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Abstract

Previous methods have generally identified the location of a type error as a partic-
ular program point or the program subtree rooted at that point. We present a new
approach that identifies the location of a type error as a set of program points (a
slice) all of which are necessary for the type error. We identify the criteria of com-
pleteness and minimality for type error slices. We discuss the advantages of complete
and minimal type error slices over previous methods of presenting type errors. We
present and prove the correctness of algorithms for finding complete and minimal
type error slices for implicitly typed higher-order languages like Standard ML.
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1 Introduction

1.1 Previous Approaches to Identifying Type Error Locations.

There has been a large body of work on explaining type errors in implic-
itly typed, higher-order languages with let-polymorphism (Haskell, Miranda,
OCaml, Standard ML (SML), etc.) [29,22,21,32,31,3,5,11,2,17,10,23,33]. This
is harder than in monomorphic, explicitly typed, first-order languages. None
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of the previous work on this is entirely satisfactory. In particular, the previous
approaches do a poor job of identifying the location of type errors.

When the W [8], M [21], or the UAE [31,32] type inference algorithms are
used to identify the error location, the type inference algorithm traverses the
program’s abstract syntax tree and, when it fails, the node of the tree currently
being visited is blamed. The algorithms differ in how eagerly they check the
various type constraints, so they may fail at different nodes. In addition to the
confusion caused by blaming just one program node, user interfaces using the
results of these algorithms typically print the entire program subtree under
the node at which inference failed, so programmers may believe the entire
program subtree is being blamed rather than the root of the subtree. 1

As an example, consider the following SML program fragment:

val f = fn x => fn y => let val w = x + 1 in w::y end

This defines a function f such that the function call (f 1 [2]) should com-
pute the list [2,2]. Suppose the programmer erroneously typed the following
instead, making the error of typing y instead of x at the highlighted spot:

val f = fn x => fn y => let val w = y + 1 in w::y end

When using either W or UAE for the example, this error location is identified:

val f = fn x => fn y => let val w = y + 1 in w::y end

Although UAE was designed with the intention that unlike W it would blame
a location containing the error, it handles let-bindings in the same way as
W so it fails in the same way on this error. It has been proposed to use M
instead of W because this would yield more “accurate” error locations. For
the example, M identifies this error location:

val f = fn x => fn y => let val w = y + 1 in w::y end

This example illustrates the general fact that W , M, and UAE often fail to
identify the real location of the error. They identify one node of the program
tree which participates in the type error, but will often be the wrong node

1 Adding to the confusion, some user interfaces will, somewhat arbitrarily, identify
a node a bit higher in the program tree. For example, the SML/NJ compiler does
this in the numbers it emits for use in source code highlighting, because it does not
maintain source code location information for every node in the abstract syntax tree
that it manipulates internally. This appears to be because the human programmer
writes in a syntax containing “derived forms” and SML/NJ internally translates
this into the “bare language” before running type checking.
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to blame. These approaches also often identify program subtrees that include
many locations that do not participate in the type error, e.g., in the example
both W and UAE include the occurrence of w in the blamed subtree. This
problem can also happen for M in some cases, although it does not happen
as often. For W and M, in some sense this might not be wrong, because the
intention may be that only the root of the subtree is being blamed rather
that all of the nodes in the subtree, but the programmer may not always
understand this distinction.

Identifying only one node or subtree of the program as the error location
makes it difficult for programmers to understand type errors. To choose the
correct place to fix a type error, the programmer must find all of the other
program points that participate in the error. To find these program points,
the programmer must reconstruct the state of the type inference algorithm at
the time it failed, and then run the type inference algorithm backward. The
programmer must understand the type inference process and be able to run it
in their mind. Obviously, this can be mentally taxing, so it would be a good
idea to do this for the programmer and save them the effort.

1.2 A New Notion of Type Error Location.

In contrast, this paper locates errors not at single nodes or subtrees of the ab-
stract syntax tree, but at program slices. For the example, our implementation
finds this error location:

val f = fn x => fn y => let val w = y + 1 in w::y end

This correctly includes all of the parts of the program where changes can be
made to fix the type error. Importantly, it also correctly excludes all of the
parts of the program where changes can not fix the type error. The occurrences
of + and :: are highlighted differently to show they are the endpoints of a clash
between the int and list type constructors.

As an alternative, the erroneous slice of the program can be presented sepa-
rately by displaying a very small incomplete program that contains the same
type error as the source program, and nothing but this type error. In many
cases, this will make it easier for the programmer to understand the error,
especially when the error spans multiple source files. Here is actual output
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from our implementation in this style for the example: 2

type constructor clash, endpoints: int vs. list

(.. y => (.. y + (..) .. (..)::y ..) ..)

Formally, a type error slice is a set of program points. It is a complete repre-
sentation of a type error if these program points and the relationships between
the program points together guarantee that the program will have a type er-
ror. It is a minimal representation if none of these program points is irrelevant
for the type error. Examples of incomplete type error slices include the loca-
tions that are returned in most error messages of, for example, the SML/NJ
compiler. They consist of a single program point, namely the point where the
type inference algorithm detects a failure. This program point by itself does
not form a type error. As an example of an non-minimal type error slice, one
could take the entire program if it contains a type error. If the type error
locations produced by the W , M, or UAE algorithms are viewed as identify-
ing a program subtree rather than merely a node in the program tree (a view
encouraged by the way the location is typically presented to the user), then
they will usually be non-minimal.

1.3 Related Work.

Dinesh and Tip have applied slicing techniques for locating sources of type
errors [10]. Their techniques are applicable to explicitly typed languages. Their
approach depends on the fact that the type system can be expressed as a
rewrite system, and they use techniques for origin and dependency tracking
in rewrite systems to find error locations. Although type inference algorithms
for implicitly typed languages can be phrased as rewrite systems, a large part
of the rewrite rules would concern auxiliary functions, i.e., unification and
constraint solving. For this reason, we do not believe that a direct application
of Dinesh and Tip’s methods results in accurate location of type error sources
in languages depending on significant amounts of type inference.

Our work is based on what Damas called his “type inference system” [9].
Damas did not name this type system, so we call it Damas’s System T because
it is used with Damas’s algorithm T. This system has the same set of typable
expressions as the more widely known Hindley/Milner system, but instead

2 The output does not match what would be expected from the formalism presented
later in this paper, because our implementation is for a slightly richer language that
is closer to SML. The fn keyword is missing because SML has the match syntax.
That x is bound in a fn-match as opposed to a case-match is irrelevant for the
error.
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of using ∀-quantified types, allows multiple types in the type environments
for each free variable. This can be seen as using intersection types for free
variables and Damas’s System T can be seen as a restriction of a system
of rank-2 intersection types. Jim [16] has proposed using rank-2 intersection
types for accurate type error location. Bernstein and Stark [3] use Damas’s
System T for type error debugging of open terms.

Wand has presented an algorithm for finding the source of type errors in im-
plicitly typed languages [29]. Similar methods have been used by Duggan and
Bent [11]. Wand’s algorithm uses a modified unification procedure that keeps
track of constraint sets that have been used in the derivation of unsolvable
constraints. However, there is no attempt to present the corresponding pro-
gram slices and these constraint sets need not be minimally unsolvable. We
use a related but more carefully designed method as a subroutine. In addi-
tion, we minimize constraint sets and present the resulting minimal type error
slices. Our slices are minimal in the sense that the omission of further program
points yields a non-error. Johnson and Walz have a method which attempts
to choose the location to blame by counting the number of sites which prefer
one type over another [17].

Choppella and Haynes study type error diagnosis in a simply typed language
[7,6]. Unlike our work, they do not actually treat let-polymorphism. 3 They
propose to present type error locations as program slices, but have no notation
for slices. They present a graph-based unification framework, based on work by
Port [26], which could be used for finding minimal unsolvable constraint sets.
However, the diagnostic unification algorithm that is actually presented in [6]
only computes a single unsolvable constraint set that is not necessarily mini-
mal. In contrast, our algorithms are not graph-based but based on running a
unification algorithm multiple times. An advantage of our approach is simplic-
ity of presentation and implementation. Unlike Choppella and Haynes, we give
a detailed presentation of an algorithm that enumerates minimal unsolvable
constraint sets. Our algorithm quickly enumerates some minimal unsolvable
subsets of a given constraint set and is then cut off by a time limit. Our algo-
rithm is too expensive in practice for exhaustively enumerating all such sets;
solving this for practical cases will be difficult because the worst-case time
complexity for enumerating all such sets is intractable [30]. In some cases an
algorithm based on Port’s idea may find in a feasible time all minimal un-
solvable subsets for cases that arise in practice, whereas ours does not. In the
future, we may adopt an algorithm influenced by the one sketched by Port.

Heeren and others propose constraint-based type inference for improved type

3 Recent unpublished work by Choppella (mentioned by Choppella in verbal com-
munication) treats let-polymorphism using an approach that alternates between
generating and solving constraints.
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error messages [15,14,13]. They treat let-polymorphism, and their type system
has features both in the style of the Hindley/Milner system and Damas’s Sys-
tem T. In addition to equality constraints, their inference algorithm generates
type scheme instance constraints. As a result, the constraint solving order is
restricted. We believe that they could simplify their system and sometimes
permit more accurate error messages by removing the Hindley/Milner-style
features from their type system. They do not attempt to compute type error
slices.

MrSpidey is a static debugger for Scheme that is distributed with some ver-
sions of the DrScheme programming environment [12]. The debugger is based
on set-based flow analysis. It constructs and, on demand, displays parts of
flow graphs, and highlights critical program points at which runtime errors
may occur.

Much of the related work on type error analysis has been on sophisticated ways
for automatically generating type error explanations [5,11,23,29,33,2,22]. Such
explanations tend to be complicated and lengthy. We believe that it is most
important to accurately locate type errors, and display type error locations
in a user-friendly way. For understanding errors, programmers typically use
additional semantic knowledge that cannot be provided automatically anyway.
Our work is intended as a step in this direction.

