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Abstract. We describe the design and methods of a tool that, based on
behavioral specifications in interfaces, generates simple adaptation code
to overcome incompatibilities between Standard ML modules.

1 Introduction

1.1 The Problem of Unstable Interfaces

The functionality of current software systems crucially depends on the stabil-
ity of module interfaces. Whereas implementations of interfaces may change,
currently deployed software technology requires that the interfaces themselves
remain stable because changing an interface without changing all of the clients
(possibly around the entire world) results in failure to compile. However, in prac-
tice it is often the case that interfaces gradually change and improve. It may, for
example, turn out that it is useful to add a few extra parameters to a function
in order to make it more generally applicable. Or, it may be more convenient to
give a function a different, but isomorphic, type than initially specified. In this
paper, we address the issue of unstable interfaces in the context of Standard ML
(SML) and propose a language extension that allows changing module interfaces
in certain simple but common ways without needing the module clients to be
modified.

As a simple example, consider the interface of a module that contains a
sorting function for integer lists. Using SML syntax, such an interface looks like
this:1

signature SORT = sig val sort : int list -> int list end

Suppose that in a later version this sorting function is replaced by a more general
function that works on lists of arbitrary type and takes the element ordering as
a parameter:
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signature SORT = sig

val sort : (’a * ’a -> bool) -> ’a list -> ’a list

end

In the example, ’a is a type variable. sort is now a polymorphic function, and
has all types that can be obtained by instantiating ’a. Implementations of the
more general of these two interfaces can easily be transformed into implemen-
tations of the more special one: Just apply the general sorting function to the
standard ordering on the integers. However, the SML compiler does not recog-
nize this. Programs that assume the special interface will fail to compile when
the interface is replaced by the general one.

One way to ensure compatibility with the rest of the system when an interface
is changed is to always keep the existing functions. For example, when a function
(and its type specification) is generalized, the older and more specialized version
can be kept. However, this method results in redundancy in the interfaces, which
is hardly desirable. Therefore, with currently deployed software technology, it is
probably better to change the interfaces, rely on the compiler to report the
places where the old interface is assumed, and then fix those places by hand to
work with the new interface. Such a manual adaptation is not hard for someone
familiar with the programming language, but requires a human programmer and
is not automated. It is this step of bridging gaps between interfaces that our tool
automates. It adapts a software component by synthesizing wrapper code that
transforms implementations of its interface into implementations of a different,
but closely related, interface.

1.2 The AxML Language for Synthesis Requests

Extending Interfaces by Semantic Specifications. In the design of our
tool, we were guided by the following two principles: Firstly, component adap-
tation should solely be based on information that is explicitly recorded in inter-
faces. Secondly, the synthesized interface transformations should transform se-
mantically correct implementations into semantically correct implementations.
The emphasis in the second principle is on semantically correct as opposed to
type correct. Considering these two principles, it becomes clear that we have
to add semantic specifications into interfaces.2 For this purpose, we have de-
signed the language AxML (“Another extended ML”), an extension of SML
with specification axioms.

Specification axioms are certain formulas from predicate logic. In order to
convey an idea of how they look, we extend the interface from above by a spec-
ification axiom. As basic vocabulary, we use the following atomic predicates:

linOrder : (’a * ’a -> bool) -> prop

sorted : (’a * ’a -> bool) -> ’a list -> prop

bagEq : ’a list -> ’a list -> prop

2 One could view these semantic specifications as part of the type of a module. How-
ever, in this paper we use the following terminology: We refer to the traditional
SML types as types, whereas we refer to the AxML specification axioms as semantic
specifications.



The type prop represents the two-element set of truth values, and predicates
denote truth-valued functions. The intended meanings of the above atomic pred-
icate symbols are summarized in the following table:

linOrder f f is a linear order
sorted f xs xs is sorted with respect to f

bagEq xs ys xs and ys are equal as multisets

The AxML system has been deliberately designed to never need to know the
meaning of these predicate symbols. Instead, component adaptation works cor-
rectly for any valid assignment of meanings to predicate symbols.

