 → τ4) � (τ1
.∩ τ2) → (τ3

.∩ τ4)
( .∩-→-�)

Fig. 4. Subtyping rules.

Convention 5.3 Henceforth, only valid skeletons are considered.

Let typing, constraint, tenv, and rtype be functions s.t. (M . Q) : 〈A ` τ〉 / ∆
implies typing(Q) = 〈A` τ〉, constraint(Q) = ∆, tenv(Q) = A, and rtype(Q) = τ .

6 Subtyping and Solvedness

This section defines whether a constraint ∆ is solved w.r.t. a subtyping relation
�, and presents three interesting subtyping relations. Sec. 7 will show that if ∆
is solved w.r.t. one of these relations, then the judgement (M .Q) : 〈A`τ〉/∆ is
preserved by call-by-need evaluation of M (∆ may change to some solved ∆′).

Let � be a metavariable ranging over subtyping relations on types. A con-
straint ∆ is solved w.r.t. � iff solved(�, ∆) holds by this definition (where the
double bar is meant as an equivalence):

τ1 � τ2

solved(�, τ1 l τ2)

solved(�, ∆1) solved(�, ∆2)

solved(�, ∆1
.∩ ∆2)

solved(�, ∆)

solved(�, e ∆)

solved(�, ∆)

solved(�, ! ∆) solved(�, ω)

A skeleton Q is solved iff constraint(Q) is. Solved skeletons correspond to typing
derivations in traditional presentations.

Fig. 4 presents subtyping relations �refl (“reflexive”), �nlin (“non-linear”),
and �flex (“flexible”) for use with System E.



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 12

M0 M1 M2 Mn

Q0 = Q′

0 Q′

1 Q′

2 Q′

n

Q1 Q2 Qn

β β β

refl-1 refl-1 refl-1

initial initial initial initialterm term term

readback

readback readback readback

Fig. 5. Correspondence with β-reduction of a particular type inference process.

The �refl subtyping relation only allows using subtyping in trivial ways that
do not add typing power. When using �refl, System E is similar to System I [8],
although it types more terms because it has ω. We have implemented type
inference using �refl that always succeeds for any term M that has a β-normal
form and that allows the β-normal form to be reconstructed from the typing.

Fig. 5 illustrates the type inference process. The full details will appear in
a later paper. First, we build an initial skeleton Q0 from the untyped term M0

by giving every term variable the type a0 and inserting E-variables under every
abstraction (e0) and application (e1 for the function, e2 for the argument). Then,
the rule refl-1 is applied to constraint(Q0) to generate a substitution S0 which is
used to calculate Q1 = [S0] Q0. This is repeated as long as possible.

The dashed edges in the diagram in fig. 5 show a correspondence with un-
typed β-reduction. The function invocation readback(Q) looks only at tenv(Q),
rtype(Q), and constraint(Q) to produce an initial skeleton. In addition to β-
reduction following constraint solving, the converse also holds and constraint
solving can follow any β-reduction sequence, e.g., the normalizing leftmost-
outermost strategy. Thus, our algorithm types all β-normalizing terms. Once
the β-normal form is reached, if it contains applications, an additional constraint
solving rule refl-2 solves the remaining easy constraints.

Example 6.1. Consider M0 = (λz.z @ (λx.λy.x) @ ((λx.x @ x) @ z))@(λy.y @ y).
The normal form of M0 is M5 = λx.λy.x. Note that M0 is not strongly normal-
izing. The initial and final skeletons for M0 are

Q0 = e1 (λz. e0 ( e1 (e1 z:a0 @ e2 (λx. e0 λy. e0 x:a0))
@ e2 (e1 (λx. e0 (e1 x:a0 @ e2 x:a0)) @ e2 z:a0)))

@ e2 (λy. e0 (e1 y:a0 @ e2 y:a0))

Q5 = (λz. (z:τ
2) @ (λx. λy. x:τ

1) .∩ (λx. e0 (λy. e0 (x:a
0))) @ ω(λx.x@x)@z)

@ (λy. (y:τ
1
→ω→τ

1) @ (y:τ
1))

where τ1 = e0 e0 a0 → e0 (ω → e0 a0) and τ2 = (τ1 → ω → τ1) .∩ τ1 → ω → τ1. The
final judgement is that (M0 . Q5) : 〈envω ` τ1〉 / ∆ for some solved ∆.

The �nlin subtyping relation adds the power of idempotent intersections:

! τ �nlin (! τ .∩ ! τ ) �nlin ! τ



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 13

This allows many interesting terms to be typed at lower ranks. In particular, the
system of simple types, the Hindley/Milner system, and the rank-k restrictions
of traditional intersection type systems can all be embedded into System E when
using �nlin by simply putting ! nearly everywhere in types.