1.4 Outline of Paper.

Section 2 informally discusses two larger examples. The remainder of the paper
is technical. Section 3 introduces some terminology. Section 4 gives an overview
of Damas’s System T. The methods for type error slicing proceed in three
steps. The first step consists of assigning constraints to program points. This
is described in section 5. The second step consist of finding minimal unsolvable
subsets in the set of all constraints. Section 6 describes algorithms for doing
this. It also contains an example that in the worst case the number of minimal
type error slices grows exponentially in the size of the program, which gives
support to our choice to only enumerate some of the error slices in a program.
Finally, section 7 describes how type error slices are computed from the results
obtained in the previous steps, and states a completeness and a minimality
theorem. These theorems are proved in appendix A. The completeness proof
is less straightforward than one might expect, because constraints that are
associated with variable binders may get lost as a result of slicing.
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val average = fn weight => fn list =>
let val iterator = fn (x,(sum,length)) =>

(sum + weight x, length + 1)
val (sum,length) = foldl iterator (0,0) list

in sum div length end

val find best = fn weight => fn lists =>
let val average = average weight

val iterator = fn (list,(best,max)) =>
let val avg list = average list
in if avg list > max then

(list,avg list)
else

(best,max)
end

val (best, ) = foldl iterator (nil,0) lists
in best end

val find best simple = find best 1

Fig. 1. An SML program with type error

1.5 Acknowledgments

We thank Sébastien Carlier for his help in making the web demonstration
interface and Greg Michaelson, Phil Trinder, and Jun Yang for stimulating
discussions.

2 Examples to Illustrate the Important Concepts

This section uses example erroneous SML programs together with the out-
put from our prototype type error slicing implementation to further explain
important concepts.

2.1 Complete and Minimal Error Regions and Slices

Consider the (erroneous) SML program in figure 1. It defines the three func-
tions average, find best and find best simple. The function average takes
a weight and a list, scales each list element by the weight and then computes
the average over the scaled list elements. The function find best uses the
average-function to find the list with the highest average in a list of lists.
Finally, the function find best simple specializes the function find best by
applying it to the identity weight. Scaling a list element by the identity weight
leaves the element fixed. Thus, find best simple simply finds the list with
the highest average in a list of lists. However, this program has a type error. A
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traditional compiler that uses algorithm W would identify the following error
region: 4

val average = fn weight => fn list =>
let val iterator = fn (x,(sum,length)) =>

(sum + weight x, length + 1)
val (sum,length) = foldl iterator (0,0) list

in sum div length end

val find best = fn weight => fn lists =>
let val average = average weight

val iterator = fn (list,(best,max)) =>
let val avg list = average list
in if avg list > max then

(list,avg list)
else

(best,max)
end

val (best, ) = foldl iterator (nil,0) lists
in best end

val find best simple = find best 1

This region is an incomplete representation of the actual type error, i.e., the
error cannot be explained by pointing to this region without referring to the
context. As a result, the error may have to be fixed somewhere outside the
highlighted region; the actual fix may leave the highlighted region unchanged.

The trouble with the program is that there is confusion whether the weight
is represented as an integer or as a function. In the body of average, the
parameter weight is applied to variable x and, thus, used as a function. On
the other hand, in the last line find best is applied to 1; an integer is passed to
its weight-parameter. Our prototype implementation highlights the following
error region:

val average = fn weight => fn list =>
let val iterator = fn (x,(sum,length)) =>

(sum + weight x, length + 1)
val (sum,length) = foldl iterator (0,0) list

in sum div length end

val find best = fn weight => fn lists =>
let val average = average weight

val iterator = fn (list,(best,max)) =>
let val avg list = average list
in if avg list > max then

(list,avg list)
else

(best,max)
end

val (best, ) = foldl iterator (nil,0) lists
in best end

val find best simple = find best 1

4 Algorithms M would identify only the 1 in the last line as the error region.
Algorithm UAE would identify the same location as algorithm W.
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Technically, the type error is a type constructor clash between a function
type constructor and the integer type constructor. The endpoints of this type
constructor clash are highlighted in a darker color. Our prototype also displays
an alternative representation of the type error location as a program slice,
where all irrelevant program points are omitted (sliced away):

type constructor clash, endpoints: function vs. int

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find best = fn weight =>
(.. average weight ..)

.. find best 1 ..)

The type error can be completely explained just by looking at the program
slice. The programmer can easily read the following explanation directly from
the slice:

The weight parameter of average is a function, because it is applied to some
argument. The weight parameter of find best must also be a function,
because it is passed to average. But, in the last line of the slice, find best

is applied to the integer 1, which is not a function.

Because this type error slice permits an independent explanation of the type
error without needing to refer to any other part of the program, we call it a
complete error representation. The slice is also a minimal error representation
because omitting additional program points would break the explanation.

2.2 Fix Location Depends on Semantics

If it is a goal that compilers report error regions that always include the loca-
tion that must be fixed (the fix location), then compilers should always report
complete error regions. Omitting program points from a complete region may
result in omitting the fix location. The fix location depends on the intended
semantics of a program, i.e., on what the programmer has in mind when de-
signing the program. Clearly, a compiler cannot read programmers’ minds.
Therefore, identifying complete error regions is the best a compiler can do. To
illustrate this point, let us consider possible fix locations in the example. One
possibility is that the programmer intended the weight to be an integer, not a
function, and, in the body of average, forgot a multiplication sign. The fixed
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slice would look like this: 5

(.. val average = fn weight =>
(.. weight * (..) ..)

.. val find best = fn weight =>
(.. average weight ..)

.. find best 1 ..)

We have highlighted the inserted multiplication sign. Another possibility is
that the programmer intended the weight to be a function and forgot about
it in the last line. In that case, the fix would replace the integer 1 in the last
line by the identity function:

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find best = fn weight =>
(.. average weight ..)

.. find best (fn x => x) ..)

Finally, it is possible that the programmer intended the weight parameter for
average to be a function, but the weight parameter for find best to be an
integer. This gives rise to another possible fix location:

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find best = fn weight =>
(.. average (fn x => weight * x) ..)

.. find best 1 ..)

2.3 Overlapping Error Regions

It is often the case that several complete error regions overlap. A single fix in
the overlapping region may fix all of the error regions at once. As an example,
consider the (erroneous) SML program in figure 2. In this example, it is likely
that in line 4 the programmer has forgotten to turn the element x into a one-
element list. Thus, in line 4, list @ x should be replaced by list @ [x]. 6

However, a traditional compiler that uses algorithm W identifies the following
error region, which does not contain this likely fix location, and the region

5 For space reasons, we argue in terms of the slice instead of the complete program.
6 In SML, @ is an infix operator that appends two lists.
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val mapActL = fn iterator => fn (list,state) =>
let val iterator’ = fn (x,(list,state)) =>

let val (x,state) = iterator (x,state)
in (list @ x, state) end

in foldl iterator’ (nil,state) list end

val isEven = fn n => n mod 2 = 0

val doubleOdds = fn list =>
let val iterator = fn (n,inc) => if isEven n then

(n, inc)
else

(2 * n, inc + n)
in mapActL iterator (list,0) end

Fig. 2. Another SML program with type error

identified by algorithm M is contained within the identified by W :

val mapActL = fn iterator => fn (list,state) =>
let val iterator’ = fn (x,(list,state)) =>

let val (x,state) = iterator (x,state)
in (list @ x, state) end

in foldl iterator’ (nil,state) list end

val isEven = fn n => n mod 2 = 0

val doubleOdds = fn list =>
let val iterator = fn (n,inc) => if isEven n then

(n, inc)
else
(2 * n, inc + n)

in mapActL iterator (list,0) end

In contrast, figure 3 shows two error regions produced by our prototype im-
plementation. The likely fix location is contained in both of the regions. Here
is a display of both regions in a single picture with the overlapping region
highlighted darker:

val mapActL = fn iterator => fn (list,state) =>
let val iterator’ = fn (x,(list,state)) =>

let val (x,state) = iterator (x,state)
in (list @ x, state) end

in foldl iterator’ (nil,state) list end

val isEven = fn n => n mod 2 = 0

val doubleOdds = fn list =>
let val iterator = fn (n,inc) => if isEven n then

(n, inc)
else

(2 * n, inc + n)
in mapActL iterator (list,0) end
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val mapActL = fn iterator => fn (list,state) =>
let val iterator’ = fn (x,(list,state)) =>

let val (x,state) = iterator (x,state)
in (list @ x, state) end

in foldl iterator’ (nil,state) list end

val isEven = fn n => n mod 2 = 0

val doubleOdds = fn list =>
let val iterator = fn (n,inc) => if isEven n then

(n, inc)
else

(2 * n, inc + n)
in mapActL iterator (list,0) end

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

val mapActL = fn iterator => fn (list,state) =>
let val iterator’ = fn (x,(list,state)) =>

let val (x,state) = iterator (x,state)
in (list @ x, state) end

in foldl iterator’ (nil,state) list end

val isEven = fn n => n mod 2 = 0

val doubleOdds = fn list =>
let val iterator = fn (n,inc) => if isEven n then

(n, inc)
else

(2 * n, inc + n)
in mapActL iterator (list,0) end

Fig. 3. Two overlapping error regions

Actually, there are more than just two error regions in this example; there are
four complete error regions altogether. The reader is invited to find the other
two regions using our web demonstration tool [4]. The likely fix location in
line 4 is contained in all of these regions and the fix in line 4 fixes all regions
at once. Informing the programmer of overlapping regions often helps to find
the fix location.

However, do not jump to the conclusion that the correct fix will always be
in the overlap. There is at least one common case where this does not hold:
when the programmer changed a data representation and failed to fix all of
the locations creating or using the data representation.
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l ∈ Label a fixed infinite set of labels

L ∈ LabelSet all finite subsets of Label

x ∈ Var a fixed infinite set of variables

n ∈ Int the set of integers

lexp ∈ LExp ::= xl | nl | (lexp + lexp)l | (fn xl => lexp)l

| (lexp lexp)l | (let val xl = lexp in lexp end)l

Restriction: The labels that occur in a labeled expression must be distinct.

Fig. 4. Labeled expressions

3 Some Definitions and Notations

This section defines some basic mathematical notions and notations. For each
natural number i, the symbol πi denotes the i-th projection operator, i.e., if
xs = 〈x1, . . . , xn〉 and i ∈ {1, . . . , n}, then πi(xs) = xi. If f is a function, then
f [x 7→ y] denotes the function (f \ {〈x, f(x)〉})∪{〈x, y〉}. If X is a set and →
is a subset of X ×X, then →∗ denotes its reflexive (w.r.t. X) and transitive
closure. An element x is called irreducible with respect to → iff there is no
element y such that x → y. If X is a set of sets, then min(X) denotes the
set of all elements of X that are minimal with respect to set inclusion. Two
sets are called incomparable iff neither of them is a subset of the other one. In
definitions of rewrite systems, we use a form of pattern matching. The symbol ·
denotes a wildcard and is matched by any element of the appropriate domain.
A disjoint union pattern is of the form pat1 ] pat2 and is matched by a set X
iff there are sets X1, X2 such that X1 ∪ X2 = X, X1 ∩ X2 = ∅, X1 matches
pat1 and X2 matches pat2. Usually, X matches pat1 ] pat2 in more than one
way.