Using this vocabulary, we now extend the general SORT interface by an axiom.
fa denotes universal quantification, -> implication and & conjunction.

signature SORT = sig

val sort : (’a * ’a -> bool) -> ’a list -> ’a list

axiom fa f : ’a * ’a -> bool, xs : ’a list =>

linOrder f -> sorted f (sort f xs) & bagEq xs (sort f xs)

end

We say that a module implements an interface if it contains all the specified func-
tions with the specified types (type correctness), and, in addition, the functions
satisfy all the specification axioms that are contained in the interface (semantic
correctness). AxML verifies type correctness of a module, but does not verify
semantic correctness. It is the programmer’s responsibility to ensure the seman-
tic correctness of implementations. It is important to understand that although
the traditional SML type information appearing in the interface of a module
will be verified, our system deliberately does not attempt to verify that a mod-
ule satisfies the semantic specification axioms that appear in its interface. Our
adaptation tool preserves semantic correctness if it already holds. This differs
from recent work in Nuprl [3] where the implementation of an interface must
contain a proof for each axiom.

AxML provides mechanisms to introduce atomic predicate symbols, like, for
example, linOrder, sorted and bagEq. The extensive use of such predicate
symbols in specification formulas, reflects, we think, the natural granularity in
which programmers would write informal program documentation: When de-
scribing the behavior of a sorting function, a programmer would use the word
“sorted” as basic vocabulary, without further explanation. (The detailed expla-
nation of this word may have been given elsewhere, in order to ensure that
programmers agree on its meaning.) We hope that a good use of AxML results
in specification axioms that closely resemble informal documentation. From this
angle, AxML can be viewed as a formal language for program documentation.
Writing documentation in a formal language enforces a certain discipline on the
documentation. Moreover, formal documentation can be type-checked, and some
flaws in the documentation itself can be discovered that way.

Synthesis Requests. It is now time to describe AxML’s user interface:
The user will supply AxML files. Every SML file is an AxML file, but, in ad-
dition, AxML files can contain semantic specifications in interfaces. Moreover,



AxML files can contain so-called synthesis requests that request the adaptation
of a set of modules to implement a certain interface. An AxML “compiler” will
translate AxML files to SML files by simply dropping all semantic specifications
and replacing synthesis requests by implementations that have been generated
by a synthesis tool. The synthesized code is of a very simple kind. Typically,
it will specialize by supplying arguments, curry, uncurry or compose existing
functions. Synthesized code is not recursive. Its purpose is to transform modules
into similar modules.

Here is an example of a synthesis request. Assume first that Sort is a module
that implements the second version of the SORT interface. Assume also that Int
is a module that contains a function leq of type int * int -> bool, and that
Int’s interface reports that this function is a linear order. Here is the AxML
interface MYSORT for an integer sort function:

signature MYSORT = sig

val sort : int list -> int list

axiom fa xs : int list => sorted Int.leq (sort xs) & bagEq xs (sort xs)

end

The following AxML declaration contains a synthesis request for an implementa-
tion of MYSORT. The synthesis request is the statement that is enclosed by curly
braces.

structure MySort : MYSORT = { fromAxioms structure Sort structure Int

create MYSORT }

The AxML compiler will replace the synthesis request by an implementation of
the interface MYSORT:

structure MySort : MYSORT = struct val sort = Sort.sort Int.leq end

Here is how AxML can be used to protect a software system against certain
interface changes: If a module’s interface is still unstable and subject to change,
the programmer may use it indirectly by requesting synthesis of the functions
that they need from the existing module. Initially, it may even be the case
that these functions are exactly contained in the module. (In this case, the
“synthesized” functions are merely selected from the existing module.) If the
interface of the existing module changes in a way that permits the recovery of
the old module by simple transformations, the functions will automatically be
resynthesized. In this manner, the AxML compiler overcomes what would be a
type incompatibility in currently deployed systems.