Example 6.2. Using the �nlin subtyping relation, System E can encode arbitrar-
ily imprecise usage information, unlike with �refl where it must be exact. For
example, consider twice = λf.λx.f @ (f @ x), and some of its typings:

(1) 〈envω, ! (a1 → a1) → a1 → a1〉
(2) 〈envω, (a2 → a3) .∩ (a1 → a2) → a1 → a3〉
(3) 〈envω, (a1 → a1) .∩ (a1 → a1) → a1 → a1〉
(4) 〈envω, (a1 → a2) .∩ ! (a1 → a1) → a1 → a2〉

Typing (1) is like a typing with simple types; as in Linear Logic, the use of !
erases counting information, i.e., twice may use its first argument any number of
times. Typing (2) looks like a typing in a traditional intersection type system.
However, because System E types are linear by default, the typing gives more
information, e.g., this typing states that the first argument is used exactly twice.
Typing (3) is in a sense between typings (1) and (2): the first argument is used
exactly twice, at the same type. In System E, even when intersection types are
not used for additional flexibility, they can still encode precise usage information.
(In an implementation, the linear part of types may of course be represented as
a multiset.) Finally, typing (4) contains what we call a “must-use” type. The
presence of ! on part of the argument’s type erases some counting information.
However, there is still one linear use: the first argument is used at least once.

The �flex subtyping relation allows embedding all type derivations of the
very flexible BCD type system [2], again by putting ! operators in nearly every
position in types. The BCD system’s subtyping rules are not satisfied by �flex,
but every BCD rule can be transformed into one satisfied by �flex by putting !
at all positions mentioned by the rule. The �flex relation also allows skeletons
to hold the information present in Lévy-labeled λ-terms, such that constraint
solving simulates labeled reduction. Our experimentation tool implements this.

Example 6.3. Consider the following variant Lévy-labeled reduction where each
subterm is marked with an integer sequence. For an initial labeling, we use a
distinct length-1 sequence for each subterm. The labeled reduction rule is this:

(λx.M )~m @ N −β`−−→ M [x := N ]~m

Lévy-labels (which we model with E-variables) track reduction history, and allow
information flow for the original term to be extracted from the normal form (in
System E, from the typing). Consider this labeled term and its normal form:

M = ((λx.(x1 @ x2)3)4 @ (λz.(z5 @ y6)7)8)9

M −β`−−� (y6·5 @ y6)7·8·2·5·7·8·1·3·4·9



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 14

If we ask about the original term “what flows to z5?”, we can tell, by collecting
labels immediately preceding label 5, that the subterms annotated 6 and 2 both
flow to z5. We can also tell which subterms influence the result. Similar to
the way refl-1 corresponds to ordinary β-reduction, we have a rule flex-1 that
solves constraints in a way corresponding to labeled reduction. Again, the full
details will appear in a later paper. By using distinct E-variables throughout
the initial skeleton, applying rule flex-1 until it no longer applies, and doing
readback on the typing and constraint at that point, we get this skeleton from
our implementation:

e9 e4 e3 e1 e8 e7 e5 e2 e8 e7 ((e5 e6 (y:a
0)

:e
6

a
0
→a

0) @ e6 (y:a
0))

This skeleton has exactly the information in the reduced labeled term.

7 Subject Reduction

This section presents subject reduction results for call-by-need reduction for the
three subtyping relations presented in sec. 6.

Remark 7.1. In general, subject reduction does not hold for call-by-name reduc-
tion in System E. Consider the following example:

M = term(Q) = (λy.x1 @ y @ y) @ (x2 @ z)
Q1 = x1

:a1→a1→a3 @ y:a1 @ y:a1

Q2 = x2
:a2→(a1

.∩a1) @ z:a2

Q = (λy. Q1) @ Q2

typing(Q1) = 〈(x1 : a1 → a1 → a3, y : a1
.∩ a1) ` a3〉

typing(Q2) = 〈(x2 : a2 → (a1
.∩ a1), z : a2) ` a1

.∩ a1〉
typing(Q) = 〈(x1 : a1 → a1 → a3, x2 : a2 → (a1

.∩ a1), z : a2) ` a3〉

M −β−→ N = term(Q1)[x := term(Q2)] = x1 @ (x2 @ z) @ (x2 @ z)

The skeleton Q is valid since rtype(Q2) = tenv(Q1)(y), and it is solved w.r.t. any
subtyping relation since its constraint is ω. If subject reduction holds, we expect
that there exists some Q′ such that term(Q′) = N , and that has the same typing
as Q. In particular, we expect that tenv(Q)(z) = tenv(Q′)(z) = a2. However, the
sub-skeletons of Q′ corresponding to z must both have type a2. This makes it
impossible to construct Q′ since, in general, τ 6� τ .∩ τ (i.e., solved(�, τ l τ .∩ τ )
does not hold for any � we use). Note that if we use �nlin, or �flex, and replace
a1 by ! a1 and a2 by ! a2, then we could construct the needed skeleton Q′.