4 Damas’s Type Inference System

For concreteness, we describe our methodology in detail for the small model
language shown in figure 4. The labels that superscript expressions mark pro-
gram points. The labeled expression language is a sublanguage of Standard
ML (SML) [24]. We have an implementation for a larger sublanguage of SML
[4].
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Γ[x 7→ ∧{ty , . . .}] ` xl : ty

Γ ` n : int

(Γ ` lexp1 : int) and (Γ ` lexp2 : int) ⇒ Γ ` (lexp1 + lexp2)l : int

Γ[x 7→ ∧{ty}] ` lexp : ty ′ ⇒ Γ ` (fn xl => lexp)l′ : ty -> ty ′

(Γ ` lexp1 : ty ′ -> ty) and (Γ ` lexp2 : ty ′) ⇒ Γ ` (lexp1 lexp2)l : ty

(S 6= ∅) and (∀ty ∈ S. Γ ` lexp : ty) and (Γ[x 7→ ∧S] ` lexp ′ : ty ′)

⇒ Γ ` (let val xl = lexp in lexp ′ end)l′ : ty ′

Fig. 5. Damas’s typing rules

Types are defined as follows:

ty ∈ Ty ::= a | int | ty -> ty ity ∈ IntTy ::= ∧S

a ∈ TyVar a fixed infinite set of type variables

S ∈ TySet the set of all finite subsets of Ty

The elements of IntTy are called intersection types. The symbol ∧ is syntax.
For example, ∧{a -> int, int -> a} ∈ IntTy. A type environment is a total
function from Var to IntTy. Let Γ range over Env, the set of all type environ-
ments. Let empty be the type environment that maps all variables to ∧{}.

Damas’s type inference system is defined in figure 5. We will call it Damas’s
System T because it is used with Damas’s algorithm T. It differs in the rule for
let-expressions from the Hindley/Milner system, which Damas called the “type
scheme inference system”. Whereas the Hindley/Milner system requires the
types of all occurrences of a let-bound variable to be substitution instances
of a common type scheme, System T does not require this. Damas showed
that the two approaches accept the same expressions. The following fact is a
variation of proposition 2 in Damas’s Ph.D. thesis [9, p. 85].

Fact 1 For closed lexp, (empty ` lexp : ty) iff lexp has type ty in SML. 7

We use System T, because it is good for accurately locating sources of type
errors. The use of closely related systems has been proposed previously for
type error analysis [3,16] as well as separate compilation [27,16].

7 Formally, some minor syntactic adjustments (omitted here) are needed to trans-
late lexp into an exp of the SML definition [24].
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5 Assigning Constraints to Program Points

This section explains how type constraints are assigned to program points. We
will define a function that maps labeled expressions to finite sets of type con-
straints. An expression is typable iff the associated constraint set is solvable.
The function also keeps track of the program point that imposes a particular
type constraint. This association between type constraints and program points
is important for locating type errors.

A labeled constraint is a triple 〈ty , ty ′, L〉, which will be written as ty =
L
== ty ′.

It expresses that the types ty and ty ′ need to be equal for the program to be
well-typed, and that this constraint has been jointly imposed by the program
points contained in L. A labeled constraint is called atomically labeled, iff L is
a one-element set. Initially, all constraints are atomically labeled, but during

constraint solving arbitrarily labeled constraints get generated. Let ty =
l
== ty ′

stand for ty =
{l}
== ty ′. Let C range over AtConstraintSet, the set of all finite sets

of atomically labeled constraints. Let D range over ConstraintSet, the set of all
finite sets of labeled constraints. A type substitution is a function from TyVar
to Ty.

Whenever a type substitution s is used in a position expecting a function from
Ty to Ty, then s is implicitly lifted (coerced) to be a function from Ty to Ty
such that for any type ty the function application s(ty) yields the result of
modifying ty by replacing each type variable occurrence a in ty by s(a).

A solution to a constraint ty =
L
== ty ′ is a type substitution s such that s(ty)

and s(ty ′) are equal. A solution to a set of constraints is a type substitution
that solves all constraints in the constraint set simultaneously. The projection

operator ΠL is defined by ΠL(C) = {(ty =
l
== ty ′) ∈ C | l ∈ L}. Let Πl stand for

Π{l}.

The total function ⇓ from LExp to Env×Ty×AtConstraintSet is defined as the
least relation that satisfies the rules in figure 6. This function is a variation
of Damas’s type assignment algorithm T. We use the term “fresh variant” of
an object involving type variables to denote the result of renaming the type
variables occurring in it by fresh type variables. We define (∧S) ∧ (∧S ′) =
∧(S ∪S ′). The operation ∧ on type environments is defined by (Γ∧Γ′) (x) =
Γ(x) ∧ Γ′(x). We define (∧S) ≥ (∧S ′) iff S ⊆ S ′, and Γ ≥ Γ′, iff Γ(x) ≥ Γ′(x)
for all x in Var. The following facts are variations of propositions 7 and 8 on
pages 39 and 44 in Damas’s Ph.D. thesis [9].

Fact 2 Suppose (lexp ⇓ 〈Γ, ty , C〉).

(1) If s is a solution of C, then (s(Γ) ` lexp : s(ty)).
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xl ⇓ 〈 empty[x 7→ ∧{ax}], a, {ax =l== a} 〉
where ax, a fresh

nl ⇓ 〈 empty, a, C0 〉
where a fresh, C0 = {int =l== a}

lexp1 ⇓ 〈Γ1, ty1, C1〉; lexp2 ⇓ 〈Γ2, ty2, C2〉

(lexp1 + lexp2)l ⇓ 〈 Γ1 ∧ Γ2, a, C0 ∪ C1 ∪ C2 〉

where a fresh, C0 = {ty1 =l== int, ty2 =l== int, int =l== a}

lexp ⇓ 〈Γ[x 7→ ∧S], ty , C〉

(fn xl => lexp)l′ ⇓ 〈 Γ[x 7→ ∧{}], a, C0 ∪ C 〉

where ax, a fresh, C0 = {ax =l== ty ′ | ty ′ ∈ S} ∪ { ax -> ty =l
′

== a }

lexp1 ⇓ 〈Γ1, ty1, C1〉; lexp2 ⇓ 〈Γ2, ty2, C2〉

(lexp1 lexp2)l ⇓ 〈 Γ1 ∧ Γ2, a, C0 ∪ C1 ∪ C2 〉

where a, a1, a2 fresh, C0 = { ty1 =l== a1 -> a2, ty2 =l== a1, a =l== a2 }

lexp1 ⇓ 〈Γ1, ty1, C1〉; lexp2 ⇓ 〈Γ2[x 7→ ∧{ty ′1, . . . , ty ′n}], ty2, C2〉

(let val xl = lexp1 in lexp2 end)l′ ⇓ 〈 Γ′
1 ∧ Γ2[x 7→ ∧{}], a, C0 ∪ C ′

1 ∪ C2 〉

where 〈Γ1,1, ty1,1, C1,1〉, . . . , 〈Γ1,k, ty1,k, C1,k〉 are fresh variants of 〈Γ1, ty1, C1〉,

k = max(n, 1), Γ′
1 = Γ1,1 ∧ . . . ∧ Γ1,k, C ′

1 = C1,1 ∪ . . . ∪ C1,k,

C = {ty1,1 =l== ty ′1, . . . , ty1,n =l== ty ′n}, a fresh, C0 = {a =l
′

== ty2} ∪ C

Fig. 6. Algorithm T

(2) If (Γ′ ` lexp : ty ′), then there is a solution s of C such that s(Γ) ≥ Γ′

and s(ty) = ty ′.

As an example, consider the following partially labeled expression. (We have
omitted all labels that are irrelevant for this example.)

lexp = (fn xl1 => f (xl2 0)l3 (xl4 + 0)l5)

Note that this expression has an obvious type error. The bound variable x is
used both as a function and as an integer. Formally, it is the case that (lexp ⇓
〈empty[f 7→ a], a′, C〉) for some type variables a, a′ and some constraint set C
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that has the following subset C ′:

C ′ = { a1 =
l2== a2, a2 =

l3== a3 -> a4, a5 =
l4== a6, a6 =

l5== int, a7 =
l1== a1, a7 =

l1== a5 }

It is not hard to see that C ′ is unsolvable. Moreover, it is minimally unsolv-
able, i.e., every proper subset of C ′ is solvable. As a type error message, our
implementation displays a program slice that contains all program points that
are associated with C ′. When applied to the declaration

val = fn x => f (x 0) (x + 0)

it displays a message like this one:

type constructor clash, endpoints: function vs. int

(.. fn x => (.. x (..) .. x + (..) ..) ..)

Unlike Damas’s original algorithm, in our variation of algorithm T every ex-
pression’s result type is a fresh type variable a equated to a type ty by a
separate constraint. The additional constraints and type variables are vital
for obtaining complete type error slices. For example, if the variable rule were
replaced by

xl ⇓ 〈empty[x 7→ ∧{ax}], ax, ∅〉
where ax fresh

then in the example the generated constraint set would not mention the labels
l2 or l4. Thus, these relevant program points would be wrongly omitted from
the type error location. The resulting type error slice would be incomplete:

(.. fn x => (.. (..) (..) .. (..) + (..) ..) ..)

The let-expression rule copies the constraint set C1 for lexp1 for each use of
the variable x in lexp2. In bad cases, the number of copies of a constraint set
can be exponential in the size of the program. Consider this example program:

let val x1 = lexp in

let val x2 = f x1 x1 in

...

let val xn = f xn−1 xn−1 in f xn xn end ... end
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The resulting constraint set contains 2n variants of lexp’s constraint set. Note,
however, that this family of expressions is notorious also for algorithm W : If
lexp = (fn x => x) and f’s type scheme is assumed to be (∀a.∀b. a -> b -> a -> b) 8 ,
then the principal type scheme of the entire expression contains 2(n+1) distinct
type variables. 9 Remember also that Hindley/Milner (SML) typability in our
small expression language is DEXPTIME-complete [18,20]. The bad example
above fortunately involves deep let-nesting that is rare in practice.

