
Type Inference with Expansion Variables and Intersection Types in

System E and an Exact Correspondence with β-Reduction∗
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ABSTRACT
System E is a recently designed type system for the λ-
calculus with intersection types and expansion variables. Dur-
ing automatic type inference, expansion variables allow post-
poning decisions about which non-syntax-driven typing rules
to use until the right information is available and allow im-
plementing the choices via substitution.

This paper uses expansion variables in a unification-based
automatic type inference algorithm for System E that suc-
ceeds for every β-normalizable λ-term. We have imple-
mented and tested our algorithm and released our implemen-
tation publicly. Each step of our unification algorithm corre-
sponds to exactly one β-reduction step, and vice versa. This
formally verifies and makes precise a step-for-step correspon-
dence between type inference and β-reduction. This also
shows that type inference with intersection types and expan-
sion variables can, in effect, carry out an arbitrary amount
of partial evaluation of the program being analyzed.

Categories and Subject Descriptors
D.3.1 [Programming Languages]: Formal Definitions and
Theory; F.4.1 [Theory of Computation]: Mathematical
Logic—Lambda calculus and related systems; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming
Languages—Program analysis.
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Algorithms, languages, theory.
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1. DISCUSSION

1.1 Background and Motivation

1.1.1 Types for Programs and Type Inference
Types have been used extensively to analyze computer

program properties without executing the programs, for pur-
poses such as detecting programming errors, enforcing ab-
stract inter-module interfaces, justifying compiler optimiza-
tions, and enforcing security properties.

In the type assignment style, a type system associates each
untyped (i.e., free of type annotations) term (e.g., computer
program fragment) with 0 or more typings, where each typ-
ing is a pair of a result type and a type environment for free
term variables. Type inference is finding a typing to assign
to an untyped term, if possible. Type inference provides the
benefits of types while relieving programmers from having
to manually supply the types.

Type inference algorithms generally solve constraints, of-
ten by unification, the process of computing a solution (if
one exists) that assigns values to variables so that con-
straints become solved. Unification-based type inference is
usually understandable and often efficiently implementable.
The most widely used type inference algorithm is Milner’s
W for the well known Hindley/Milner (HM) system [27],
used in languages such as SML, OCaml, and Haskell.

The amount of polymorphism provided by HM is equiva-
lent to unfolding all let-expressions (a form of partial eval-
uation) and then doing type inference with simple types.
HM-style polymorphism is not implemented by unfolding
let-expressions because (1) this is difficult to combine with
separate compilation and (2) it is very inefficient as it re-
analyzes let-expressions every time they are used. HM has
simple and efficient (for typical cases) type inference and
supports separate compilation provided module interfaces
are given. However, HM is somewhat inflexible and does
not support compositional analysis, i.e., analyzing modules
without knowledge about other modules.

1.1.2 Intersection Types
Intersection types were introduced for the λ-calculus by

Coppo and Dezani [8] and independently by Pottinger [29].
In both cases, a major motivation was the connection be-
tween β-reduction and intersection types, which makes in-
tersection types well suited for program analysis.

Intersection type systems have been developed for many
kinds of program analysis (e.g., flow [1], strictness [18], dead-
code [13, 10], and totality [7]) usable for justifying compiler



optimizations to produce better machine code. Intersection
types seem to have the potential to be a general, flexible
framework for many program analyses.

In most intersection type systems, every typable term has
a principal typing [37], one that is stronger than all other
typings assignable to that term. Principal typings improve
the possibilities of analyzing programs incrementally and
minimizing reanalysis cost after program modifications.

1.1.3 Type Inference for Full Intersection Types
The first type inference algorithms for intersection type

systems were by Coppo, Dezani and Venneri [9], and Ronchi
della Rocca and Venneri [32]. These algorithms give princi-
pal typings for β-normal forms, and it is separately proven
that a principal typing for a term’s β-normal form is also
principal for the term. One disadvantage of this approach is
that terms must be reduced to β-normal form before types
are found for them. Another disadvantage is that getting
other typings from principal typings in this approach uses
operations such as substitution, expansion, and lifting, and
the older expansion definitions are hard to understand.

Ronchi della Rocca [31] devised the first unification-based
type inference algorithm for a non-rank-restricted intersec-
tion type system. This algorithm yields principal typings
when it succeeds. Because typability for the full system
is undecidable, the algorithm is of course sometimes non-
terminating; to ensure termination, one can restrict type
height. This algorithm uses the older, complicated defini-
tion of expansion, which has several disadvantages: (1) the
unification procedure requires global knowledge in addition
to the two types to unify, which makes the technique delicate
to extend; (2) expansion is only defined on types and typ-
ings, but not on typing derivations (needed for use in com-
piler optimizations), which are thus not straightforward to
obtain via type inference; (3) the older notion of expansion
only allows intersection introduction in argument position,
and is thus unsuitable for accurate resource tracking under
call-by-need and call-by-value evaluation.

Regnier [30] presented an inference algorithm for an in-
tersection type system called De. System De is similar to
that of [31], with the essential addition of labels in types
to carry out expansion. Using nets, an untyped version of
proof nets from Linear Logic [14], Regnier showed an ex-
act correspondence between net reduction in Linear Logic
and type inference in System De. Boudol and Zimmer [4]
gave an inference algorithm that implements expansion by
attaching a set of type variables to each typing constraint;
this appears to be hard to generalize beyond pure λ-calculus.
Both the approach of Regnier and that of Boudol and Zim-
mer are stated to be unification-based, but neither approach
produces unifiers (substitutions that solve unification con-
straints); this makes them less practical.

1.1.4 Rank-2 Intersection Types
Leivant [23] introduced a rank-2 intersection type system

and remarked that it is similar in typing power to Hind-
ley/Milner. In fact, rank-2 intersection type systems type
strictly more terms than Hindley/Milner, although the ad-
ditional terms are not very significant.

Van Bakel [35] gave the first unification-based type infer-
ence algorithm for a rank-2 intersection type system. Jim [19]
studied extensions of rank-2 intersection type systems with
practical programming features and discussed the impor-

tance of principal typings. Damiani [11] has extended sup-
port for conditionals and letrec (mutually recursive bind-
ings) as well as support for a let-binding mechanism that
effectively adds some of the power of one more rank to ob-
tain some of the expressiveness of rank-3 intersection types.
Damiani [12] has also worked on rank-2 intersection types
for symmetric linking of modules.

Restricting intersection types to rank-2 does not use their
full potential to analyze programs as precisely as needed, so
we do not pursue this idea.

1.1.5 Expansion Variables
Kfoury and Wells [20, 22] gave a type inference algo-

rithm for System I, a full, non-rank-restricted intersection
type system. System I introduced expansion variables and
a single operation integrating expansion and substitution;
together, these features vastly simplified expansion.

Unfortunately, System I has several technical limitations.
The substitution operation (which contains expansion) has
a built-in renaming (needed for complete type inference)
of type and expansion variables that prevents substitutions
from being composable. An awkward workaround for this
problem called safe composition was developed, but safe
composition is hard to understand and people have been
error-prone when working with it. System I has other techni-
cal limitations such as non-associative and non-commutative
intersections and no weakening; together, these limitations
prevent it from having subject reduction.

The recently developed System E [6] improves in many
ways on System I. The full System E (only a fraction of
its power is needed for this paper) is more flexible than the
extremely flexible intersection type system of Barendregt,
Coppo, and Dezani [2]. Contrary to Van Bakel’s advice to
make intersection type systems as lean as possible [36], Sys-
tem E does not restrict where intersection type constructors
(and thus also expansion variables) can be used. Flexible
expansion variable placement allows expansion variables to
establish namespaces. In turn, this allows a substantially
simpler way of integrating expansion and substitution. In
particular, System E does not need the automatic built-in
fresh-renaming done during expansion in System I. As a
result, substitution and expansion in System E are more ro-
bust than they are in System I and composition works for
substitutions and expansions. These improvements make it
much simpler to design type inference methods for System E,
leading to the new results in this paper.

1.2 Summary of Contributions
1. We present a clear and precise unification-based inter-

section type inference algorithm in System E and prove
that it types any β-normalizing λ-term. We believe our
presentation is easier to understand and implement than
other presentations of intersection type inference. It is a
strength of our algorithm that it needs only the !-free frag-
ment of System E restricted to trivial subtyping. (Our
algorithm works unchanged with these features present.)