The simple transformations that AxML will be able to generate consist of
expressions that are built from variables by means of function abstraction, func-
tion application, record formation and record selection. AxML will deliberately
not attempt to generate more complex transformations, because that seems too
hard to achieve fully automatically.



signature BINREL = sig

type ’a t = ’a * ’a -> bool

pred ’a linOrder : ’a t -> prop

pred ’a linPreorder : ’a t -> prop

pred ’a preorder : ’a t -> prop

pred ’a equivalence : ’a t -> prop

val symmetrize : ’a t -> ’a t

axiom fa r : ’a t => linOrder r -> linPreorder r

axiom fa r : ’a t => linPreorder r -> preorder r

axiom fa r : ’a t => preorder r -> equivalence (symmetrize r)

end

structure BinRel : BINREL = struct

type ’a t = ’a * ’a -> bool

fun symmetrize f (x,y) = f(x,y) andalso f(y,x)

end

Fig. 1. A structure of binary relations

Code synthesis of this kind is incomplete. Our synthesis algorithm can be
viewed as a well-directed search procedure that interrupts its search after a
certain time, possibly missing solutions that way.

A Further Benefit: Recognition of Semantic Errors. Because compo-
nent adaptation is based on behavioral specifications rather than just traditional
types, AxML will have another desirable effect: Sometimes a re-implementation
of a function changes its behavior but not its traditional type. When this hap-
pens, other parts of the system may behave incorrectly because they depended
on the old semantics. In traditional languages, such errors will not be reported by
the compiler. AxML, on the other hand, fails to synthesize code unless correct-
ness is guaranteed. Therefore, if behavioral changes due to re-implementations
are recorded in the interfaces, then AxML will fail to resynthesize requested code
if the changes result in incorrect program behavior. In this manner, the AxML
compiler reports incompatibilities of behavioral specifications.

2 An Overview of AxML

User-Introduced Predicate Symbols. AxML provides the programmer with
the facility to introduce new predicate symbols for use in specification axioms.
For example, the structure in Figure 1 introduces predicate symbols and func-
tions concerning binary relations. Predicates may have type parameters. Thus, a
predicate symbol does not denote just a single truth-valued function but an en-
tire type-indexed family. For example, linPreorder has one type parameter ’a.
In predicate specifications, the list of type parameters must be mentioned ex-
plicitly. The general form for predicate specifications is

pred ( a1, . . . , an) id : predty

where a1, . . . , an is a sequence of type variables, id is an identifier and predty is a
predicate type, i.e., a type whose final result type is prop. The parentheses that
enclose the type variable sequence may be omitted if the sequence consists of a
single type variable and must be omitted if the sequence is empty.



When a structure S is constrained by a signature that contains a specification
of a predicate symbol id, a new predicate symbol is introduced into the environ-
ment and can be referred to by the long identifier S.id. For instance, the structure
declaration in the example introduces the predicate symbols BinRel.linOrder,
BinRel.linPreorder, BinRel.preorder and BinRel.equivalence.

AxML permits the explicit initialization of type parameters for predicate
symbols. The syntax for initializing the type parameters of a predicate symbol
longid by types ty1, . . . , tyn is

longid at ( ty1, . . . , tyn )

The parentheses that enclose the type sequence may be omitted if the sequence
consist of a single type. For example, (BinRel.linPreorder at int) initializes
the type parameter of BinRel.linPreorder by the type int.

From AxML’s point of view, predicate specifications introduce uninterpreted
atomic predicate symbols. AxML synthesis is correct for any valid assignment of
meanings to predicate symbols. On the other hand, programmers that introduce
such symbols should have a concrete interpretation in mind. It is, of course,
important that different programmers agree on the interpretation. The interpre-
tations of the predicate symbols from the example are as follows:
((BinRel.linPreorder at ty) r) holds if and only if the relation r is a linear
preorder at type ty, i.e., it is reflexive, transitive and for every pair of values
(x, y) of type ty it is the case that either r(x, y) = true or r(y, x) = true.
Similarly, the interpretation of BinRel.linOrder is “is a linear order”, the in-
terpretation of BinRel.preorder is “is a preorder”, and the interpretation of
BinRel.equivalence is “is an equivalence relation”.

Formally, specification predicates are interpreted by sets of closed SML ex-
pressions that are closed under observational equality. For instance, it is not al-
lowed to introduce a predicate of type (int list -> int list) -> prop that
distinguishes between different sorting algorithms. All sorting algorithms are ob-
servationally equal, and, therefore, a predicate that is true for merge-sort but
false for insertion-sort, call it isInNlogN, is not a legal specification predicate.
The reader who is interested in a detailed treatment of the semantics of specifi-
cation formulas is referred to [7].