6 Finding Minimal Unsolvable Constraint Sets

We define a function that maps sets of atomically labeled constraints to sets

of associated labels by labels(C) = { l | (∃ty , ty ′)((ty =
l
== ty ′) ∈ C) }. A set of

labels L is called an error with respect to C iff C has an unsolvable subset
C ′ such that L = labels(C ′). We denote the set of all such errors by errors(C).
Moreover, minErrors(C) denotes the set of all those elements of errors(C) that
are minimal with respect to set inclusion.

This section shows how to find minimal errors in an unsolvable constraint set.
First, we present labeled unification, a vital tool used in this task. Then, we
present a greedy minimization algorithm that, given an unsolvable constraint
set C, finds a single element of minErrors(C). This algorithm is reasonably ef-
ficient for practical purposes. Finally, we show how to enumerate the elements
of minErrors(C). Unfortunately, it is not practical to always exhaustively enu-
merate all elements of minErrors(C), because this set has a worst-case size
exponential in the size of C [30]. However, we present a simple enumeration
algorithm that seems to always find a few good candidates for some (but
not all) minimal errors. These candidates are close to minimal and can be
minimized with the minimization algorithm.

6.1 Labeled Unification.

Our labeled unification algorithm is presented as a set of state transformation
rules in figure 7. These rules define the state transformation relation →. The
algorithm is similar to Wand’s algorithm [29]. Initial states are of the form
unify(C) and final states of the form Success(E ) or Error(L, l). Intermediate
states are of the form unify(C,E ) or unify(C,E ,D , l) where the state compo-

8 E.g., fn x => fn y => fn z => (fn v => y) (fn u => (u x) (u z z)).
9 This example does not work in SML because of its value polymorphism restriction
which only allows generalizing the types of syntactic values. To make this example
work in SML, η-expand by replacing each occurrence of f xi xi by fn z => f xi xi z.

18



nents are as follows:

C ∈ AtConstraintSet initial constraints not yet considered

E ∈ TyVar → ((Ty × LabelSet) ∪ {⊥}) environment of derived bindings

D ∈ ConstraintSet derived constraints, not yet bindings

l ∈ Label the label whose constraints are cur-
rently the focus of attention

If one ignores the labels, the labeled unification algorithm is just a variation
of transformation-based syntactic unification as presented, for instance, in [1],
chapter 4.6. The following proposition is a consequence of lemma 4.6.5 in [1].

Proposition 3 (Termination of unify) Each state transformation sequence
terminates. A state is irreducible iff it is a final state.

We define a function app that maps environments to partial functions from
Ty to Ty. Let the function app(E) be the least defined function such that:

app(E)(int) = int (1)
(E(a) = ⊥)⇒ (app(E)(a) = a) (2)

(E(a) = 〈ty ,L〉) ∧ (app(E)(ty) = ty ′)⇒ (app(E)(a) = ty ′) (3)
(app(E)(ty i) = ty ′i for i = 1, 2)⇒ (app(E)(ty1 -> ty2) = ty ′1 -> ty ′2) (4)

The function app(E) is a partial function for every E . Note that app(E) is
not always total, because rule 3 is not size decreasing — the variable a in this
rule may, for instance, occur in type ty . Environments E for which app(E) is
not total are not generated by our algorithms, so this issue is unimportant.
When app(E) is total, in fact its behavior as a function from Ty to Ty is the
same as the lifting to Ty to Ty of the substitution that results from app(E)
by restricting it to the domain TyVar. So in this case, we will implicitly treat
app(E) as though it were the substitution that results from restricting its
domain.

For type substitutions s and s′, their composition s′ ◦s is the type substitution
that satisfies (s′ ◦ s)(a) = s′(s(a)) for all type variables a. The identity sub-
stitution is denoted by id and is defined by id(a) = a for all type variables a.
A type substitution s is called a most general unifier (mgu) of C iff for every
solution s′ of C there exists a type substitution s′′ such that s′ = s′′ ◦s. Part 1
of the following theorem is a consequence of lemma 4.6.7 in [1]. Part 2 of the
theorem can be derived from lemmas 4.6.7 and 4.6.10 in [1].

Theorem 4 (Correctness of unify)

(1) If unify(C) →∗ Success(E), then app(E) is a total function and a most
general unifier of C.

19



(2) If unify(C) →∗ Error(L, l), then L ∈ errors(C) and L \ {l} 6∈ errors(C).

dummy is some arbitrarily chosen fixed label

Driver rules:

unify(C) → unify(C, (λa ∈ TyVar.⊥)) (1)
unify(C,E ) → unify(C,E , ∅, dummy) (2)

unify(∅, E, ∅, l) → Success(E) (3)
unify(C,E , ∅, l′) → unify(C \Πl(C),E ,Πl(C), l) if Πl(C) 6= ∅ (4)

Unification rules:

unify(C,E , {ty =L== ty} ]D , l) → unify(C,E ,D , l)

unify(C,E , {ty1 -> ty2 =L== int} ]D , l) → Error(L, l)

unify(C,E , {int =L== ty1 -> ty2} ]D , l) → Error(L, l)

unify(C,E , {int =L== a} ]D , l) → unify(C,E , {a =L== int} ∪D , l)

unify(C,E , {ty1 -> ty2 =L== a} ]D , l) → unify(C,E , {a =L== ty1 -> ty2} ∪D , l)

unify(C,E , {ty1 -> ty2 =L== ty ′1 -> ty ′2} ]D , l)

→ unify(C,E , {ty ′1 =L== ty1, ty2 =L== ty ′2} ∪D , l)

unify(C,E [a 7→ 〈ty ′,L′〉], {a =L== ty} ]D , l)

→ unify(C,E [a 7→ 〈ty ′,L′〉], {ty ′ =L∪L′
=== ty} ∪D , l)

unify(C,E [a 7→ ⊥], {a =L== ty} ]D , l)

→


unify(C,E [a 7→ 〈ty ,L〉],D , l) if occurs(E ,L, a, ty , 0) = ∅
Error(L′, l) if 〈L′, n〉 ∈ occurs(E ,L, a, ty , 0) and n ≥ 1
unify(C,E [a 7→ ⊥],D , l) otherwise

Occurs check:

occurs(E [a′ 7→ 〈ty ,L′〉],L, a, a′, n) = occurs(E [a′ 7→ 〈ty ,L′〉],L ∪ L′, a, ty , n)
occurs(E ,L, a, a, n) = {〈L, n〉}

occurs(E [a′ 7→ ⊥],L, a, a′, n) = ∅ if a 6= a′

occurs(E ,L, a, int, n) = ∅
occurs(E ,L, a, ty1 -> ty2, n) =

⋃
i=1,2

occurs(E ,L, a, ty i, n + 1)

Fig. 7. A non-deterministic labeled unification algorithm

If one ignores the labels, the labeled unification algorithm looks very much
like standard presentations of unification. Our version of the occurs check may
look a bit unfamiliar. Here is an explanation: occurs(E ,L, a, ty , 0) returns a
set of pairs of the form 〈L′, n〉. If 〈L′, n〉 ∈ occurs(E ,L, a, ty , 0), then there
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is an occurrence of type variable a in app(E )(ty) “under” n function type
constructors (and remember that this is the only type constructor in our small
model language). The occurs check succeeds iff either occurs(E ,L, a, ty , 0) is
empty (a does not occur in app(E )(ty)) or it only contains pairs of the form
〈L, 0〉 (a is equal to app(E )(ty)).

Note that the transformation system in figure 7 is non-deterministic. Arbitrary
choices can be used for the label l in driver rule 4, the constraint in each of
the unification rules and the label set L′ associated with the occurs check in
the error case of the last unification rule. Different choices may yield different
final results. This is not a surprise, because the label sets that get returned in
case of failure record parts of the histories of transformation sequences.

Example 5 C = { a1 =
l1== a2 -> a3, a2 =

l2== int -> a4,

a1 =
l3== (a5 -> (a6 -> a7)) -> int, a2 =

l4== a8 -> int }

Both unify(C) →∗ Error({l1, l2, l3, l4}, l4) and unify(C) →∗ Error({l1, l3, l4}, l4).
The first result is obtained, for instance, if the constraints are inspected in the
order l1, l2, l3, l4; the second result is obtained, for instance, if they are inspected
in the order l1, l3, l4. Note that this example shows that unify(C) →∗ Error(L, l)
does not imply that L is minimal.

Example 6 C = { a1 =
l1== a2 -> a3, a1 =

l2== (a4 -> (a5 -> a6)) -> int,

a1 =
l3== (a7 -> (a8 -> a9)) -> int, a2 =

l4== int -> int }

Then unify(C) →∗ Error({l1, l2, l4}, l4). The result is obtained, for instance, if
the constraints are inspected in the order l1, l2, l3, l4. Note that, although l3 is
inspected before the error is discovered, l3 is not an element of the return set.
It is also the case that unify(C) →∗ Error({l1, l3, l4}, l4). This result is obtained,
for instance, if the constraints are inspected in the order l1, l3, l2, l4. It happens
to be the case that minErrors(C) = {{l1, l2, l4}, {l1, l3, l4}}

6.2 Error Minimization.

Both our minimization and enumeration algorithms are based on the labeled
unification algorithm; they execute it multiple times on different subsets of the
initial constraint set. The minimization algorithm is based on the following
idea: If unify(C) →∗ Error(L, l), then L is an error and L \ {l} is not an error.
It follows that l is an element of every minimal error that is contained in L.
The minimization algorithm exploits this fact repeatedly to build a minimal
error.
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In figure 8, the algorithm is presented as a set of state transformation rules.
Initial states are of the form minimize(C,L, l). An initial state of this form is
called nice iff L ∈ errors(C) and L\{l} 6∈ errors(C). Final states are of the form
MinError(L). Intermediate states are of the form minimize(C, s,L, l,L′), where
s ranges over type substitutions. The intention is that, if minimize(C,L, l) is
nice and minimize(C,L, l) →∗ MinError(L′), then L′ is a minimal error of C
that is contained in L.

Lemma 7 If unify(C) →∗ Error(L, l), then l ∈ ⋂{L′ ∈ errors(C) L′ ⊆ L }.

Proof. Suppose, towards a contradiction, that L′ ⊆ L, L′ ∈ errors(C) and l 6∈
L′. Then L\{l} ∈ errors(C), because L′ ⊆ L\{l}. But also L\{l} 6∈ errors(C),
by theorem 4.

We will make use of the following standard property of most general unifiers.

Proposition 8 Suppose s is a mgu of C. Then the following statements hold:

(1) If s′ is a mgu of s(C ′), then (s′ ◦ s) is a mgu of C ∪ C ′.
(2) If s(C ′) is unsolvable, then so is C ∪ C ′.