2. Our intersection type inference approach provides a sim-
ple and clean step-for-step β-reduction/unification corre-
spondence. In the main algorithm phase, each step of
our unify-β rule on constraints corresponds to exactly
one β-reduction step on λ-terms, and vice versa. Any
β-reduction strategy can be simulated by a strategy of
using unify-β, and vice versa. Our proof that our algo-



rithm succeeds for all β-normalizing λ-terms takes ad-
vantage of this correspondence and uses the well known
β-normalizing leftmost/outermost strategy. This corre-
spondence is impossible for systems without the flexibility
of intersection types, because they can not type even all
strongly β-normalizing terms [34]. Our correspondence
improves over that of Regnier [30] both by being more
formal and also by being direct instead of being the com-
position of two correspondences with untyped nets as an
intermediate notion.
The clear presentation of this correspondence helps to
share the understanding that any intersection type in-
ference approach will be equivalent to partial evaluation
followed by a monovariant analysis. In effect, intersection
type inference can do an arbitrary amount of partial eval-
uation via type unification, i.e., it can do the equivalent
of any amount of β-reduction of the analyzed term.

3. Our intersection type inference approach is the only one
to provide a notion of readback that allows extracting β-
reduced λ-terms from partially solved constraints during
type inference. This makes it easy to prove the step-for-
step β-reduction/unification correspondence and makes
the correspondence easier to understand. The use of read-
back makes our approach clearer than the approaches of
Boudol and Zimmer [4] and also Regnier [30].

4. Unlike early algorithms from before 1990, our inference
algorithm can build and use expansions based solely on
local matching of constraint solving rules without needing
global knowledge of the typing inferred so far, because
expansion in System E is guided by E-variables.

5. The statements and proofs of properties of our inference
algorithm are made clearer and more precise by the use
of skeletons, compact syntactic representations of typing
derivations. Unlike System E, nearly all other intersection
type systems do not have skeletons.

6. Our inference algorithm builds a solution that solves the
input constraints, i.e., a substitution of types for type
variables and expansions for E-variables that when ap-
plied to the input constraints yields satisfied constraints.
This is only possible because the composition of expan-
sions and substitutions is straightforward in System E,
which is not true for other systems.

7. Our algorithm can easily be used to get different forms
of output such as a full typing derivation or just a typing
(result type and type environment) because expansion is
defined on all of the mathematical entities in System E,
including skeletons. Constructing typing derivations is
vital for use in compilers with typed intermediate repre-
sentations. In contrast, many presentations of other algo-
rithms do not clearly document how to construct typing
derivations; this knowledge is either buried deep inside
proofs or simply omitted.

8. Our inference algorithm manages analysis polyvariance
by a scheme of properly arranging the nesting of a finite
number of E-variables. This is simpler than renaming
schemes used in other approaches and greatly eases imple-
mentation. This is only possible because, unlike previous
intersection type systems, System E has no restrictions
on where expansion can occur. Expansion in System E
can splice intersection constructors into type positions
that are to the right of arrows and into typing derivation
positions that are not function application arguments.

9. As explained below in sec. 1.3, our algorithm is more

suitable to be extended to have flexible analysis precision
and to analyze call-by-need and call-by-value behavior.

10. We have implemented all of the algorithms described in
this paper and made them available via a web interface [5]
and for downloading (http://www.macs.hw.ac.uk/DART/
software/system-e/). Our implementation generated
the example output found in appendix A.

11. A technical report with full proofs will be made available
on the web pages of the authors by 2004-08.

1.3 Ongoing Future Work
The full System E (only part is presented in this pa-

per) has the ! type constructor which allows non-exact anal-
ysis. The step-for-step β-reduction/unification correspon-
dence means that type inference can obtain polyvariance
by doing the equivalent of any amount of partial evaluation
of the analyzed program followed by a cruder, more tradi-
tional monovariant analysis that uses ! and subtyping to col-
lapse the analysis. Because of the careful way ! is integrated
into the full System E, the analysis results precisely indicate
where the information is exact and where it is approximate.
This ability for type inference to partially evaluate leads
to the potential of analysis that simultaneously is compo-
sitional and has easily adjustable cost and precision. (The
algorithm presented in this paper always has exact precision
and the same cost as normalization.) In contrast, the widely
used algorithm W for Hindley/Milner is non-compositional
and does the equivalent of a fixed amount of partial evalua-
tion (unfolding all let-expressions) followed by the standard
(monovariant) first-order unification of simple type infer-
ence [25]; all information in the results must be assumed to
be approximate. Although we have left the full exploration
of this promising possibility to future work, this motivation
helps justify the significance of this work. Investigating this
is ongoing work with our colleague Makholm.

Because in System E expansion can occur in non-function-
argument positions, type inference will be able to do resource-
aware analysis of call-by-need and call-by-value evaluation,
rather than being applicable only to call-by-name evaluation
(which is unused in practice).

We believe the algorithm Infer (definition 4.22) finds so-
lutions that yield principal typings [37]. Proving this is on-
going work with our colleagues Kfoury and Bakewell.

1.4 Other Future Work
Because types are often exposed to programmers, a major

design goal for many type systems has been making types
suitable for human comprehension. Unfortunately, this con-
flicts with making types suitable for accurate and flexible
program analysis. Intersection types are good for accurate
analysis. However, inferred intersection types may be ex-
tremely detailed and thus are likely to be unsuitable for pre-
senting to humans. Alternative type error reporting meth-
ods such as type error slicing [15, 16] can avoid presenting
these types directly to programmers. Investigation is needed
to combine type error slicing with System E.

Module boundary interfaces are generally intended to ab-
stract away from the actual software on either side of the
interface, so that implementations can be switched. Also,
module boundary interfaces must be compact and easily un-
derstandable by humans. For these reasons, ∀ and ∃ quan-
tifiers are appropriate for use in module boundary types.
An open problem is how to use very flexible and accurate



types such as intersection types for analysis and then check
whether they imply types using ∀ and ∃ quantifiers.

We (Carlier, Kfoury, and Wells) and also independently
Mairson and Neergaard [28] have noticed a correspondence
between solving of type inference constraints in System I and
reduction of nets. Intersection types correspond to contrac-
tion nodes, ω (introduced in Iω by Carlier) to 0-ary contrac-
tion nodes (weakening), E-variables to boxes, T-variables to
axiom links, and constraints to cut links. Each type infer-
ence constraint solving step in System I (using the precise
version of the rules of [20]) corresponds to a net reduction
step. Expansion describes net transformations, and our uni-
fication algorithm does the equivalent of cut-elimination on
nets via substitution for E-variables. In System E (but not
in System I), the equalities imposed on types and constraints
in sec. 3.2 correspond to the flexibility of nets.

This connection with nets has several possible implica-
tions. First, the expansion variables of System E offer a
syntactic alternative to nets that may be easier for pre-
cise reasoning. Second, System E could lead to a Linear
Logic extension with intersection as a proof-functional con-
nective [24] (unlike the usual truth-functional connectives).
In this new system, Regnier’s nets could be annotated with
formulas. (Although Mairson [26] earlier suggested that
net edges can be annotated with Linear Logic formulas, a
counter-example, due to Urzyczyn, is the net for 22K, with
2 = λf.λx.f(fx) and K = λy.λz.y.)

1.5 Other Related Work
Sayag and Mauny [33] characterize principal typings in

intersection type systems and show they are isomorphic to
β-normal forms. The correspondence is limited to normal
forms and does not directly show the step-for-step corre-
spondence between β-reduction and type inference.

1.6 Acknowledgements
This paper benefited from detailed comments by Adam

Bakewell, Assaf Kfoury, Henning Makholm, and Jeff Po-
lakow and from helpful discussions with Harry Mairson and
Peter Neergaard on correspondences between proof nets and
type inference with expansion variables.

2. PRELIMINARY DEFINITIONS
This section defines generic mathematical notions. Let

i, j, m, n, p, and q range over {0, 1, 2, . . .} (the natural
numbers). Let π1(〈a, b〉) = a and π2(〈a, b〉) = b. Given a
function f , let f [a 7→ b] = (f \{ (a, c) (a, c) ∈ f })∪{(a, b)}.
Let r range over binary relations. Let −r−→ be alternate infix
notation for r. Let −r−� be the transitive and reflexive (w.r.t.
the intended carrier set) closure of r. Let r; r′ be the compo-
sition of r and r′, i.e., r; r′ = { (a, c) ∃b.r(a, b) ∧ r′(b, c) }.
Given a context C, let C[U ] stand for C with the single
occurrence of 2 replaced by U , e.g., (λx.2)[x] = λx.x.