There is a built-in predicate symbol for observational equality. It has the
following type specification:

pred ’a == : ’a -> ’a -> prop

In contrast to user-introduced predicate symbols, == is an infix operator. The
AxML synthesizer currently treats == like any other predicate symbol and does
not take advantage of particular properties of observational equality.

Specification Axioms. Predicate symbols are turned into atomic specifica-
tion formulas by first initializing their type parameters and then applying them
to a sequence of terms. Here, the set of terms is a small subset of the set of SML
expressions. It consists of all those expressions that can be built from variables
and constants, using only function application, function abstraction, record for-
mation and record selection. The set of terms coincides with the set of those



SML expressions that may occur in synthesized transformations. Specification
formulas are built from atomic specification formulas, using the propositional
connectives and universal quantification. For example, if Int.even is a predi-
cate symbol of type int -> prop, then the following is a well-typed specification
formula:

fa x : int => Int.even ((fn y => y + y) x)

On the other hand, the following is not a specification formula, because the
argument of Int.even is not a term:

fa x : int => Int.even (let fun f x = f x in f 0 end)

A universally quantified formula is of one of the following three forms:

fa id : ty => F fa id : ([a1, . . . , an] . ty) => F fa a => F

where id is a value identifier, ty is a type, a, a1, . . . , an is a sequence of type or
equality type variables and F is a formula. The first two forms denote value quan-
tification and the third one type quantification. The expression ([a1, . . . , an] . ty)
denotes an SML type scheme, namely, the type scheme of all values that are
of type ty and polymorphic in the type variables a1, . . . , an. Quantification over
polymorphic values is useful, because it allows to express certain theorems —
so-called “free” theorems — that hold exactly because of the polymorphism [22].
Value quantification ranges over all values of the specified type or type scheme,
as opposed to all, possibly non-terminating, closed expressions.

Type parameters of atomic predicate symbols may be explicitly instantiated,
but they do not have to be. A formula where type instantiations are left implicit
is regarded as a shorthand for the formula that results from inserting the most
general type arguments that make the formula well-typed. For example,

fa f : ’a * ’a -> bool, xs : ’a list =>

BinRel.linOrder f ->

List.sorted f (sort f xs) & List.bagEq xs (sort f xs)

is a shorthand for

fa f : ’a * ’a -> bool, xs : ’a list =>

(BinRel.linOrder at ’a) f ->

(List.sorted at ’a) f (sort f xs) & (List.bagEq at ’a) xs (sort f xs)

Free type variables in formulas are implicitly all-quantified at the beginning of
the formula. Therefore, the previous formula expands to

fa ’a => fa f : ’a * ’a -> bool, xs : ’a list =>

(BinRel.linOrder at ’a) f ->

(List.sorted at ’a) f (sort f xs) & (List.bagEq at ’a) xs (sort f xs)



signature TABLE = sig

type (’’k,’v) t

val empty : (’’k,’v) t

val update : (’’k,’v) t -> ’’k -> ’v -> (’’k,’v) t

val lookup : (’’k,’v) t -> ’’k -> ’v option

axiom fa x : ’’k => lookup empty x == NONE

axiom fa x : ’’k, t : (’’k,’v) t, y : ’v =>

lookup (update t x y) x == SOME y

axiom fa x1,x2 : ’’k, t : (’’k,’v) t, y : ’v =>

Not (x1 == x2) -> lookup (update t x1 y) x2 == lookup t x2

end

Fig. 2. An interface of lookup tables

Example 1. The signature in Figure 2 specifies an abstract type t of lookup
tables. The type t has two type parameters, namely ’’k, the type of keys, and
’v, the type of values. Type variables that begin with a double prime range
over equality types only. Equality types are types that permit equality tests. For
example, the type of integers and products of equality types are equality types,
but function types are not. Elements of the datatype ’b option are either of the
form SOME x, where x is an element of type ’b, or they are equal to NONE. The
keyword Not denotes propositional negation.