Proof. Suppose s is a mgu of C.

Part 2: Let s0 be a solution of C ∪ C ′. We prove that s(C ′) is solvable, thus,
establishing part 2 of the lemma. Certainly, s0 is a solution of C. Thus, by
definition of mgu, there exists s1 such that s0 = s1 ◦ s. Now, s1 solves s(C ′),
because s1 ◦ s solves C ′.

Part 1: Let s′ be a mgu of s(C ′). Let s0 be a solution of C ∪ C ′. We need to
find s′′ such that s0 = s′′ ◦ (s′ ◦ s). By the same argumentation as in the proof
of part (2), there exists s1 such that s0 = s1 ◦ s and s1 solves s(C ′). Because
s1 solves s(C ′) and s′ is a mgu of s(C ′), there exists s′′ such that s1 = s′′ ◦ s′.
Then s0 = s1 ◦ s = (s′′ ◦ s′) ◦ s = s′′ ◦ (s′ ◦ s), by associativity.

Lemma 9 Suppose minimize(Cin ,Lin , lin) is nice and
minimize(Cin ,Lin , lin) →∗ minimize(C, s,L, l,L′). Then all of these hold:

(1) C = Cin , l ∈ L, lin ∈ L′, L ∩ L′ = ∅ and L ∪ L′ ⊆ Lin .
(2) s is a most general unifier of ΠL′(C).
(3) s(ΠL(C)) is not solvable.
(4) s(ΠL\{l}(C)) is solvable.

Proof. Each statement from part 1 is proved by induction on the length of the
transformation sequence. Part 2 is proved by induction on the length of the
transformation sequence, using theorem 4(1) and proposition 8(1). Parts 3
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minimize(C,L, l) → minimize(C, id,L, l, ∅)

unify( s(Πl(C)) ) →∗ Error(·, ·)

minimize(C, s,L, l,L′) → MinError(L′ ∪ {l})

unify( s(Πl(C)) ) →∗ Success(E0); s0 = app(E0) ◦ s;

unify( s0(ΠL\{l}(C)) ) →∗ Error(L0, l0)

minimize(C, s,L, l,L′) → minimize(C, s0,L0, l0,L′ ∪ {l})

Fig. 8. A non-deterministic error slice minimization algorithm

and 4 are proved by inspection of the last transformation rule, using theo-
rem 4(2).

Proposition 10 (Termination of minimize) Let minimize(C,Lin , lin) be nice.
Every transformation sequence starting from minimize(C,Lin , lin) terminates.
If minimize(C,Lin , lin) →∗ st, then st is irreducible iff it is a final state.

Proof. Transformation sequences terminate, because after the first step each
subsequent step decrements the size of the label set L. When considering arbi-
trary states of the form minimize(C, s, L, l, L′), including those not reachable
from nice initial states, the rules are non-exhaustive. Specifically, in the third
rule, it is conceivable that unify(s0(ΠL\{l}(C))) →∗ Success(·). We now show
that this is impossible for states reachable from nice initial states. First, we as-
sume that from the initial state we have reached the state minimize(C, s, L, l, L′):

(1) minimize(C,Lin , lin) →∗ minimize(C, s, L, l, L′) assumption

Next, we assume that the two first premises of rule 3 hold:

(2) unify(s(Πl(C))) →∗ Success(E0) assumption

(3) s0 = app(E0) ◦ s assumption

Then, we make the following assumption, towards a contradiction:

(4) unify(s0(ΠL\{l}(C))) →∗ Success(·) assumption

Now, by (2) and theorem 4(1), app(E0) is a mgu of s(Πl(C)). By (4) and the-
orem 4(1), s0(ΠL\{l}(C)) is solvable. Then, by proposition 8(1), s(ΠL(C)) is
solvable. But this contradicts lemma 9(3).

The following lemma is the key for the correctness of minimize.

Lemma 11 Suppose minimize(C,Lin , lin) is nice and minimize(C,Lin , lin) →∗
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minimize(C ′, s,L, l,L′). Then:

∀L0 ∈ errors(C). ((L0 ⊆ L ∪ L′) ⇒ (L′ ∪ {l} ⊆ L0))

Proof. By induction on the length of the transformation sequence. Suppose
minimize(C,Lin , lin) is nice.

Case, transformation sequence is of length 1: In this case, the transformation
sequence only uses rule 1:

(1) minimize(C,Lin , lin) → minimize(C, id,Lin , lin , ∅) assumption

(2) ∀L0 ∈ errors(C). ((L0 ⊆ Lin) ⇒ ({lin} ⊆ L0)) goal

But (2) holds, because (Lin \ {lin}) 6∈ errors(C), because we assumed that
minimize(C,Lin , lin) is nice.

Case, transformation sequence has a length of at least 2: In this case, the last
rule of the transformation sequence is rule 3. First, we assume that we have
reached a state minimize(C, s,L, l,L′):

(1) minimize(C,Lin , lin) →∗ minimize(C, s,L, l,L′) assumption

Next, we assume that the premises of rule 3 hold:

(2) unify(s(Πl(C))) →∗ Success(E0) assumption

(3) s0 = app(E0) ◦ s assumption

(4) unify(s0(ΠL\{l}(C))) →∗ Error(L0, l0) assumption

We need to show the following statement:

∀L′′ ∈ errors(C). ((L′′ ⊆ L0 ∪ (L′ ∪ {l})) ⇒ ((L′ ∪ {l}) ∪ {l0} ⊆ L′′))

To this end, we pick an arbitrary label set L′′ that satisfies the premise of the
implication:

(5) L′′ ∈ errors(C) assumption

(6) L′′ ⊆ L0 ∪ (L′ ∪ {l}) assumption

(7) L′ ∪ {l, l0} ⊆ L′′ goal

(8) L′ ∪ {l} ⊆ L′′ by ind. hyp. on (1)

(9) s0 is a mgu of (ΠL′∪{l}(C)) by lemma 9(2)

(10) L′′ \ (L′ ∪ {l}) ∈ errors(s0(ΠL\{l}(C))) by subproof below

Now, by lemma 7 and (4), l0 is an element of every error of s0(ΠL\{l}(C)) that
is contained in L0. By (10) and (6), (L′′ \ (L′ ∪ {l})) is such an error. Thus,
l0 ∈ L′′. From this and (8), it follows that L′ ∪ {l, l0} ⊆ L′′.
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Subproof of (10): Suppose, towards a contradiction, that (10) does not hold,
i.e., ΠL′′\(L′∪{l})(s0(ΠL\{l}(C))) is solvable. Note first that the following subset
inclusion holds:

(11) L′′ \ (L′ ∪ {l}) ⊆ L0 ⊆ L \ {l} by (6), (4)

Now, the following chain of equations holds:

ΠL′′\(L′∪{l})(s0(ΠL\{l}(C))) = s0(Π(L′′\(L′∪{l}))∩(L\{l})(C))

= s0(ΠL′′\(L′∪{l})(C))

The first of these equations follows from the definition of Π, the second one
holds by (11). Now, by proposition 8(1) and (9), it follows that ΠL′′(C) is
solvable. That contradicts (5).

Theorem 12 (Correctness of minimize) If minimize(C,Lin , lin) is nice and
minimize(C,Lin , lin) →∗ MinError(Lout), then Lout ∈ minErrors(C) and Lout ⊆
Lin .

Proof. Suppose minimize(C,Lin , lin) is nice and suppose minimize(C,Lin , lin) →∗

MinError(Lout). Then the last step of the transformation sequence must be an
instance of rule 2. Therefore, there are s, L, l, L′ such that:

(1) Lout = L′ ∪ {l}

(2) minimize(C,Lin , lin) →∗ minimize(C, s, L, l, L′)

(3) minimize(C, s, L, l, L′) → MinError(Lout)

(4) unify(s(Πl(C))) →∗ Error(·, ·)
By (2) and lemma 9(1), Lout = L′∪{l} ⊆ Lin . We show that Lout ∈ errors(C):

(5) s is a mgu of (ΠL′(C)) by (2), lemma 9(2)

(6) {l} ∈ errors(s(C)) by (4)

(7) Lout = L′ ∪ {l} ∈ errors(C) by (5), (6), proposition 8(2)

It remains to show that Lout is minimal. To this end, let L0 ∈ errors(C) and
L0 ⊆ Lout . Then Lout = L′ ∪ {l} ⊆ L0, by lemma 11 and (2).

The transformation sequence minimize(C,L, l) →∗ MinError(L′) requires at
most 2n calls to the labeled unification algorithm, where n is the size of ΠL(C).
In the worst case, our labeled unification algorithm takes exponential time in
the size of the constraint set, but linear time unification algorithms exist that
can be adapted to perform the same role. Using a linear time unification
algorithm, minimization would take quadratic time in the size of ΠL(C). We
apply the minimization algorithm only to label sets L that are returned by
an initial run of labeled unification. Even for large input programs we expect
these label sets, and also ΠL(C), to be small.
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6.3 Error Enumeration.

Enumerating all minimal errors is harder than finding just one. In the worst
case, the number of minimal errors is exponential in the size of the constraint
set. Wolfram has shown this for arbitrary constraint sets [30]. The following
example shows that this worst case behavior comes up for constraint sets that
have been generated by algorithm T. Note that the example does not use type
polymorphism, i.e., there are no let-expressions.

Example 13 (An exponentially sized set of minimal errors)
The following expression has 2n distinct minimal errors.

fn x0 => . . . fn xn => fn f1 => . . . fn fn =>

fn g1 => . . . fn gn => fn y1 => . . . fn y2n =>

u lexp1 . . . lexpn (xn x0)

where, for each k in {1, . . . , n}, lexpk is defined by

lexpk = zk (fk xk−1) (gk xk) (fk y2k−1) (gk y2k−1) (fk y2k) (gk y2k)

Each minimal error contains all program points that are associated with the
following program slice. (This program slice itself is not an error, though.)

fn x0 => . . . fn xn => fn f1 => . . . fn fn =>

fn g1 => . . . fn gn =>

(.. sl1 . . . sln .. (xn x0) ..)

where, for each k in {1, . . . , n}, slk is

slk = (.. (fk xk−1) .. (gk xk) ....)

These program points impose the following type constraints for each k in
{1, . . . , n}.