Call-by-need reduction on untyped terms is performed by these rules:

(λx.M) @ V −cbn−→ M [x := V ]
((λx.M) @ (N1 @ N2)) @ P −cbn−→ (λx.M @ P ) @ (N1 @ N2) if x 6∈ FV(P )
M @ ((λx.P ) @ (N1 @ N2)) −cbn−→ (λx.M @ P ) @ (N1 @ N2) if x 6∈ FV(M)

Let −[cbn]−→ be the smallest relation such that M −cbn−→ N implies Ct[M ] −[cbn]−→ Ct[N ].
Call-by-need evaluation is then a specific strategy of using these rules [1]. We



Carlier, Polakow, Wells, Kfoury — System E — ESOP ’04 15

do not include any rule for garbage collection, because it does not affect subject
reduction.

Theorem 7.2 (Subject Reduction). Given � ∈ {�refl,�nlin,�flex} and a
skeleton Q1 such that (M1 . Q1) : 〈A ` τ〉 / ∆1, solved(�, ∆1), and M1 −[cbn]−→ M2,
there exists Q2 s.t. (M2 . Q2) : 〈A ` τ〉 / ∆2 and solved(�, ∆2).

Proof. The theorem is proved by induction on Q1. The proof uses inversion
properties for variant subtyping definitions without explicit transitivity.

References

[1] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, P. Wadler. The call-by-need lambda calculus.
In Conf. Rec. 22nd Ann. ACM Symp. Princ. of Prog. Langs., 1995.
[2] H. Barendregt, M. Coppo, M. Dezani-Ciancaglini. A filter lambda model and the completeness
of type assignment. J. Symbolic Logic, 48(4), 1983.
[3] S. Carlier. Polar type inference with intersection types and ω. In Proceedings of the 2nd
Workshop on Intersection Types and Related Systems, 2002. The ITRS ’02 proceedings appears
as vol. 70, issue 1 of Elec. Notes in Theoret. Comp. Sci.
[4] M. Coppo, M. Dezani-Ciancaglini, B. Venneri. Principal type schemes and λ-calculus semantics.
In J. R. Hindley, J. P. Seldin, eds., To H. B. Curry: Essays on Combinatory Logic, Lambda
Calculus, and Formalism. Academic Press, 1980.
[5] L. Damas, R. Milner. Principal type schemes for functional programs. In Conf. Rec. 9th Ann.
ACM Symp. Princ. of Prog. Langs., 1982.
[6] J.-Y. Girard. Interprétation Fonctionnelle et Elimination des Coupures de l’Arithmétique
d’Ordre Supérieur. Thèse d’Etat, Université de Paris VII, 1972.
[7] T. Jim. What are principal typings and what are they good for? In Conf. Rec. POPL ’96:
23rd ACM Symp. Princ. of Prog. Langs., 1996.
[8] A. J. Kfoury, J. B. Wells. Principality and decidable type inference for finite-rank intersection
types. In POPL ’99 [14]. Superseded by [10].
[9] A. J. Kfoury, J. B. Wells. Principality and type inference for intersection types using expansion
variables. Supersedes [8], 2003.
[10] A. J. Kfoury, J. B. Wells. Principality and type inference for intersection types using expansion
variables. Theoret. Comput. Sci., 200X. To appear. Supersedes [8]. For omitted proofs, see the
longer report [9].
[11] N. Kobayashi. Quasi-linear types. In POPL ’99 [14].
[12] R. Milner. A theory of type polymorphism in programming. J. Comput. System Sci., 17, 1978.
[13] J. C. Mitchell, G. D. Plotkin. Abstract types have existential type. ACM Trans. on Prog.
Langs. & Systs., 10(3), 1988.
[14] Conf. Rec. POPL ’99: 26th ACM Symp. Princ. of Prog. Langs., 1999.
[15] J. C. Reynolds. Towards a theory of type structure. In Colloque sur la Programmation, vol. 19
of LNCS, Paris, France, 1974. Springer-Verlag.
[16] D. N. Turner, P. Wadler. Operational interpretations of linear logic. Theoret. Comput. Sci.,
227(1–2), 1999.
[17] D. N. Turner, P. Wadler, C. Mossin. Once upon a type. In 7th International Conference on
Functional Programming and Computer Architecture, San Diego, California, 1995.
[18] S. J. van Bakel. Intersection type assignment systems. Theoret. Comput. Sci., 151(2), 1995.
[19] P. Wadler. Linear types can change the world. In M. Broy, C. B. Jones, eds., IFIP TC 2
Working Conference on Programming Concepts and Methods, 1990.
[20] P. Wadler. Is there a use for linear logic? In Partial Evaluation and Semantics-Based Program
Manipulation (PEPM). ACM Press, 1991.
[21] K. Wansbrough, S. P. Jones. Once upon a polymorphic type. In POPL ’99 [14].
[22] J. B. Wells. The essence of principal typings. In Proc. 29th Int’l Coll. Automata, Languages,
and Programming, vol. 2380 of LNCS. Springer-Verlag, 2002.