If S names a set and ϕ is defined as a metavariable ranging
over S, let S∗ be the set of sequences over S as per the
following grammar, quotiented by the subsequent equalities,
and let ~ϕ be a metavariable ranging over S∗:

~ϕ ∈ S∗ ::= ε | ϕ | ~ϕ1 · ~ϕ2

ε · ~ϕ = ~ϕ, ~ϕ · ε = ~ϕ, (~ϕ1 · ~ϕ2) · ~ϕ3 = ~ϕ1 · (~ϕ2 · ~ϕ3)

For example, ~n ranges over {0, 1, 2, . . .}∗ (sequences of nat-
ural numbers). Length 1 sequences are equal to their sole
member; this requires taking some care.

Given an order < on a set X, let the lexicographic-extension
order <lex of < be the least relation s.t. for any ~x, ~z ∈ X∗ and
y, y′ ∈ X where y < y′ both ~x <lex ~x · y · ~z and ~x · y · ~y <lex

~x · y′ · ~z hold.
Diagrams illustrate formal statements. A diagram means

that for all entities linked to solid lines satisfying the re-
lations attached to the solid lines, the additional entities
linked to dashed lines exist satisfying the relations attached
to the dashed lines. For example, the following diagram
means ∀m, n, q. (m < n)∧ (n ≤ q) ⇒ ∃p. (m ≤ p)∧ (p < q):

m n

p q

<
≤≤

<

3. SYSTEM E
This section presents System E. See [6] for full details.

3.1 Syntax
Fig. 1 defines the syntactic entities used in this paper.

Note the distinction between the metavariables x, α, and e
and concrete variables like x0, a1, and e2. The main differ-
ence from the original System E definition [6] is that the !
operator is omitted in this paper.

We use @ for application in terms and skeletons; this is
non-standard, but we do so to have some syntactic marker
for application nodes when terms and skeletons are pretty-
printed or drawn as tree.

We define operator precedence, including for ordinary func-
tion application (f(a)) and modification (f [a 7→ b]), and for
later-defined operations like expansion application ([E]X)
and term-variable substitution (M1[x:=M2]). The prece-
dence groups follow, from highest to lowest:

group 1: Q:τ , f(a), f [a 7→ b], M1[x := M2],
v := Φ, C[M ], D[Q], ~ϕ1 · ~ϕ2

group 2: e X, [E] X, (φ, S)
group 3: X1 .∩ X2, e/S
group 4: τ1 → τ2, M @ N , Q1 @ Q2, S1; S2

group 5: τ1 l τ2, λx.M , λx.Q,

As examples of binding conventions, eα1
.∩ α2 → α3 =

((eα1) .∩ α2) → α3, and (eα1 l α2) = ((eα1) l α2), and
λx. x:α1 @ y:α2 = λx. (x:α1 @ y:α2). As is usual, application
is left-associative so that M1 @ M2 @ M3 = (M1 @ M2) @
M3 (similarly for skeletons) and function types are right-
associative so that τ1 → τ2 → τ3 = τ1 → (τ2 → τ3). Let the
expression τ1

.∩ · · · .∩ τn denote τ1
.∩ (τ2

.∩ (· · · .∩ τn)) when
n ≥ 1 and ω when n = 0. Extending E-variable application
to sequences, let ε X = X and (~e · e)X = ~e (e X).

3.2 Equalities
Terms and skeletons are quotiented by α-conversion as

usual [3], where λx.M and λx. Q bind the variable x.
For types and constraints, the definitions of fig. 1 are mod-

ified by imposing equalities for E-variable application, the .∩
operator, and the ω constant. The .∩ operator is associative
and commutative with ω as its unit. E-variable application
distributes over .∩ and ω. (The constant ω is a 0-ary version
of .∩.) Formally, these rules hold:

T1 .∩ (T2 .∩ T3) = (T1 .∩ T2) .∩ T3

T1 .∩ T2 = T2 .∩ T1 ω .∩ T = T
e (T1

.∩ T2) = eT1
.∩ eT2 eω = ω



The sorts and their abstract syntax grammars and metavariables:

x ∈ Term-Variable ::= xi

α ∈ T-Variable ::= ai

e ∈ E-Variable ::= ei

φ ∈ ET-Assignment ::= α := τ | e := E
S ∈ ET-Substitution ::= � | φ, S

M,N ∈ Term ::= x | λx.M | M1 @ M2

C ∈ Term-Context ::= 2 | λx.C | C @ M | M @ C
τ ∈ Type ::= τ1 .∩ τ2 | e τ | ω | α | τ1 → τ2
E ∈ Expansion ::= E1 .∩ E2 | eE | ω | S
∆ ∈ Constraint ::= ∆1 .∩ ∆2 | e∆ | ω | τ1 l τ2
Q ∈ Skeleton ::= Q1 .∩ Q2 | eQ | ωM | x:τ | λx. Q | Q1 @ Q2 | Q:τ

D ∈ Skel-Context ::= 2 | D .∩ Q | Q .∩ D | e D | λx. D | D @ Q | Q @ D | D:τ

Metavariables ranging over subsets or multiple sorts:

v ::= e | α Φ ::= E | τ T ::= τ | ∆ X ::= τ | E | ∆ | Q Y ::= τ | E | ∆ ∆̇ ::= e ∆̇ | ∆̄ ∆̄ ::= τ1 l τ2

Figure 1: Syntax grammars and metavariable conventions.

[E1 .∩ E2] X = [E1]X .∩ [E2]X [�]α = α [S] eX = [[S] e] X
[e E] X = e [E]X [�] e = e�

[ω] Y = ω [v := Φ, S] v′ = [S] v′ if v 6= v′ [S]� = S

[ω] Q = ωterm(Q) [v := Φ, S] v = Φ [S] (v := Φ, S′) = (v := [S] Φ, [S]S′)

[S] (X1 .∩ X2) = [S]X1 .∩ [S]X2 [S]ω = ω [S]x:τ = x:[S] τ

[S] (τ1 l τ2) = [S] τ1 l [S] τ2 [S]ωM = ωM [S]λx.Q = λx. [S]Q

[S] (τ1 → τ2) = [S] τ1 → [S] τ2 [S]Q:τ = ([S]Q):[S] τ [S] (Q1 @ Q2) = [S]Q1 @ [S]Q2

Figure 2: Expansion application.

Both α-conversion and the additional rules for types and
constraints are imposed as equalities, where “=” is mathe-
matical equality (as it should be). For example, ω .∩ α = α.
After this modification, the syntactic sorts no longer form
an initial algebra, so care must be taken.

3.3 Operations on Syntax
Let T v T ′ iff T ′ = T .∩ T ′′ and let T w T ′ iff T ′ v T .

Let M [x :=N ] and respectively M −β−→ N denote the usual
notions [3] for untyped λ-terms of term-variable substitution
and respectively β-reduction.

Let term be the least-defined function such that:

term(x:τ ) = x
term(λx. Q) = λx.term(Q)
term(Q1 @ Q2) = term(Q1) @ term(Q2)
term(Q:τ ) = term(eQ) = term(Q)
term(ωM ) = M
term(Q1 .∩ Q2) = term(Q1) if term(Q1) = term(Q2)

A skeleton Q is well formed iff term(Q) is defined. E.g., Q =
x:τ1 .∩ y:τ2 is ill-formed if x 6= y since term(Q) is undefined.

Convention 3.1. Henceforth, only well formed skeletons
are considered.

Definition 3.2. E-path If ∆̇ = ~e∆̄, then E-path(∆̇) = ~e

is the E-path of ∆̇. If D is a skeleton context, we define
E-path(D), the E-path of the context hole in D, by induc-
tion, as follows:

E-path(2) = ε
E-path(eD) = e · E-path(D)
E-path(λx.D) = E-path(D:τ ) = E-path(D @ Q)

= E-path(Q @ D) = E-path(D .∩ Q)
= E-path(Q .∩ D) = E-path(D)

3.4 Expansion Application
The essential new notion of System E is the way it uses

expansion variables (E-variables) to implement expansion.