(1) argument type of fk = type of xk−1

(2) argument type of gk = type of xk

In addition, for each k in {1, . . . , n}, each minimal type error contains exactly
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one of the following two sets of program points:

.. fn y2k−1 => (.. (fk y2k−1) .. (gk y2k−1) ..) ..

or

.. fn y2k => (.. (fk y2k) .. (gk y2k) ..) ..

Each one of these forces the following type constraint:

(3) argument type of fk = argument type of gk

Note, that there are 2n possibilities for picking these n additional sets of pro-
gram points. From (1), (2) and (3), it follows that x0 and xn must have iden-
tical types. But then (xn x0) is not well-typed.

For error enumeration, we use a simple algorithm that quickly finds a number
of different errors that are close to minimal. In principle (but not in practice),
this algorithm eventually returns the set of all minimal errors. However, we
interrupt its execution after a short time. The interrupted algorithm returns
an intermediate state that contains a list of candidates. These candidates are
errors that are not guaranteed to be minimal yet. However, they are close
to minimal and the minimization algorithm can be used to minimize them.
Our algorithm has the property that it finds a few minimal errors fast, at
the expense of behaving badly in the hypothetical limit case. 10 We think
that in practice it is not a problem that our algorithms find only some of the
minimal error slices of a program. Many of today’s compilers report only a
few type errors at a time. Even if they do report many type errors at once,
most programmers correct only few of the reported errors before they try to
recompile.

The (previously defined) function minErrors satisfies the following equations:

If unify(C) →∗ Success(·): minErrors(C) = ∅

If unify(C) →∗ Error(L, ·):

minErrors(C) = min(
⋃ { minErrors(Πlabels(C)\{l}(C)) | l ∈ L } ∪ {L})

A recursive implementation of these equations rediscovers identical errors
many times. For instance, if unify(C) →∗ Error(L, ·) and L′ is a minimal error of

10 An example of an algorithm that “behaves well” in the hypothetical limit case,
but may often not even find a single minimal error in reality because of time or
space limits, is a breadth-first exploration of all possible transformation sequences
of labeled unification.

27



enum(C) → enum(C, ∅, {∅}); enum(C, found , ∅) → MinErrors(found)

unify(Πlabels(C)\L(C)) →∗ Success(·)

enum(C, found , {L} ] todo) → enum(C, found , todo)

unify(Πlabels(C)\L(C)) →∗ Error(L′, ·); insertError(L′, found) = found1;

insertTodos(distribute(L′,L), todo) = todo1

enum(C, found , {L} ] todo) → enum(C, found1, todo1)

insertError(L, found) =def==

 found , if (∃L′ ∈ found)(L′ ⊆ L)

{ L′ ∈ found | L 6⊆ L′ } ∪ {L}, otherwise

insertTodos(Ls, todo) =def== todo ∪ { L ∈ Ls | (∀L′ ∈ todo)(L′ 6⊆ L) }

distribute(L′,L) =def== { {l′} ∪ L | l′ ∈ L′ }

Fig. 9. A non-deterministic error slice enumeration algorithm

C that is contained in (labels(C)\L), then L′ gets returned by each one of the
recursive calls. Our enumeration algorithm suffers from such recomputations.
For that reason, the algorithm is impractical for exhaustively enumerating all
minimal errors, even in cases where minErrors(C) is small. The algorithm in
figure 9 is essentially an iterative version of the above recurrences presented as
a set of state transformation rules. Initial states are of the form enum(C) and
final states of the form MinErrors(Ls), where Ls is a set of pairwise incompara-
ble label sets. Intermediate states are of the form enum(C, found , todo) where
both found and todo are sets of pairwise incomparable label sets. At each
state, the set found contains close approximations of some minimal errors of
C (“candidate set”). Members of the set todo represent work items that still
need to be done (“to-do set”). Specifically, for each label set L in the to-do
set, the minimal errors that are contained in (labels(C) \ L) still need to be
found. We usually interrupt the execution of enum(C) before it terminates,
but only after it has found at least one error. In this case, the elements of the
current found -set get minimized and then returned.

Proposition 14 (Termination of enum) Each state transformation sequence
terminates. A state is irreducible iff it is a final state.

Proof. First, one proves the following by induction on the length of the trans-
formation sequence: If enum(C) →∗ enum(C, found , todo), then the elements of
todo are pairwise incomparable with respect to subset inclusion. Let ↓(todo) =
{L | (∃L′ ∈ todo)(L ⊆ L′)}. Fix C and let P be the powerset of labels(C).

28



Let f(todo) = P\ ↓ (todo). Suppose that elements of todo are pairwise in-
comparable with respect to subset inclusion. Then the following statements
hold.

(1) If f(todo) = ∅, then every transformation sequence starting from state
enum(C, found , todo) terminates in minErrors(found).

(2) If f(todo) 6= ∅ and enum(C, found , todo) → enum(C, found ′, todo ′), then
f(todo ′) is a proper subset of f(todo).

Theorem 15 (Correctness of enum) If enum(C) →∗ MinErrors(Ls), then
Ls = minErrors(C).

Proof. Let enum(C) →∗ enum(C, found , todo). One shows the following state-
ments, separately, by induction on the length of the transformation sequence:

(1) Elements of found are pairwise incomparable with respect to subset in-
clusion.

(2) minErrors(C) = min(found ∪ ⋃{minErrors(Πlabels(C)\L(C)) | L ∈ todo})

Correctness now follows by inspection of the last transformation rule.

7 Slicing the Program

Figure 10 defines the abstract syntax class of slices. The grammar for sl in
figure 10 extends the labeled expression grammar for lexp in figure 4 by the
additional phrase dots(sls), where sls is a (possibly empty) finite sequence of
slices. A dots-node in a slice’s abstract syntax tree represents an irrelevant
segment of the corresponding program’s abstract syntax tree. Our experimen-
tal implementation displays dots(sl1, sl2, sl3) as:

(.. sl1 .. sl2 .. sl3 ..)

For instance, the type error slice

fn xl1 => dots( (xl2 dots())l3 , (xl4 + dots())l5 )

computed for the erroneous program from section 5 is displayed as:

fn x => (.. x (..) .. x + (..) ..)

Figure 10 defines additional typing rules for slices. A slice of the form dots(sl1,
. . . , slk) is typable using type assumptions Γ with any result type iff sl1 through
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sls ∈ set of finite sequences of slices

vsl ∈ VarSlice ::= xl | dots()

sl ∈ Slice ::= xl | nl | (sl + sl)l | (fn vsl => sl)l (sl sl)l |

(let val vsl = sl in sl end)l | dots(sls)

Typing rules

(∀i ∈ {1, . . . , k}. Γ ` sl i : ty i) ⇒ (Γ ` dots(sl1, . . . , slk) : ty)

(Γ ` sl : ty ′) ⇒ (Γ ` (fn dots() => sl)l : ty -> ty ′)

(Γ ` sl ′ : ty ′) and (Γ ` sl : ty) ⇒ (Γ ` (let val dots() = sl ′ in sl end)l : ty)

Algorithm T

sl i ⇓ 〈Γi, ty i, Ci〉 for i in {1, . . . , k}; a fresh

dots(sl1, . . . , slk) ⇓ 〈 Γ1 ∧ . . . ∧ Γk, a, C1 ∪ . . . ∪ Ck 〉

sl ⇓ 〈Γ, ty , C〉; a, a′ fresh

(fn dots() => sl)l ⇓ 〈Γ, a, {a′ -> ty =l== a} ∪ C 〉

sl1 ⇓ 〈Γ1, ty1, C1〉; sl2 ⇓ 〈Γ2, ty2, C2〉; a fresh; C0 = {a =l== ty2}

(let val dots() = sl1 in sl2 end)l ⇓ 〈 Γ1 ∧ Γ2, a, C0 ∪ C1 ∪ C2 〉

Fig. 10. Additional rules for slices

slk are typable using Γ. The typing rules for other phrases are omitted, because
they are the same as for expressions (see figure 5). Figure 10 also extends
algorithm T. We need this extension in order to formulate a statement that
relates erroneous programs to their type error slices. The rule for dots-phrases
does not generate any additional constraints. It merely propagates recursively
computed results. The rules for other phrases are omitted, because they are
exactly as in figure 6. Figure 11 defines the function slice which takes a label
set L and a labeled expression lexp and returns a slice. This function replaces
each node of lexp’s syntax tree by dots, if its node label is not in L. It uses
the auxiliary function mask(sls), which, roughly speaking, returns dots(sls)
but also flattens immediately nested dots on the fly. As a result of flattening,
slice(L, lexp) does not have immediately nested dots.
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lexp ↓L sl

slice(L, lexp) = sl

l ∈ L

xl ↓L xl

l 6∈ L

xl ↓L mask()

l ∈ L

nl ↓L nl

l 6∈ L

nl ↓L mask()

lexp1 ↓L sl1; lexp2 ↓L sl2; l ∈ L

(lexp1 + lexp2)l ↓L (sl1 + sl2)l

lexp1 ↓L sl1; lexp2 ↓L sl2; l 6∈ L

(lexp1 + lexp2)l ↓L mask(sl1, sl2)

xl1 ↓L vsl ; lexp ↓L sl ; l1 ∈ L or l2 ∈ L

(fn xl1 => lexp)l2 ↓L (fn vsl => sl)l2

lexp ↓L sl ; l1 6∈ L and l2 6∈ L

(fn xl1 => lexp)l2 ↓L mask(sl)

lexp1 ↓L sl1; lexp2 ↓L sl2; l ∈ L

(lexp1 lexp2)l ↓L (sl1 sl2)l

lexp1 ↓L sl1; lexp2 ↓L sl2; l 6∈ L

(lexp1 lexp2)l ↓L mask(sl1, sl2)

xl1 ↓L vsl ; lexp1 ↓L sl1; lexp2 ↓L sl2; l1 ∈ L or l2 ∈ L

(let val xl1 = lexp1 in lexp2 end)l2 ↓L (let val vsl = sl1 in sl2 end)l2

lexp1 ↓L sl1; lexp2 ↓L sl2; l1 6∈ L and l2 6∈ L

(let val xl1 = lexp1 in lexp2 end)l2 ↓L mask(sl1, sl2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

mask() = dots()

(∀sls ′)(sl 6= dots(sls ′)); mask(sls) = dots(sls ′′)

mask(sl , sls) = dots(sl , sls ′′)

mask(sls) = dots(sls ′′)

mask(dots(sls ′), sls) = dots(sls ′, sls ′′)

Fig. 11. Slicing
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The function slice constitutes the last phase of our type error slicing method.
To summarize, our method consists of the following three phases:

(1) Compute a type constraint set C for the input program lexp using algo-
rithm T from figure 6.