Synthesis Requests. Synthesis requests are always surrounded by curly
braces. They come in three flavors: As requests for structure expressions, functor
bindings and structure level declarations. Thus, we have extended the syntax
classes of structure expressions, functor bindings and structure-level declarations
from the SML grammar [15] by the following three phrases:

strexp ::= . . . | { createstrexp }
funbind ::= . . . | { createfunbind }
strdec ::= . . . | { createstrdec }

The synthesis requests are of the following forms:

createstrexp ::= 〈fromAxioms axiomset〉 create sigexp
createfunbind ::= 〈fromAxioms axiomset〉 create funspec
createstrdec ::= 〈fromAxioms axiomset〉 create spec

The parts between the angle brackets 〈 〉 are optional. The syntax domains of
signature expressions sigexp and specifications spec are the ones from SML, but
enriched with axioms and predicate specifications. The domain funspec of functor
specifications is not present in SML. Functor specifications are of the form

funspec ::= funid ( spec ) : sigexp

where funid is a functor identifier. Axiom sets are lists of specification formu-
las, preceded by the keyword axiom, and structure identifiers, preceded by the
keyword structure. A structure identifier introduces into the axiom set all the
specification formulas that are contained in the structure that the identifier



signature TABLE’ = sig

type (’v,’’k) t

val empty : (’v,’’k) t

val update : (’v,’’k) t -> ’’k * ’v -> (’v,’’k) t

val lookup : ’’k -> (’v,’’k) t -> ’v option

axiom fa x : ’’k => lookup x empty == NONE

axiom fa x : ’’k, t : (’v,’’k) t, y : ’v =>

lookup x (update t (x,y)) == SOME y

axiom fa x1,x2 : ’’k, t : (’v,’’k) t, y : ’v =>

Not (x1 == x2) -> lookup x2 (update t (x1,y)) == lookup x2 t

end

Fig. 3. Another interface of lookup tables

refers to. (An axiom is contained in a structure if it is contained in its explicit
signature.)

When encountering a synthesis request, the AxML compiler creates a struc-
ture expression (respectively functor binding, structure level declaration) that
implements the given signature (respectively functor specification, specification).
The created implementation of the signature is guaranteed to be semantically
correct, provided that the environment correctly implements the axioms in ax-
iomset. A synthesis may fail for several reasons: Firstly, there may not exist a
structure expression that satisfies the given specification. Secondly, a structure
expression that satisfies the given specification may exist, but its correctness
may not be provable from the assumptions in axiomset. Thirdly, a structure ex-
pression that satisfies the given specification may exist and its correctness may
be provable from the given axiom set, but the synthesizer may not find it due
to its incompleteness.

Example 2. Figure 3 shows an interface of lookup tables that differs from the
one in Figure 2. The functions in the two signatures differ by type isomorphisms.
Moreover, the type parameters of the type t appear in different orders. Here is
a request for creation of a functor that transforms TABLE’ structures into TABLE
structures:

functor { create F ( structure T : TABLE’ ) : TABLE }

Here is the synthesized functor:

functor F ( structure T : TABLE’ ) : TABLE = struct

type (’’k,’v) t = (’v,’’k) T.t

val empty = T.empty

val update = fn t => fn x => fn y => T.update t (x,y)

val lookup = fn t => fn x => T.lookup x t

end

Note that this example demonstrates that AxML is capable of synthesizing type
definitions.



3 Synthesis Methods

This section gives an overview of the methods. Details can be found in [7]. Our
methods and the style of their presentation has been inspired by the description
of a λProlog interpreter in [14].

3.1 Sequent Problems

Synthesis requests get translated to sequent problems. A sequent problem is a
triple of the form

C; (∆ ` Θ)

where C is a problem context, and both ∆ and Θ are finite sets of formulas. The
problem context C is a list of declarations. A declaration assigns types schemes
to all value variables, and kinds to all type function variables that occur freely
in ∆ or Θ. Kinds specify the arity of type constructors. Typical kinds are the
kind type of types, the kind eqtype of equality types and type function kinds
like type→ type or eqtype→ type→ eqtype. For example, the kind of type
constructor t in Figure 2 is eqtype → type → type (which happens to have
the same inhabitants as type→ type→ type).