Expansion is an operation that calculates for a typing judge-
ment the changed judgement that would result from insert-
ing additional typing rule uses at nested positions in the
judgement’s derivation. E-variables are a new technology
that makes expansion simpler and easier to implement and
reason about. E-variables are placeholders for unknown uses
of other typing rules like .∩-introduction. E-variables are
propagated into the types and the type constraints used
by type inference algorithms. In System E, expansion op-
erations are described by syntactic terms. The use of E-
variables and expansion terms allows defining expansion ap-
plication in a precise, uniform, and syntax-directed way.

Definition 3.3 (Expansion application). Fig. 2 defines
the application of substitutions to E-variables, and of expan-
sions to types, expansions, constraints, and skeletons.

Example 3.4. E-variables effectively establish namespaces
and substituting an expansion for an E-variable can merge
namespaces. Define the following:

τ1 = e1 a0 → a0 S1 = (e1 := �, �) S2 = (a0 := τ2, �)

Then these facts hold:

[S2] τ1 = e1 a0 → τ2

[S1] τ1 = a0 → a0

[S2] [S1] τ1 = τ2 → τ2

In [S2] τ1, the T-variable a0 inside the E-variable e1 is ef-
fectively distinct from the T-variable a0 outside e1, so the
substitution only replaces the outer a0. The operation [S1] τ1

replaces e1 by the empty expansion (which is actually the
identity substitution), and this effectively lifts the inner a0

into the root namespace, so that [S2] [S1] τ1 replaces both
occurrences of a0.

Lemma 3.5 (Expansion application composition).
Given any E1, E2, X, [[E1] E2] X = [E1] [E2] X.

Let E1; E2 = [E2] E1 (composition of expansions). By
lem. 3.5, the “;” operator is associative. Although E1; E2 is
not much shorter than [E2] E1, it is easier to follow.



(abstraction)
(M . Q) : 〈A ` τ〉 / ∆

(λx.M . λx.Q) : 〈A[x 7→ ω] ` A(x) → τ〉 / ∆
(variable)

(x . x:τ ) : 〈(x : τ) ` τ〉 / ω

(application)
(M1 . Q1) : 〈A1 ` τ2 → τ1〉 / ∆1; (M2 . Q2) : 〈A2 ` τ2〉 / ∆2

(M1 @ M2 . Q1 @ Q2) : 〈A1 .∩ A2 ` τ1〉 / ∆1 .∩ ∆2
(omega)

(M . ωM ) : 〈envω ` ω〉 / ω

(intersection)
(M . Q1) : 〈A1 ` τ1〉 / ∆1; (M . Q2) : 〈A2 ` τ2〉 / ∆2

(M . Q1 .∩ Q2) : 〈A1 .∩ A2 ` τ1 .∩ τ2〉 / ∆1 .∩ ∆2

(E-variable)
(M . Q) : 〈A ` τ〉 / ∆

(M . eQ) : 〈e A ` e τ〉 / e∆

(result
subtyping)

(M . Q) : 〈A ` τ1〉 / ∆

(M . Q:τ2 ) : 〈A ` τ2〉 / ∆ .∩ (τ1 l τ2)

Note: When these rules derive judgements of the form (M . Q) : 〈A ` τ〉 / ∆ such that solved(∆) holds, then these rules
act as typing rules in the traditional sense. (See also remark 3.10.)

Figure 3: Typing rules.

An assignment φ may stand for a substitution (φ, �) and
is to be interpreted that way if necessary. The higher prece-
dence of (v := Φ) over (φ, S) also applies here. For exam-
ple, as a substitution (e1 := e2 := S2, e3 := S3) stands for
((e1 := (e2 := S2)), e3 := S3) which can be written in full as
((e1 := ((e2 := S2), �)), (e3 := S3), �).

Let e/S stand for (e := e S). Thus, when necessary, e/S
stands for ((e := eS), �). The “/” notation builds a substi-
tution that affects variables underneath an E-variable, be-
cause [e/S] eX = e [S] X. E.g., S = (e0/(a1 := τ1), a0 := τ0)
stands for S = (e0 := e0 (a1 := τ1, �), a0 := τ0, �) and in
this case it holds that [S] (e0 a1 → a0) = e0 τ1 → τ0.

We extend this notation to E-variable sequences so that
~e · e/S stands for ~e/e/S and ε/S stands for S.

3.5 Type Environments and Typing Rules
Type environments, ranged over by A and B, are total

functions from Term-Variable to Type that map only a finite
number of variables to non-ω types.

Definition 3.6 (Operations on type environments).

[E]A = { (x, [E] A(x)) x ∈ Term-Variable }
A .∩ B = { (x,A(x) .∩ B(x)) x ∈ Term-Variable }

eA = { (x, e A(x)) x ∈ Term-Variable }
envω = { (x,ω) x ∈ Term-Variable }

Let (x1 : τ1, . . . , xn : τn) be envω[x1 7→ τ1] · · ·[xn 7→ τn]. Ob-
serve, for every e, E1, E2, A, and x, that (1) [E1

.∩ E2] A =
[E1] A .∩[E2] A, (2) [E] (A .∩ B) = [E]A .∩[E] B, (3) [e�] A =
e A, (4) (eA)(x) = eA(x), (5) [ω]A = envω, and finally (6)
[E] A[x 7→ τ ] = ([E] A)[x 7→ [E] τ ].

Definition 3.7 (Typing judgements and typing rules).
Fig. 3 gives the typing rules of System E used in this paper.
The rules derive judgements of the following form with the
indicated components:

typing

(M . Q) : 〈A ` τ〉 / ∆

untyped term constraint
skeleton result type

type environment

A pair 〈A ` τ 〉 of a type environment A and a result type τ
is a typing.

A skeleton Q is just a proof term, a compact notation
representing an entire typing derivation. A skeleton Q syn-
tacticly represents a tree of typing rule uses that derives

a judgement for the untyped term term(Q). Using skele-
tons avoids needing gigantic judgement trees in formal state-
ments. Many type systems use type-annotated λ-terms for
this role, but this fails for typing rules like our intersection
( .∩-introduction) rule. (See [38, 39] for a discussion.)

The intended meaning of (M . Q) : 〈A ` τ 〉 / ∆ is that Q
is a proof that the untyped term M has the typing 〈A ` τ 〉,
provided the constraint ∆ is solved w.r.t. some subtyping
relation. The typing rules do not check whether a constraint
∆ is solved to allow (1) using different subtyping relations
and (2) using the same rules to generate constraints to be
solved by type inference. For a subtyping relation, this paper
needs and will use only the weakest, namely equality on
types, but other papers on System E use other relations
(e.g., ≤nlin and ≤flex from [6]). The results in this paper
extend to all subtyping relations that include equality.

Definition 3.8 (Valid skeleton). A skeleton Q is valid iff
there exist M , A, τ , and ∆ s.t. (M . Q) : 〈A ` τ 〉 / ∆.

Convention 3.9. Only valid skeletons are considered.

A skeleton Q uniquely determines all components in its
judgement. Let typing, constraint, tenv, and rtype be func-
tions s.t. (M . Q) : 〈A ` τ 〉 / ∆ implies typing(Q) = 〈A ` τ 〉,
constraint(Q) = ∆, tenv(Q) = A, and rtype(Q) = τ .

A constraint ∆ is solved, written solved(∆), iff ∆ is of the
form ~e1 (τ1 l τ1) .∩ · · · .∩ ~en (τn l τn). Given a judgement
(M . Q) : 〈A` τ 〉 / ∆, the entire judgement and its skeleton
Q are solved iff ∆ is solved. The unsolved part of a constraint
∆, written unsolved(∆), is the smallest constraint ∆1 such
that ∆ = ∆1

.∩ ∆2 and solved(∆2) for some ∆2.

Remark 3.10 (Relation to traditional typing rules).
Solved judgements and skeletons correspond respectively to
traditional typing judgements and derivations. Traditional
typing rules are merely the special case of the typing rules
in fig. 3 where all constraints are solved. When constraints
are solved, our use of “typing” for a pair 〈A`τ 〉 matches the
definition in [37]. The rules in fig. 3 can also be used to gen-
erate unsolved constraints to be solved by a type inference
algorithm, as is done in sec. 4. Our presentation not only
saves space by combining the two roles of the rules, but also
guarantees in a simple way (stated formally in lem. 3.11)
that type inference yields valid typing derivations.