(2) Find minimal error sets L of the constraint set C, using a combination
of the algorithms from figures 9 and 8, as described in the beginning of
section 6.

(3) Use the function from figure 11 to compute type error slices slice(L, lexp).

It is a consequence of the following completeness theorem that slices that are
computed in this way are untypable.

Theorem 16 (Completeness) If (lexp ⇓ 〈·, ·, C〉), L ∈ minErrors(C)
and (slice(L, lexp) ⇓ 〈·, ·, C ′〉), then L ∈ errors(C ′).

Let @ be the least contextually closed and transitive relation on slices satis-
fying the axioms below. Informally, sl1 @ sl2 iff sl1 is obtained from sl2 by
masking some of sl2’s syntax nodes. We say that sl1 is a proper slice of sl2 iff
sl1 @ sl2.

dots() @ xl;

dots() @ nl;

dots(sl1, sl2) @ (sl1 + sl2)
l;

dots(sl) @ (fn dots() => sl)l;

dots(sl1, sl2) @ (sl1 sl2)
l;

dots(sl1, sl2) @ (let val dots() = sl1 in sl2 end)l;

dots(sls1, sls2, sls3) @ dots(sls1, dots(sls2), sls3)

The axiom dots() @ xl may be applied both if xl is an expression and if xl is
a variable binder. For instance, the following three slices

sl1 = fn x => (.. x (..) .. (..) + (..) ..)

sl2 = fn x => (.. x (..) ..)

sl3 = fn (..) => (.. x (..) .. x + (..) ..)

are all proper slices of sl4.

sl4 = fn x => (.. x (..) .. x + (..) ..)

Note that all of sl1, sl2 and sl3 are typable, whereas sl4 is not. In fact, all proper
slices of sl4 are typable — sl4 is a minimal untypable slice. It is a consequence
of the following minimality theorem that all slices that are computed by our
type error slicing method are minimally untypable in this way.
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Theorem 17 (Minimality) If (lexp ⇓ 〈·, ·, C〉), L ∈ minErrors(C), all bound
variables in slice(L, lexp) are distinct and sl @ slice(L, lexp), then sl is typable.

In the minimality theorem, the condition that all bound variables are distinct
is needed. To see this, consider the following expression:

fn x => ((fn x => x 1) x (x + 1))

Our methods compute the following type error slice:

sl5 = fn x => (.. (fn x => x (..)) x .. x + (..) ..)

However, sl5 is not minimally untypable, because sl6 @ sl5 and sl6 is unty-
pable.

sl6 = fn x => (.. (fn (..) => x (..)) x .. x + (..) ..)

sl6 differs from sl5 only because the inner variable binder has been masked.
This causes the occurrence of x in the inner function body to now be bound
to the outer variable binder. We cannot expect a minimality theorem without
a precondition on distinctness of bound variables, if our definition of @ allows
independent masking of bound variables. We have to live with this slight
cosmetic shortcoming, and we do not propose to α-convert type error slices,
because this would create great confusion to programmers in most cases.

8 Conclusion and Future Work

We have introduced the notion of type error slices as sets of program points.
We have defined the criteria of completeness and minimality of type error
slices, and explained why these criteria are useful. We have illustrated using
the output of our prototype type error slicing implementation how type error
slices can be presented either by highlighting the points in the context of the
full program or by presenting an incomplete program which omits program
points not in the set. We have presented algorithms for type error slicing in
an implicitly typed λ-calculus with let-polymorphism. These algorithms first
generate type equality constraints using a version of Damas’s type inference
algorithm T, and then find minimal unsolvable subsets of the set of generated
constraints. We have shown that the computed type error slices are both
complete and minimal.

In the future, we want to extend our implementation of type error slicing to
full SML and improve its user interface. The user interface will both highlight
program points in the source code and display separate type error slices. The
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separate slices will be especially useful, if relevant program points are far
apart, possibly in multiple files. Hyperlinks will relate program points in the
separate slice to the corresponding points in the source. The extension to full
SML will require the treatment of additional issues. For instance, the presence
of equality types and overloaded built-in operations requires an additional
sort of constraints: kind constraints for type variables. Another important
issue is explicit type annotations. These will put natural boundaries on type
error slices. For instance, if library modules are always annotated with explicit
signatures (module types), then type error slices for programs that use the
library will never contain parts of the library implementation.

A Completeness and Minimality

A.1 An Auxiliary Relation

In this appendix, we prove completeness and minimality of slicing, as stated
in theorems 16 and 17. Both completeness and minimality would be obvious
if the following were true for all label sets L:

If (lexp ⇓ 〈Γ, ty , C〉) and (slice(L, lexp) ⇓ 〈Γ′, ty ′, C ′〉), then C ′ contains a
variant of ΠL(C).

Unfortunately, this statement does not hold, because constraints associated
with variable binders may get lost. Take, for instance, lexp = (fn xl1 => xl2)l3

and L = {l1, l3}. Suppose (lexp ⇓ 〈Γ, ty , C〉) and (slice(L, lexp) ⇓ 〈Γ′, ty ′, C ′〉).
Then C contains a constraint labeled by l1, saying that the type of binder xl1

must equal the type of expression xl2 . On the other hand, C ′ does not contain
a constraint labeled by l1. The key to completeness and minimality is that, if
L is a minimal error, then C ′ will still contain all constraints that are relevant
for the error: No relevant constraints get lost when slicing by a minimal error.

As a technical device, we introduce an auxiliary relation ⇓•, which is closely
related to ⇓. It is defined in figure A.1 by stating the modifications to ⇓’s rules.
If (lexp ⇓ 〈Γ, ty , C〉), then the relation ⇓• applied to lexp non-deterministically
generates subsets of C. Note, however, that not all subsets of C can be gen-
erated.

Lemma 18 (Key lemma for completeness and minimality) If (lexp ⇓
〈Γ, ty , C〉) and Cmin is a minimally unsolvable subset of C, then there are
Γ•, ty•, C• such that (lexp ⇓• 〈Γ•, ty•, C•〉), Cmin ⊆ C• and labels(C•) =
labels(Cmin).

34



The variable rule is replaced by the following two rules:

xl ⇓• 〈empty, a, {}〉
where a fresh

xl ⇓• 〈empty[x 7→ ∧{ax}], a, {ax =l== a}〉
where ax, a fresh

Modified side condition in function abstraction rule:

{ax =l== ty | ty ∈ S} ⊆ C0 ⊆ {ax =l== ty | ty ∈ S} ∪ { ax -> ty =l
′

== a }

instead of

C0 = {ax =l== ty | ty ∈ S} ∪ { ax -> ty =l
′

== a }

Modified side condition in let-expression rule:

C ⊆ C0 ⊆ C ∪ {a =l
′

== ty2}

instead of

C0 = C ∪ {a =l
′

== ty2}

Modified side condition in all other rules:

(C0 ⊆ · · ·) instead of (C0 = · · ·)

Fig. A.1. System ⇓•, the modifications to ⇓’s rules

We postpone the proof of this lemma. Let C . C ′ iff C ′ has a subset that is
equal to C up to renaming of type variables.

Lemma 19 (Key property of ⇓•) Suppose (lexp ⇓• 〈Γ•, ty•, C•〉), (lexp ⇓
〈Γ, ty , C〉) and L = labels(C•). Then there exists C ′ such that (slice(L, lexp) ⇓
〈Γ•, ty•, C ′〉), C• ⊆ C ′ . C and L = labels(C ′).

Proof. By induction on the structure of lexp. It is important that the generated
environment Γ• is the the same for lexp and slice(L, lexp). This is the reason
why we can get the induction working for the variable binding constructors,
i.e., function abstractions and let-expressions.
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A.2 Completeness

Theorem 20 (Completeness) If (lexp ⇓ 〈Γ, ty , C〉), L ∈ minErrors(C) and
(slice(L, lexp) ⇓ 〈Γ′, ty ′, C ′〉), then L ∈ errors(C ′).

Proof. Suppose (lexp ⇓ 〈Γ, ty , C〉), L ∈ minErrors(C) and (slice(L, lexp) ⇓
〈Γ′, ty ′, C ′〉). Then C has a minimal unsolvable subset Cmin such that L =
labels(Cmin). By lemma 18, there are Γ•, ty•, C• such that (lexp ⇓• 〈Γ•, ty•, C•〉),
Cmin ⊆ C• and L = labels(C•). Then, by lemma 19, there is C ′′ such that
C• ⊆ C ′′, L = labels(C ′′) and (slice(L, lexp) ⇓ 〈Γ•, ty•, C ′′〉). Then C ′′ is un-
solvable, because Cmin is. But then C ′ is unsolvable and L = labels(C ′), because
〈Γ•, ty•, C ′′〉 and 〈Γ′, ty ′, C ′〉 are equal up to renaming of type variables.

A.3 Minimality

We modify the slice order to be indexed by a finite set of variables xs , the
binder environment. The defining rules for @xs are mostly the same as the
rules for @, with the exception of four of the congruence rules. The congruence
rules for function- and let-bodies decrement the binder environment:

sl @x,xs sl ′

(fn xl => sl)k @xs (fn xl => sl ′)k

sl2 @x,xs sl ′2

(let val xl = sl1 in sl2 end)k @xs (let val xl = sl1 in sl ′2 end)k

The congruence rules for variable binders get an additional side condition:

vsl @xs xl x 6∈ xs

(fn vsl => sl)k @xs (fn xl => sl)k

vsl @xs xl x 6∈ xs

(let val vsl = sl1 in sl2 end)k @xs (let val xl = sl1 in sl2 end)k

Let bv(sl) denote the set of bound variables of sl .

Lemma 21 If bound variables of sl ′ are distinct and sl @ sl ′, then sl @∅ sl ′.

Proof. One proves the following more general statement by induction on the
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derivation of sl @ sl ′: If bound variables of sl ′ are distinct, bv(sl ′) ∩ xs = ∅
and sl @ sl ′, then sl @xs sl ′.

Let (∧S ≥ ∧S ′) iff (S ⊆ S ′). Let (Γ ≥xs Γ′) iff (Γ(x) ≥ Γ′(x)) for all x in xs .

Lemma 22 (Monotonicity of ⇓) If sl ′ @xs sl and (sl ⇓ 〈Γ, ty , C〉), then
there are Γ′, C ′ such that (sl ′ ⇓ 〈Γ′, ty , C ′〉), Γ ≥xs Γ′ and C ′ ⊆ C. Moreover,
if sl does not contain immediately nested dots, then labels(C ′) 6= labels(C).