A declaration also tags each variable with either a ∀-symbol or an ∃-symbol.
These are just tags and are not to be confused with quantifiers in specification
formulas. Variables that are tagged by an ∃ are called existential variables and
variables that are tagged by a ∀ are called universal variables. Universal vari-
ables may be viewed as fixed parameters or constants. Existential variables, on
the other hand, are auxiliary variables that ought to be substituted. It is the goal
of our methods to replace the existential variables by terms that only contain uni-
versal variables. These substitution terms constitute the implementations of the
existential variables. The universal variables correspond to preexisting resources
that can be used in the synthesis and the existential variables correspond to the
values the user has requested to be synthesized. The order of declarations in the
variable context C is important because it encodes scoping constraints: Substi-
tution terms for an existential variable x may only contain universal variables
that occur before x in C.

Example 3. The sequent problem that results from translating the synthesis re-
quest from Example 2 has the shape (C; (∆ ` {F})), where ∆ is the set of all
specification axioms that are contained in signature TABLE’, F is the conjunc-
tion of all specification axioms that are contained in signature TABLE, and C is
the following problem context:

∀ T.t : type→ eqtype→ type,
∀ T.empty : (’v,’’k) T.t,
∀ T.update : (’v,’’k) T.t -> ’’k * ’v -> (’v,’’k) T.t,
∀ T.lookup : ’’k -> (’v,’’k) T.t -> ’v option,
∃ t : eqtype→ type→ type,
∃ empty : (’’k,’v) t,
∃ update : (’’k,’v) t -> ’’k -> ’v -> (’’k,’v) t,
∃ lookup : (’’k,’v) t -> ’’k -> ’v option



A sequent is a sequent problem whose problem context does not declare any
existential variables. A sequent (C; (∆ ` Θ)) is called valid iff for all interpreta-
tions of its universal variables by SML values, all interpretations of its universal
type function variables by SML type definitions and all interpretations of atomic
predicate symbols by specification properties, the following statement holds:

If all formulas in ∆ are true, then some formula in Θ is true.

A solution to a sequent problem P is a substitution s for the existential vari-
ables, such that the sequent that results from applying s to P and removing the
existential variables from P’s problem context is valid. Here is the solution to
the sequent problem from Example 3. The reader is invited to compare it to the
synthesized functor from Example 2.

t 7→ (λk.λv. T.t v k) lookup 7→ (fn t => fn x => T.lookup x t)
empty 7→ T.empty update 7→ (fn t => fn x => fn y => T.update t (x,y))

It is not hard to recover the SML expressions whose synthesis has been requested,
from a solution to the corresponding sequent problem. Therefore, the task that
our methods tackle is the search for solutions to a given sequent problem.

3.2 Search

Conceptually, the search can be split into four phases. However, in our imple-
mentation these phases interleave.

Phase 1: Goal-Directed Proof Search. The first phase consists of a
goal-directed search in a classical logic sequent calculus. Such a search operates
on a list of sequent problems — the list of proof goals — that share a common
problem context. It attempts to find a substitution that simultaneously solves
all of the goals. The rules of the sequent calculus decompose a proof goal into
a list of new proof goals. At some point of the search process, proof goals are
reduced to unification problems. This happens when both sides of a sequent
problem contain an atomic formula under the same atomic predicate symbol. In
this case, we reduce the problem to a unification problem by equating the types
and terms left of ` with the corresponding types and terms right of `.

C;
(

∆ ∪ {(P at (ty1, . . . , tyk)) M1 . . .Mn}
` Θ ∪ {(P at (ty ′1, . . . , ty

′
k)) M ′1 . . .M

′
n}

)
→ C;



ty1 = ty ′1
. . .

tyk = ty ′k
M1 = M ′1

. . .
Mn = M ′n


The system of equations has two parts — a system of type equations, and a
system of term equations. We are looking for a substitution that solves the type
equations up to βη-equality, and the term equations up to observational equality
in SML.