Lemma 3.11 (Admissibility of expansion). If (M .Q) :
〈A ` τ 〉 / ∆, then (M . [E] Q) : 〈[E] A ` [E] τ 〉 / [E] ∆.



4. TYPE INFERENCE
This section presents a type inference algorithm for Sys-

tem E. We show how to infer a typing for any normalizing
untyped λ-term M , where each constraint-solving step ex-
actly corresponds to one β-reduction step, starting from M .
We also give an algorithm that reconstructs the β-reduced
term from each intermediate stage of type inference.

The approach to type inference is as follows. Given an
untyped term M as input, (1) pick an initial skeleton Q such
that term(Q) = M , (2) do unification to find a substitution
S solving constraint(Q), and (3) use Q and S to calculate a
solved skeleton (typing derivation) or a typing for M .

If run on λ-terms which have no normal form, our in-
ference algorithm is non-terminating. This also makes it
in some sense incomplete because any term, even if it is
non-normalizable, can be typed using the ω typing rule in
System E.

4.1 Initial Skeletons
We pick an initial skeleton initial(M) using three distinct

E-variables e0, e1, and e2, and one T-variable a0, as follows:

initial(x) = x:a0

initial(λx.M) =
„

let Q = e0 initial(M)
in λx. Q

«

initial(M @ N) =
0

@

let Q1 = e1 initial(M)
Q2 = e2 initial(N)

in Q1
:rtype(Q2)→a0 @ Q2

1

A

We extend this definition to contexts, taking initial(2) = 2.

Example 4.1 (Initial skeleton). Let M = (λx.x @ x)@y,
Q = initial(M):

Q = ( e1 (λx. e0 ((e1 (x:a0) : e2 a0 → a0) @ e2 (x:a0)))
: e2 a0 → a0)

@ e2 (y:a0)

We have (M . Q) : 〈A ` τ 〉 / ∆ where A = (y : e2 a0), τ =
a0 and ∆ = (e1 (e0 e1 a0 .∩ e0 e2 a0 → e0 a0) l e2 a0 → a0) .∩
(e1 e0 (e1 a0 l e2 a0 → a0)).

We now define pleasant skeletons, which syntacticly char-
acterize skeletons produced by initial.

Definition 4.2 (Pleasant skeleton). A skeleton Q is pleas-
ant iff Q = P for some P defined as follows:

P ::= x:a0 | λx. e0 P | (e1 P1)
:e2 τ→a0 @ e2 P2

Note that by convention 3.9, if P = (e1 P1)
:e2 τ→a0 @ e2 P2,

then τ = rtype(P2). Note that this definition uses 4 specific,
fixed concrete E- and T-variables (e0, e1, e2, and a0).

All constraints of a pleasant skeleton are unsolved, and
for all x, tenv(P )(x) = ~e1 a0 .∩ · · · .∩ ~en a0 for some n ≥ 0.

Lemma 4.3 (Properties of initial).

1. initial(M) is a pleasant skeleton.

2. If P = initial(M) then term(P ) = M .

3. If M = term(P ) then initial(M) = P .

4.2 Readback
To show an exact correspondence with β-reduction, we

define a readback function to reconstruct a pleasant skeleton
from a typing and a constraint.

Definition 4.4 (Readback). Let readback be the least-
defined function where readback(A, τ, ∆) is given by case
analysis on τ and subsequently on ∆ if τ = a0, such that:

readback((x : a0), a0, ω) = x:a0

readback(e0 A, e0 τ1 → e0 τ2, e0 ∆) = λx. e0 Q
if A(x) = ω
and Q = readback(A[x 7→ τ1], τ2, ∆)

readback(e1 A1 .∩ e2 A2, a0,
e1 ∆1

.∩ e2 ∆2
.∩ (e1 τ1 l e2 τ2 → a0)

= (e1 Q1)
:e2 τ2→a0 @ e2 Q2

if Q1 = readback(A1, τ1, ∆1)
and Q2 = readback(A2, τ2, ∆2)

For convenience, we let readback(Q) = readback(tenv(Q),
rtype(Q), unsolved(constraint(Q))).

Example 4.5 (Readback). Let A = (z : e2 a0), τ = a0 and:

∆ = (e1 (e0 a0 → e0 a0) l e2 a0 → a0)
.∩ (e1 ( (e0 a0 → e0 a0) → e0 a0 → e0 a0

l (e0 a0 → e0 a0) → e0 a0 → e0 a0))

We have:

readback(A, τ, ∆) = (e1 (λx. e0 (x:a
0)) : e2 a0 → a0)

@ e2 (z:a
0)

Lemma 4.6 (Readback builds pleasant skeletons). If
readback(A, τ, ∆) = Q, then Q = P for some P .

Lemma 4.7 (Readback is identity on pleasant skele-
tons). If readback(P ) = P ′, then P ′ = P .

Combining lemmas 4.3 and 4.7, we obtain this diagram:

M P
initial

term
readback

Lemma 4.8 (Readback preserves typings). Suppose
that readback(A, τ, ∆) = P and term(P ) = M . Then it
holds that (M . P ) : 〈A ` τ 〉 / unsolved(∆).

4.3 Unification Rules
From fig. 1, the metavariable ∆̇ ranges over singular con-

straints, those that contain exactly one type inequality, and
∆̄ ranges over singular constraints that have an empty E-
path. Each unification step solves one singular constraint.

Fig. 4 introduces rules unify-β and unify-@, which are
used to produce substitutions that solve singular constraints.
Observe that these rules mention 4 specific, fixed concrete
E- and T-variables (e0, e1, e2, a0), rather than arbitrary
metavariables e and α. (Originally, we made the rules match
arbitrary E-variables, but this generality was not actually
used and the proof is simpler this way.) We now study each
of these two rules in detail.

4.3.1 Rule unify-β
This section shows that rule unify-β solves constraints in a

way that corresponds exactly with β-reduction on λ-terms.
Rule unify-β matches on singular constraints of the form

∆̄ = ~e (e1 (e0 τ0 → e0 τ1) l e2 τ2 → a0) corresponding to a β-
redex (λx.M) @ N in the untyped λ-term. Informally, each
portion of ∆̄ corresponds to a portion of the redex: τ0 to the
type of x in M , τ1 to the result type of M , τ2 to the result
type of N , and a0 to the result type of the whole redex.



~e (e1 (e0 τ0 → e0 τ1) l e2 τ2 → a0) −unify-β−−−−−→ ~e/((e2 := e1 e0 E, e1/e0/S); (a0 := [S] τ1, e1 := e0 := �))

if τ0 −extract−−−→ E and τ0 −:=τ2−−−→ S

~e (e1 a0 l e2 τ1 → a0) −unify-@−−−−−→ ~e/(e1 := (a0 := e2 τ2 → a0, e1 := e1 e1 �, e2 := e1 e2 �))

α −extract−−−→ �

τ1 .∩ τ2 −extract−−−→ E1 .∩ E2 if τ1 −extract−−−→ E1 and τ2 −extract−−−→ E2

e τ −extract−−−→ eE if τ −extract−−−→ E

ω −extract−−−→ ω

α −:=τ2−−−→ (α := τ2)

τ1 .∩ τ2 −:=τ2−−−→ S1;S2 if τ1 −:=τ2−−−→ S1 and τ2 −:=τ2−−−→ S2

e τ −:=τ2−−−→ e/S if τ −:=τ2−−−→ S

ω −:=τ2−−−→ �

Figure 4: Rules for solving constraints.

Example 4.9 (Rule unify-β). Consider the following sin-
gular constraint ∆̄ which is part of ∆ from example 4.1 (for
memory, M = (λx.x @ x) @ y):

∆̄ = (e1 (e0 e1 a0
.∩ e0 e2 a0 → e0 a0) l e2 a0 → a0)

This constraint corresponds to the β-redex in M . We have

∆̄ −unify-β−−−−−→ S, where S is the following substitution:

e2 := e1 e0 (e1 � .∩ e2 �)
, e1 := e1 ( e0 := e0 ( e1 := e1 (a0 := a0 , �) , �

; e2 := e2 (a0 := a0 , �) , �)
, �)

, �

; a0 := a0 , e1 := e0 := � , � , �

The first part of S (line 1, e2 := e1 e0 (e1 � .∩ e2 �)) makes
as many copies of argument y of the β-redex as there are
occurrences of the bound variable x. Each copy is put un-
derneath a distinct sequence of E-variables (here e1 and e2);
each sequence of E-variables corresponds to one occurrence
of x. The second part of the substitution S (lines 2-4) re-
places the type variable associated with each occurrence of
the bound variable x with the result type of the correspond-
ing copy of the argument y (this has no effect in this case,
because y also has type a0). The last part of S (line 6) si-
multaneously replaces the type variable that holds the result
type of the application with the result type of the body of
the λ-abstraction (having no effect in this case), and then
erases E-variables e1 and e0. Only the E-variable e1 needs
to be erased for the constraint to become solved; erasing e0

is needed to preserve definedness of readback.