Proof. By induction on the structure of sl .

Theorem 23 (Minimality) If (lexp ⇓ 〈Γ, ty , C〉), L ∈ minErrors(C), bound
variables in slice(L, lexp) are distinct and sl @ slice(L, lexp), then sl is typable.

Proof. Suppose (lexp ⇓ 〈Γ, ty , C〉), L ∈ minErrors(C), bound variables in
slice(L, lexp) are distinct and sl @ slice(L, lexp). Then there exists a minimal
unsolvable subset Cmin of C such that L = labels(Cmin). By lemma 18, there
are Γ•, ty•, C• such that (lexp ⇓• 〈Γ•, ty•, C•〉) and L = labels(C•). Then, by
lemma 19, there exists C ′ such that (slice(L, lexp) ⇓ 〈Γ•, ty•, C ′〉), C ′ . C
and L = labels(C ′). Then, by lemmas 21 and 22, there are Γ′, C ′′ such that
(sl ⇓ 〈Γ′, ty•, C ′′〉) and C ′′ ⊆ C ′. Because slice(L, lexp) does not contain imme-
diately nested dots, labels(C ′′) is a proper subset of L. Because C ′′ is a variant
of a subset of C, it must be solvable, by minimality of L. Then, sl is typable
by (an extension to slices of) fact 2(1).

A.4 Key Lemma for Completeness and Minimality.

In this section, we prove the key lemma 18. To this end, we define an auxiliary
system that attaches stamps to constraints. Stamps are not unique. There
are two instances where non-uniquely stamped constraints get introduced.
Firstly, the two constraints that are associated with a variable occurrence and
the corresponding variable binder have the same stamp. Secondly, in the rule
for let-expressions stamps do not get refreshed, and, thus, all fresh variants of
a constraint keep an identical stamp.

Let Stamp be an infinite set of stamps that is disjoint from all other sets in this
paper. Let s range over Stamp. A stamped environment entry is a pair 〈ty , s〉 of
a type ty and a stamp s. A stamped intersection type is a an object of the form
∧S, where S is a finite set of stamped environment entries. A stamped type
environment is a function from Var to the set of stamped intersection types. A
stamped constraint is a pair 〈c, s〉 of a labeled constraint c and a stamp s. We
use the meta variables Γ and C to range over stamped type environments and
sets of stamped constraints. (It will always be clear from the context whether
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a meta variable refers to a stamped or an unstamped object.) A fresh variant
of a stamped triple 〈Γ, ty , C〉 is obtained from this triple by replacing all type
variables by fresh type variables, but keeping the stamps fixed.

The stamped system ⇓+ is defined in figure A.2. Note that constraints for
variable binders in fn-abstractions and let-expressions inherit their stamps
from the environment. Note also that in the variable axiom the constraint and
the environment entry carry the same stamp.

| ∧ S| =
def
== ∧{ty | (∃s)(〈ty , s〉 ∈ S)}

|Γ|(x) =
def
== |Γ(x)|

|C| =
def
== {c | (∃s)(〈c, s〉 ∈ C)}

Lemma 24 If (lexp ⇓ 〈Γ, ty , C〉), then there are Γ′, C ′ such that |Γ′| = Γ,
|C ′| = C and (lexp ⇓+ 〈Γ′, ty , C ′〉).

Proof. By induction on the derivation of (lexp ⇓ 〈Γ, ty , C〉).

stamps(∧S) =
def
== {s | (∃ty)(〈ty , s〉 ∈ S)}

stamps(Γ) =
def
==

⋃
x∈Var stamps(Γ(x))

stamps(C) =
def
== {s | (∃c)(〈c, s〉 ∈ C)}

Let ss range over sets of stamps.

Πss(∧S) =
def
== {ty | (∃s ∈ ss)(〈ty , s〉 ∈ S)}

(Πss(Γ))(x) =
def
== Πss(Γ(x))

Πss(C) =
def
== {c | (∃s ∈ ss)(〈c, s〉 ∈ S)}

Lemma 25 If (lexp ⇓+ 〈Γ, ty , C〉), then (lexp ⇓• 〈Πss(Γ), ty , Πss(C)〉).

Proof. By induction on the derivation of (lexp ⇓+ 〈Γ, ty , C〉).

Definition 26 A stamped environment entry 〈ty , s〉 or a stamped constraint
〈c, s〉 is called a stamped item. For a stamped item 〈ty , s〉 or 〈c, s〉, we say
that the item has stamp s. A set of stamped items is called a clique iff all its
elements have the same stamp. A clique clq is called atomic iff it has one of
the following two forms:

cl = {〈a, s〉, 〈a =
l
== a′, s〉} or

 cl = {〈a′ =
l
== a, s〉, 〈a =

l′
== a′′, s〉},

where a′ 6= a′′ and l 6= l′
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xl ⇓+ 〈empty[x 7→ ∧{〈ax, s〉}], a, {〈ax =l== a, s〉}〉
where ax, a, s fresh

nl ⇓+ 〈empty, a, {〈int =l== a, s〉}〉
where a, s fresh

lexp1 ⇓+ 〈Γ1, ty1, C1〉; lexp2 ⇓+ 〈Γ2, ty2, C2〉

(lexp1 + lexp2)l ⇓+ 〈Γ1 ∧ Γ2, a, C0 ∪ C1 ∪ C2〉

where a, s1, s2, s3 fresh, C0 = {〈ty1 =l== int, s1〉, 〈ty2 =l== int, s2〉,

〈int =l== a, s3〉}

lexp ⇓+ 〈Γ[x 7→ ∧S], ty , C〉

(fn xl => lexp)l′ ⇓+ 〈Γ[x 7→ ∧{}], a, C0 ∪ C〉

where ax, a, s fresh, C0 = {〈ax =l== ty ′, s′〉 | 〈ty ′, s′〉 ∈ S} ∪ { 〈ax -> ty =l
′

== a, s〉 }

lexp1 ⇓+ 〈Γ1, ty1, C1〉; lexp2 ⇓+ 〈Γ2, ty2, C2〉

(lexp1 lexp2)l ⇓+ 〈Γ1 ∧ Γ2, a, C0 ∪ C1 ∪ C2 〉

where a, a1, a2, s1, s2, s3 fresh, C0 = { 〈ty1 =l== a1 -> a2, s1〉, 〈ty2 =l== a1, s2〉,

〈a =l== a2, s3〉 }

lexp1 ⇓+ 〈Γ1, ty1, C1〉; lexp2 ⇓+ 〈Γ2[x 7→ ∧{〈ty ′1, s1〉, . . . , 〈ty ′n, sn〉}], ty2, C2〉

(let val xl = lexp1 in lexp2 end)l′ ⇓+ 〈Γ′
1 ∧ Γ2[x 7→ ∧{}], a, C0 ∪ C ′

1 ∪ C2〉

where 〈Γ1,1, ty1,1, C1,1〉, . . . , 〈Γ1,k, ty1,k, C1,k〉 are fresh variants of 〈Γ1, ty1, C1〉,

Γ′
1 = Γ1,1 ∧ . . . ∧ Γ1,k, C ′

1 = C1,1 ∪ . . . ∪ C1,k, k = max(n, 1),

C = { 〈ty1,1 =l== ty ′1, s1〉, . . . , 〈ty1,n =l== ty ′n, sn〉 },

a, s fresh, C0 = {〈a =l
′

== ty2, s〉} ∪ C

Fig. A.2. Stamped system ⇓+

The type variable a in these forms is called the subject of the atomic clique.
A subset maxclq of a set of items its is called a maximal clique of its iff it is a
clique and there is no clique that is both a subset of its and a proper superset
of maxclq .
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items(∧S) =
def
== S

items(Γ) =
def
==

⋃
x∈Var items(Γ(x))

items(Γ, C) =
def
== items(Γ) ∪ C

Lemma 27 Suppose that (lexp ⇓+ 〈Γ, ty , C〉) and maxclq is a maximal clique
of items(Γ, C) that has at least two elements. Then there is a set A of atomic
cliques such that such that maxclq =

⋃A and the following statements hold
for all atclq , atclq ′ in A:

(1) atclq ′ is a variant of atclq.
(2) If a is the subject of atclq, then a does not occur in ty or (items(Γ, C) \

atclq).

Proof. By induction on the derivation of (lexp ⇓+ 〈Γ, ty , C〉).

Lemma 28 If (lexp ⇓+ 〈Γ, ty , C〉) and Cmin ⊆ C such that |Cmin| is a mini-
mally unsolvable constraint set, then labels(Πstamps(Cmin)(C)) = labels(|Cmin|).

Proof. Let ss = stamps(Cmin), L = labels(Πss(C)) and L′ = labels(|Cmin|).
Obviously, |Cmin| ⊆ Πss(C) and, thus, L′ ⊆ L. We need to show that L ⊆ L′.
To this end, let l ∈ L. Then there is a stamped constraint sc = 〈c, s〉 in Cmin,
and a stamped constraint scl = 〈cl, s〉 in C such that cl is labeled by l. Let l′

denote c’s label. If l′ = l, then, obviously, l ∈ L′. So, assume that l′ 6= l. Let
maxclq be a maximal clique of C that contains both sc and scl. Then maxclq
is of the form described in lemma 27. In particular, there is a variant scl′ of
sc such that such that {scl′ , scl} is an atomic clique, whose subject, call it a,
does not occur in (C \{scl′ , scl}). We claim that scl′ ∈ Cmin: Assume, toward a
contradiction, that scl′ 6∈ Cmin. Then |Cmin\{scl}| is unsolvable, because |Cmin|
is and a does not occur in |Cmin \ {scl}|. But that contradicts minimality of
|Cmin|.

Proof of lemma 18. Let (lexp ⇓ 〈Γ, ty , C〉) and Cmin be a minimally unsolv-
able subset of C. By lemma 24, there are stamped objects Γ′, C ′ such that
|Γ′| = Γ, |C ′| = C and (lexp ⇓+ 〈Γ′, ty , C ′〉). Let C ′

min be a subset of C ′

such that |C ′
min| = Cmin, and let ss = stamps(C ′

min). By lemma 25, (lexp ⇓•
〈Πss(Γ

′), ty , Πss(C
′)〉). Then, Cmin = |C ′

min| = Πss(C
′
min) ⊆ Πss(C

′). Moreover,
by lemma 28, labels(Πss(C

′)) = labels(|C ′
min|) = labels(Cmin).
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