Phase 2: Unification up to βπ-Equality. It seems hopeless to come
up with a good unification procedure for SML observational equality, even for



the very restricted sublanguage of pure terms.3 Instead, we enumerate solutions
up to βπ-equality, where π stands for the equational law for record selection.
βπ-equality is not sound in a call-by-value language. Therefore, the substitu-
tions that get returned by βπ-unification will later be applied to the original
unification problems, and it will be checked whether they are solutions up to
observational equality (see Phase 4). For βπ-unification, we use a version of
Huet’s pre-unification procedure for simply typed λ-calculus [11]. A number of
extensions were necessary to adapt βπ-unification to our language:

First-Order Type Functions. Because our language has first-order type func-
tion variables, we need to use higher-order unification at the level of types. Type
unification problems that come up in practice are simple and fall into the class
of so-called (higher-order) pattern problems [14]. For these problems, unifiability
is decidable. Moreover, these problems have most general unifiers and there is
a terminating algorithm that finds them. Our implementation only attempts to
solve type unification problems that are pattern problems.4 If a type unifica-
tion problem is not a pattern problem, it is postponed. If it can’t be postponed
further, the synthesizer gives up.

The synthesizer never attempts to solve a term disagreement pair if there
are still unsolved type disagreement pairs in the system. This way, it avoids
an additional source of non-termination that results from the fact that terms
in a system with unsolved type disagreement pairs may be non-well-typed and,
hence, non-terminating.

Polymorphism. Higher-order unification in the presence of polymorphic uni-
versal variables has been described in [16]. In addition to polymorphic univer-
sal variables, we also allow polymorphic existential variables. In order to handle
them in a good way, we use an explicitly typed intermediate language in the style
of Core-XML [8]. For higher-order unification in an explicitly typed language,
the presence of type function variables is important. Type function variables
facilitate the “raising” of fresh type variables that get introduced into the scope
of bound type variables.

Record Types. We treat record types in a similar way as products types are
treated in [2].

No Extensionality Rules. Most extensions of higher-order unification to more
expressive languages than simply typed λ-calculus assume extensionality rules.
Extensionality rules simplify unification both conceptually and computationally.
Our unification procedure, however, does not use extensionality rules for func-
tions or records, because only very limited forms are observationally valid in a
call-by-value language like SML.

Phase 3: Enumerating Terms of Given Types. After unification, terms
may still have free existential variables. These variables need to be replaced by
terms that contain universal variables only. This is non-trivial, because the terms
must have correct types. We need a procedure that enumerates terms of a given
type in a given parameter context. By the Curry-Howard isomorphism, this is

3 Pure terms are those SML expressions that we permit as arguments for predicates.
4 In term unification, though, we also solve non-patterns.



achieved by a proof search in a fragment of intuitionistic logic. Because of the
presence of polymorphic types, this fragment exceeds propositional logic. Our
current experimental implementation uses a very simple, incomplete procedure.
Eventually, this procedure will be replaced by an enumeration procedure based
on a sequent calculus in the style of [10, 5].

Phase 4: Soundness Check for Observational Equality. After Phase 3,
we have found substitutions that solve the original sequent problems up to βπ-
equality. However, βπ-equality is not sound in a call-by-value language that
has non-termination, let alone side-effects. For example, the following β-equality
is not observationally valid, because the left hand side may not terminate for
certain interpretations of f by SML expressions:

(λx. 0) (f 0) = 0 (1)

The following β-equality is valid in functional SML but not in full SML including
side effects, because it does not preserve the execution order:

(λx. λy. f y x) (g 0) 0 = f 0 (g 0) (2)

Because βπ-equality is unsound in SML, the synthesizer applies the substitu-
tions that have been discovered in Phases 1 through 3 to the original unification
problems, and checks whether they solve them up to observational equality. For
this check, it uses two different procedures depending on which option it has
been invoked with. An option for functional SML guarantees correctness of the
synthesized code in a purely functional subset of SML. An option for full SML
guarantees correctness in full SML including side effects. Both checks are approx-
imative and may reject βπ-solutions unnecessarily. For full SML, the synthesizer
uses βvπv-equality (“beta-pi-value-equality”) [17]. βvπv-equality only allows β-
reductions if the argument term is a syntactic value. Applications are not syn-
tactic values. Therefore, Equation 1 is not a βvπv-equality. For functional SML,
it uses a strengthening of βvπv-equality. Under this stronger equality, certain
β-reductions that are not βv-reductions are allowed in equality proofs. Roughly,
β-reductions are allowed if the function parameter gets used in the function
body. Equation 2 holds with respect to this stronger equality.