Lemma 4.10. If constraint(P ) = ∆̄ .∩∆′ and ∆̄ −unify-β−−−−−→ S,
then solved([S] ∆̄).

S

〈S, ∆̄〉 ω

∆̄

unify-β

π1

π2

[·] ·; unsolved

The previous lemmas show that unify-β, when it applies to
some constraint ∆̄ of a pleasant skeleton, produces a substi-

tution S that solves ∆̄. ∆̄ −unify-β−−−−−→ S implies the following:
∆̄ = e1 (e0 τ0 → e0 τ1) l e2 τ2 → a0

τ0 = ~e1 a0
.∩ · · · .∩ ~en a0

S = (e2 := e1 e0 E , e1/e0/S′)
; (a0 := [S′] τ1 , e1 := e0 := �)

τ0 −extract−−−→ E and τ0 −:=τ2−−→ S′, for some E and S′.

Let E′ = ~e1 � .∩ · · · .∩ ~en � and
S′′ = ~e1/(a0 := τ2); · · ·;~en/(a0 := τ2).

With these particular E′ and S′′, it is easy to see that
[E′] τ2 = ~e1 τ2

.∩ · · · .∩ ~en τ2 = [S′′] τ0 holds, provided that

no ~ei is a proper prefix of ~ej , with i, j ∈ {1, . . . , n}. This is
guaranteed by the hypothesis constraint(P ) = ∆̄ .∩ ∆′, since
for every i, ~ei is the E-path of some skeleton variable in
P . Equalities of sec. 3.2 are imposed on types, but not on
expansions and substitutions, so E = E′ and S′ = S′′ do
not necessarily hold. However, all possible E and S′ have
the same effect when they are applied to types. By defi-
nition 3.3, [S] ∆̄ = [S′] τ0 → [S] τ1 l [E] τ2 → [S] τ1. Since
[E] τ2 = [E′] τ2 = [S′′] τ0 = [S′] τ0, solved([S] ∆̄) holds.

The next lemma shows that, given a pleasant skeleton
P whose term is a β-redex, any substitution generated by
unify-β applied to the constraint ∆̄ of P generates a substi-
tution S that, when applied to P , (1) solves ∆̄ and only ∆̄,
(2) preserves definedness of readback, and (3) changes the
term of the readback by contracting the β-redex considered.

Lemma 4.11. Let M = (λx.M1) @ M2, let P = initial(M),

let constraint(P ) = ∆̄ .∩ ∆′, and let ∆̄ −unify-β−−−−−→ S. Then
readback([S] P ) = P ′ where constraint(P ′) = [S] ∆′ and
term(P ′) = M1[x := M2].

The next two lemmas show the step-by-step equivalence
between unify-β and β-reduction.

Lemma 4.12 (One step of unify-β corresponds to one
step of β-reduction). If readback(Q) = P = initial(M),

M = term(P ), constraint(Q) w ∆̇ −unify-β−−−−−→ S, and Q′ =
[S] Q, then there exist M ′ and P ′ s.t. readback(Q′) = P ′ =

initial(M ′), and M −β−−→ M ′ = term(P ′).

∆̇ S

Q 〈S, Q〉 Q′

P P ′

M M ′

constraint;w π1

π2 [·] ·

unify-β

readback

initial term

readback

terminitialβ

Lemma 4.13 (One step of β-reduction corresponds
to one step of unify-β). If readback(Q) = P = initial(M),

term(P ) = M −β−−→ M ′, initial(M ′) = P ′, and term(P ′) =

M ′, then there exist ∆̇, S and Q′ s.t. constraint(Q) w ∆̇

−unify-β−−−−−→ S, [S] Q = Q′, and readback(Q′) = P ′.

∆̇ S

Q 〈S, Q〉 Q′

P P ′

M M ′

readback

initial term β initial term

readback

constraint;w

unify-β

π1

π2 [·] ·



4.3.2 Rule unify-@
Rule unify-@ is designed to be used after rule unify-β

has been used as much as possible and can not be used
anymore. Because unify-β effectively simulates β-reduction,
this means when unify-β is done, the term resulting from
readback is a β-normal form. Because a β-normal form may
have applications in it, there may still be unsolved con-
straints. Rule unify-@ applies to singular constraints of the
form ∆̄ = e1 a0 l e2 τ2 → a0. Such constraints are generated
by terms that are chains of applications whose head is a
variable, i.e., terms of the form xM1 · · ·Mn. For [S] ∆̄ to be
solved, S must replace e1 a0 by an arrow type.

The substitution S produced by unify-@ is simple, but
has been carefully designed. Part of the substitution pro-
duced by unify-@ is S′ = e1 := (a0 := e2 τ2 → a0) which has
the property that [S′] ∆̄ is solved. However, S′ erases e1,
which effectively merges the namespace inside e1 with the
parent namespace. Without care, this has the danger that it
could cause formerly distinct variables which should remain
distinct to become the same.

There are three variables that we have to be careful about
that might live at the top level in the namespace of e1 just
before rule unify-@ is applied. The strategy we use for apply-
ing rules unify-β and unify-@, discussed in the next section,
guarantees that e0 does not occur at the top-level of the
namespace inside e1. We do not need to worry about the
single T-variable a0, because it is completely replaced by S.
The rest of the substitution produced by unify-@ avoids con-
fusing e1 and e2 (and also their nested namespaces) in the
namespace of the outer e1 with the same names in the par-
ent namespace by replacing them by e1e1 and respectively
e1e2. This is done at the same time as the outer e1 is erased,
thereby effectively preserving the original namespaces.

Note that if a constraint ∆̇ = e1 (e1 a0 l e2 τ2 → a0) ex-
ists in the namespace of the outer e1 as it is erased, this
constraint becomes [S] ∆̇ = e1 e1 a0 l e1 e2 τ2 → e2 τ2 → a0,
to which unify-@ would not apply, and constraint solving
would get stuck at some point. This issue is easily solved
by applying unify-@ with a strategy that always selects the
singular constraints that have the longer E-path first. Such
a strategy is given in the next section.

4.4 Inference Algorithm
This section presents an inference algorithm producing a

valid, solved skeleton for any β-normalizable term.
Let M be an arbitrarily chosen λ-term. If M has a β-

normal form, then the procedure described below will ter-
minate, otherwise it will go forever. The results of previ-
ous sections are used to design a strategy for applying rules
unify-β and unify-@ that exactly follows leftmost/outermost
β-reduction. This reduction strategy is known to terminate
for arbitrary normalizing terms, so by following it we are
able to infer typings for any term that has a β-normal form.

Definition 4.14 (Leftmost/outermost redex of an un-
typed term). Define metavariables and sets as follows:

Mnf ∈ NF-Term ::= λx.M nf | Mnf1

Mnf1 ∈ NF1-Term ::= x | M nf1 @ M nf

C lo ∈ LO-Context ::= λx.C lo | C lo1

C lo1 ∈ LO1-Context ::= 2 | C lo1 @ M | M nf1 @ C lo

For every term M , exactly one of the following conditions
holds. (1) M = M nf , meaning M is a β-normal form. (2)

M = C lo[(λx.M1) @ M2], in which case the occurrence of
the subterm (λx.M1) @ M2 in the hole of C lo is the left-
most/outermost redex of M .

In order to precisely define the complete strategy for type
inference, we now define the notions of leftmost/outermost
constraint, which we use for unify-β, and rightmost/innermost
constraint, which we use for unify-@.

Definition 4.15 (Order on sequences of expansion
variables). Let ei < ej iff i < j. Thus, < is a strict total
order on expansion variables, and so is its lexicographic-
extension order <lex on sequences of finite length.

Definition 4.16 (Leftmost/outermost constraint). If
∆ = ~e1 ∆̄1

.∩ · · · .∩ ~en ∆̄n, then the leftmost/outermost con-
straint of ∆, written LO(∆), if it exists, is the singular con-
straint that has the least E-path, i.e., LO(∆) = ~ei ∆̄i iff
1 ≤ i ≤ n and ~ei <lex ~ej for any j ∈ ({1, . . . , n} \ {i}).

Definition 4.17 (Right/innermost constraint). If ∆ =
~e1 ∆̄1 .∩· · · .∩ ~en ∆̄n, then the rightmost/innermost constraint
of ∆, written RI(∆), if it exists, is the singular constraint
that has the greatest E-path, i.e., RI(∆) = ~ei ∆̄i iff 1 ≤ i ≤ n
and ~ej <lex ~ei for any j ∈ ({1, . . . , n} \ {i}).

Example 4.18. Consider the following skeleton:

(e1 λx. e2 x:τ1 ):τ2 @ e3 (e4 y:τ5 :τ3 @ e5 z:τ4)

The leftmost/outermost constraint is e1 (e2 τ1 → e2 τ1) l τ2,
with E-path ε, and the rightmost/innermost constraint is
e3 (e4 τ5 l τ3), with E-path e3.

By design, the leftmost/outermost constraint of a pleasant
skeleton P , namely LO(constraint(P )), corresponds exactly
to the leftmost/outermost application in term(P ). The left-
most/outermost constraint in constraint(P ) that also matches
rule unify-β corresponds exactly to the leftmost/outermost
β-redex in term(P ). Thus, the constraint solving strategy
that always uses rule unify-β on the leftmost/outermost con-
straint matching unify-β corresponds exactly to leftmost/
outermost β-reduction.

Let filter-β(∆) contain all the singular constraints of ∆ to

which rule unify-β applies. That is, given ∆ = ∆̇1
.∩· · · .∩ ∆̇n,

let filter-β(∆) = ∆̇i1
.∩ · · · .∩ ∆̇ip

where j ∈ {i1, . . . , ip} ⊆

{1, . . . , n} iff there exists S s.t. ∆̇j −unify-β−−−−−→ S.

Lemma 4.19. If readback(Q) = P = initial(M) and M =

C lo[(λx.M1) @ M2], then ∆̇ = LO(filter-β(constraint(Q))) is

defined and E-path(∆̇) = E-path(initial(C lo)).

M C lo

P

Q ∆̇ ~e

·[(λx.M1) @ M2]
initialterm

readback

initial; E-path

constraint; filter-β; LO E-path

Similarly, in constraint(P ), the rightmost/innermost con-
straint corresponds to the rightmost/innermost application
in term(readback(Q)). This precise correspondence breaks
down once we start using rule unify-@, because readback is
no longer defined after using unify-@. However, the intuition
still explains how our strategy of using unify-@ works, be-
cause unify-@ does not rearrange namespaces. Appendix B
presents a modified readback which is still defined after uses



of unify-@. We do not use it here because its correspon-
dence with pleasant skeletons is not very tight, and this
would complicate the proofs.

Definition 4.20 (Unification algorithm). Given a term
M , the strategy (which succeeds iff M has a β-normal form)
for solving the constraint ∆ = constraint(initial(M)) is:

(0) Initial call: Unify(∆) −→ Unify(∆, �)
(1) Unify(∆, S) −→ Unify([S′] ∆, S; S′)

if LO(filter-β(∆)) −unify-β−−−−−→ S′

(2) Unify(∆, S) −→ Unify([S′] ∆, S; S′)

if RI(unsolved(∆)) −unify-@−−−−−→ S′

and case (1) does not apply
(3) Final call: Unify(∆, S) −→ S

if solved(∆)

Lemma 4.21 (Unify succeeds for β-normalizing terms).

If readback(Q) = P , term(P ) = M , M −β−−� M nf and ∆ =
constraint(Q), then Unify(∆) −−� S and solved([S] ∆).

M Mnf

P S 〈S,∆〉

Q ∆ ω

β

initialterm

readback
constraint

Unify

π1

π2
[·] ·; unsolved

Definition 4.22 (Type inference algorithm). The over-
all algorithm is:

Infer(M) −→ 〈P, S〉
if P = initial(M)

and Unify(constraint(P )) −−� S

If Infer(M) −→ 〈P, S〉, a solved skeleton (traditional typing
derivation) for M is obtained by computing [S] P . If only
a typing (type environment, result type) is desired, it is
obtained by computing 〈[S] tenv(P ) ` [S] rtype(P )〉.

Theorem 4.23 (Infer succeeds for β-normalizing terms).

If M −β−−� M nf , then Infer(M) −→ 〈P, S〉 where Q = [S] P
is solved and term(Q) = M .
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APPENDIX

A. FULL EXAMPLE OF TYPE INFERENCE
This appendix shows an example of type inference, present-
ing output produced by our implementation, which has the
option of writing bits of LATEX code suitable for inclusion in
LATEX documents. We analyze the term M :

M = (λx.x @ x) @ (λz.z @ y)

For compactness, uses of result type subtyping which add
a singular constraint that is solved have been omitted from
skeletons in the rest of this section. However, these solved
constraints are included in judgements.

A.1 Initial Skeleton
The inference process starts by picking an initial skeleton
P0 = initial(M):

P0 = ( e1 (λx. e0 ((e1 (x:a0) : e2 a0 → a0) @ e2 (x:a0)))
: e2 (e0 e1 a0 → e0 a0) → a0)

@ e2 (λz. e0 ((e1 (z:a0) : e2 a0 → a0) @ e2 (y:a0)))

The judgement P0 derives is:

(M . P0) : 〈A0 ` τ0〉 / ∆0, where
A0(y) = e2 e0 e2 a0

τ0 = a0

∆0 = e1 (e0 e1 a0 .∩ e0 e2 a0 → e0 a0)
l e2 (e0 e1 a0 → e0 a0) → a0

.∩ e1 e0 (e1 a0 l e2 a0 → a0)

.∩ e2 e0 (e1 a0 l e2 a0 → a0)

The readback of the judgement derived by P0 is:

readback(A0, τ0, ∆0) =
( e1 (λx. e0 ((e1 (x:a0) : e2 a0 → a0) @ e2 (x:a0)))
: e2 (e0 e1 a0 → e0 a0) → a0)

@ e2 (λx. e0 ((e1 (x:a0) : e2 a0 → a0) @ e2 (y:a0)))

Note that, since we have quotiented skeletons and terms by
α-equivalence (renaming of bound variables), this skeleton
is actually equal to P0. Of course, term(P0) = M .

A.2 Step 1 (use of unify-β)
The leftmost-outermost unsolved constraint of Q0 to which
unify-β applies is:

∆̇0 = e1 (e0 e1 a0 .∩ e0 e2 a0 → e0 a0)le2 (e0 e1 a0 → e0 a0) → a0

We have ∆̇0 −unify-β−−−−−→ S0 where:

S0 = e2 := e1 e0 (e1 � .∩ e2 �)
, e1/e0/ e1/a0 := e0 e1 a0 → e0 a0

; e2/a0 := e0 e1 a0 → e0 a0

; a0 := a0 , e1 := e0 := �

The skeleton Q1 = [S0] Q0 is:

Q1 = (λx. ( e1 (x:e0 e1 a0→e0 a0 )
: e2 (e0 e1 a0 → e0 a0) → a0)

@ e2 (x:e0 e1 a0→e0 a0 ))
@ e1 (λz. e0 ((e1 (z:a0 ) : e2 a0 → a0) @ e2 (y:a0)))

.∩ e2 (λz. e0 ((e1 (z:a0 ) : e2 a0 → a0) @ e2 (y:a0)))

The judgement Q1 derives is:

(M . Q1) : 〈A1 ` τ1〉 / ∆1, where
A1(y) = e1 e0 e2 a0

.∩ e2 e0 e2 a0

τ1 = a0

∆1 = e1 (e0 e1 a0 → e0 a0) l e2 (e0 e1 a0 → e0 a0) → a0
.∩ e1 (e0 e1 a0 → e0 a0) .∩ e2 (e0 e1 a0 → e0 a0) → a0

l e1 (e0 e1 a0 → e0 a0) .∩ e2 (e0 e1 a0 → e0 a0) → a0

.∩ e1 e0 (e1 a0 l e2 a0 → a0)

.∩ e2 e0 (e1 a0 l e2 a0 → a0)

The readback P1 of the judgement derived by Q1 is:

readback(A1, τ1, ∆1) = P1 =
( e1 (λx. e0 ((e1 (x:a0) : e2 a0 → a0) @ e2 (y:a0)))
: e2 (e0 e1 a0 → e0 a0) → a0)

@ e2 (λx. e0 ((e1 (x:a0) : e2 a0 → a0) @ e2 (y:a0)))

The untyped term associated with P1 is:

term(P1) = (λx.x @ y) @ (λx.x @ y)

Note that term(P0) −
β-LO−−−−→ term(P1).