4 Related Work

Language Design. The AxML specification language is inspired by and closely
related to EML (Extended ML) [12]. In style, AxML specification axioms re-
semble EML specification axioms. However, EML axioms have some features
that complicate the task of automatic component adaptation. For this reason,
AxML puts certain restrictions on specification formulas, that are not present in
EML. Most notably, whereas EML identifies specification formulas with expres-
sions of the SML type bool, AxML has an additional type prop for specification
formulas. As a result, AxML specification axioms come from a small, particu-
larly well-behaved language, whereas EML axioms include all SML expressions
of type bool. In particular, EML axioms may be non-terminating SML expres-
sions, whereas subexpressions of AxML axioms always terminate.



Automatic Retrieval, Adaptation and Composition. A closely related
field of research is the use of specifications as search keys for software libraries.
In library retrieval, it is generally desirable to search for components that match
queries up to a suitable notion of similarity, like for example type isomorphism.
Adaptation is necessary to overcome remaining differences between retrieved and
expected components. Because human assistance is assumed, semantic correct-
ness of the retrieved components is not considered critical in library retrieval.
As a result, much of the research in this field has focused on traditional type
specifications [18, 20, 4, 1]. Work on library retrieval that is based on finer se-
mantic specifications than traditional types includes [19, 6, 23]. All of these rely
on existing theorem provers to do a large part of the work. Hemer and Lindsay
present a general framework for lifting specification matching strategies from the
unit level to the module level [9]. The Amphion system [21, 13] is interesting
in that it does not only retrieve functions from libraries, but it also composes
them. There is a major difference between Amphion and our system: Whereas
in Amphion a pre-post-condition specification for a function of type (τ → τ ′) is
expressed as (∀x : τ.∃y : τ ′. pre(x) ⇒ post(x, y)), it is expressed in our system
as (∃f : τ → τ ′.∀x : τ. pre(x) ⇒ post(x, fx)).5 As a result, the most important
component of our synthesizer is a higher-order unification engine. Amphion, on
the other hand, uses a resolution theorem prover for (constructive) first-order
logic with equality.

5 Conclusion and Future Directions

We have enriched SML module interfaces by semantic specification axioms. We
have assembled methods for automatically recognizing similarities between en-
riched interfaces and for synthesizing adapters that bridge incompatibilities. The
use of uninterpreted predicate symbols prevents specification axioms from get-
ting too detailed, so that our incomplete methods terminate quickly and suc-
cessfully in many practical cases. The synthesized adapters preserve semantic
correctness, as opposed to just type correctness. They may contain higher-order
and polymorphic functions as well as parameterized type definitions.

In this paper, we have proposed to apply our methods for protecting evolving
software systems against interface changes. We hope that, in the future, our
methods can be extended and used in other ambitious applications:

Automatic Composition of Generic Library Functions. Standard li-
braries of modern programming languages often contain few, but very general,
functions that can be composed and specialized in a lot of useful ways. Examples
are I/O-primitives in standard libraries for Java or SML. The generality of such
functions keeps the libraries both small and powerful. However, it can also make
the functions hard to understand and difficult to use correctly. Programmers
have to grasp the library functions in their full generality in order to be able to
compose the special instances that they need. Even if they know in which mod-
ules of a library to look, naive programmers often find it hard to compose the
5 This is how Amphion represents specifications internally. Amphion has an appealing

graphical user interface.



library functions in the right way. Our hope is that, in the future, our methods
can be extended to automatically compose library functions, based on simple
semantic specifications given by the programmer. This kind of use puts a higher
burden on the synthesis algorithms, because it assumes that the naive program-
mer only understands a limited vocabulary. He possibly uses simpler and less
general atomic predicate symbols than the ones that are used in specifications of
library functions. As a result, additional axioms are needed so that the synthesis
tool can recognize the connection.

Automatic Library Retrieval. An interesting future direction is to extend
and use our methods in automatic library retrieval based on semantic specifica-
tions. The difficulty is that libraries are large, and, thus, contain a large number
of specification axioms. To deal with this difficulty, one could incorporate the
AxML synthesizer as a confirmation filter into a filter pipeline, as proposed in [6].
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