A.3 Step 2 (use of unify-β)
The leftmost-outermost unsolved constraint of Q1 to which
unify-β applies is:

∆̇1 = e1 (e0 e1 a0 → e0 a0) l e2 (e0 e1 a0 → e0 a0) → a0

We have ∆̇1 −unify-β−−−−−→ S1 where:

S1 = e2 := e1 e0 e1 � , e1/e0/e1/a0 := e0 e1 a0 → e0 a0

; a0 := a0 , e1 := e0 := �

The skeleton Q2 = [S1] Q1 is:

Q2 = (λx. (x:e1 (e0 e1 a0→e0 a0)→a0)
@ e1 (x:e0 e1 a0→e0 a0 ))

@ (λz. (e1 (z:e0 e1 a0→e0 a0 ) : e2 a0 → a0)
@ e2 (y:a0))

.∩ e1 (λz. e0 ((e1 (z:a0) : e2 a0 → a0) @ e2 (y:a0)))

The judgement Q2 derives is:

(M . Q2) : 〈A2 ` τ2〉 / ∆2, where
A2(y) = e2 a0

.∩ e1 e0 e2 a0

τ2 = a0

∆2 = e1 (e0 e1 a0 → e0 a0) → a0

l e1 (e0 e1 a0 → e0 a0) → a0

.∩ (e1 (e0 e1 a0 → e0 a0) → a0)
.∩ e1 (e0 e1 a0 → e0 a0)

→ a0

l (e1 (e0 e1 a0 → e0 a0) → a0)
.∩ e1 (e0 e1 a0 → e0 a0)

→ a0
.∩ e1 (e0 e1 a0 → e0 a0) l e2 a0 → a0
.∩ e1 e0 (e1 a0 l e2 a0 → a0)

The readback P2 of the judgement derived by Q2 is:

readback(A2, τ2, ∆2) = P2 =
( e1 (λx. e0 ((e1 (x:a0) : e2 a0 → a0) @ e2 (y:a0)))
: e2 a0 → a0)

@ e2 (y:a0)

The untyped term associated with P2 is:

term(P2) = (λx.x @ y) @ y

Note that term(P1) −
β-LO−−−−→ term(P2).



The following diagram sums up the relations between the entities presented in appendix A. The path followed by type inference
is drawn in solid lines, and the β-reduction sequence it implies is drawn in dashed lines. The relation β-LO is the least such that

C lo[(λx.M1) @ M2] −
β-LO−−−−→ C lo[M1[x := M2]], readback′ is given in appendix B, and X −

[S] ·
−−→ X′ means X′ = [S]X.

initial
input

M M1 M2 Mnf

P1 P2 P3 P4

P0 Q1 Q2 Q3 Q4

∆0 ∆1 ∆2 ∆3 ∆4 ω

∆̇0 S0 ∆̇1 S1 ∆̇2 S2 ∆̇3 S3

〈S0, S1〉 S′

1 〈S′

1, S2〉 S′

2 〈S′

2, S3〉 S
final
result

initial

initial initial initial

term

term term term term
β-LO β-LO β-LO

readback

readback readback readback readback′

constraint constraint constraint constraint constraint

filter-β; LO filter-β; LO filter-β; LO unsolved; RI
unify-β unify-β unify-β unify-@

[S0] · [S1] · [S2] · [S3] ·

unsolved

[S0] · [S1] · [S2] · [S3] ·

π1
π2 π2 π2

· ; · π1 · ; · π1 · ; ·

Figure 5: Outline of example of type inference.

A.4 Step 3 (use of unify-β)
The leftmost-outermost unsolved constraint of Q2 to which
unify-β applies is:

∆̇2 = e1 (e0 e1 a0 → e0 a0) l e2 a0 → a0

We have ∆̇2 −unify-β−−−−−→ S2 where:

S2 = e2 := e1 e0 e1 � , e1/e0/e1/a0 := a0

; a0 := a0 , e1 := e0 := �

The skeleton Q3 = [S2] Q2 is:

Q3 = (λx. (x:(e1 a0→a0)→a0 ) @ (x:e1 a0→a0 ))
@ (λz. (z:e1 a0→a0 ) @ e1 (y:a0))

.∩ (λz. (e1 (z:a0) : e2 a0 → a0) @ e2 (y:a0))

The judgement Q3 derives is:

(M . Q3) : 〈A3 ` τ3〉 / ∆3, where
A3(y) = e1 a0

.∩ e2 a0

τ3 = a0

∆3 = (e1 a0 → a0) → a0 l (e1 a0 → a0) → a0

.∩ ((e1 a0 → a0) → a0) .∩ (e1 a0 → a0) → a0

l ((e1 a0 → a0) → a0) .∩ (e1 a0 → a0) → a0

.∩ e1 a0 → a0 l e1 a0 → a0

.∩ e1 a0 l e2 a0 → a0

The readback P3 of the judgement derived by Q3 is:

readback(A3, τ3, ∆3) = P3 = (e1 (y:a0) : e2 a0 → a0) @ e2 (y:a0)

The untyped term associated with P3 is:

term(P3) = y @ y

Note that term(P2) −β-LO−−−−→ term(P3), and term(P3) is a β-
normal form.

A.5 Step 4 (use of unify-@)
At this step, Q3 has no singular constraint to which unify-@
applies, so we switch to using unify-@ in order to solve the
remaining constraints. The rightmost-innermost unsolved
constraint of Q3 is:

∆̇3 = e1 a0 l e2 a0 → a0

We have ∆̇3 −unify-@−−−−−→ S3 where:

S3 = e1 := a0 := e2 a0 → a0 , e1 := e1 e1 � , e2 := e1 e2 �

The skeleton Q4 = [S3] Q3 is:

Q4 = (λx. (x:((e2 a0→a0)→a0)→a0 ) @ (x:(e2 a0→a0)→a0 ))

@ (λz. (z:(e2 a0→a0)→a0 ) @ (y:e2 a0→a0 ))
.∩ (λz. (z:e2 a0→a0 ) @ e2 (y:a0))

The judgement Q4 derives is:

(M . Q4) : 〈A4 ` τ4〉 / ∆4, where
A4(y) = (e2 a0 → a0) .∩ e2 a0

τ4 = a0

∆4 = ((e2 a0 → a0) → a0) → a0

l ((e2 a0 → a0) → a0) → a0
.∩ (((e2 a0 → a0) → a0) → a0)

.∩ ((e2 a0 → a0) → a0)
→ a0

l (((e2 a0 → a0) → a0) → a0)
.∩ ((e2 a0 → a0) → a0)

→ a0
.∩ (e2 a0 → a0) → a0 l (e2 a0 → a0) → a0
.∩ e2 a0 → a0 l e2 a0 → a0

Note that Q4 is solved. By lem. 3.5, the substitution S =
S0; S1; S2; S3 solves the initial skeleton P0.

B. IMPROVED READBACK
A slight modification to readback, which we have imple-
mented, allows it to operate after unify-@ has been used. We
present this variation because it may be of interest, and also
because it is mentioned by the full example (appendix A).
The first case of the definition of readback is modified thus:

readback(A, a0, ω)
= x:τ @ Q1 @ · · · @ Qn

if A = ~e1 e2 A1
.∩ · · · .∩ ~en e2 An

.∩ (x : τ)
and τ = ~e1 e2 τ1 → · · · → ~en e2 τn → a0

and Q1 = ~e1 e2 readback(A1, τ1, ω)
· · ·
Qn = ~en e2 readback(An, τn, ω)

where ~en = ε and if 1 ≤ i < n then ~ei = e1 · ~ei+1.


