Toward an Object-Oriented Structure
for Mathematical Text

Fairouz Kamareddine, Manuel Maarek, and J. B. Wells

ULTRA group, Heriot-Watt University
http://www.macs.hw.ac.uk/ultra/

Abstract. Computerizing mathematical texts to allow software access
to some or all of the texts’ semantic content is a long and tedious process
that currently requires much expertise. We believe it is useful to support
computerization that adds some structural and semantic information,
but does not require jumping directly from the word-processing level
(e.g., WTEX) to full formalization (e.g., Mizar, Coq, etc.). Although some
existing mathematical languages are aimed at this middle ground (e.g.,
MathML, OpenMath, OMDoc), we believe they miss features needed to
capture some important aspects of mathematical texts, especially the
portion written with natural language. For this reason, we have been
developing MathLang, a language for representing mathematical texts
that has weak type checking and support for the special mathematical
use of natural language. MathLang is currently aimed at only capturing
the essential grammatical and binding structure of mathematical text
without requiring full formalization.

The development of MathLang is directly driven by experience en-
coding real mathematical texts. Based on this experience, this paper
presents the changes that yield our latest version of MathLang. We have
restructured and simplified the core of the language, replaced our old
notion of “context” by a new system of blocks and local scoping, and
made other changes. Furthermore, we have enhanced our support for the
mathematical use of nouns and adjectives with object-oriented features
so that nouns now correspond to classes, and adjectives to mixins.

1 Introduction

From Euclid to Bourbaki, mathematicians have written their texts meticulously,
in a precise, structured, and coherent form of natural language mixed with sym-
bolic formula, which we call the Common Mathematical Language (CML). Is
CML accurately reflected in current approaches to computerizing mathematics?
If not, how can we make an improvement?

Approaches to computerizing mathematics. Computerizing mathematics
is being done in various ways, each of which has advantages and disadvantages.

Mathematical word processing. The examples in figure 1 were included in
this paper through the most basic kind of computerization. We typed the letters
of the words of the text, and inserted ITEX commands like \begin{definition}

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM ’05 2

Definition 20. Of trilateral figures, an equilateral triangle is that which has
its three sides equal, an isosceles triangle that which has two of its sides alone
equal, and a scalene triangle that which has its three sides unequal.

Euclid [7, Book 1]

Definition 1. A set with an associative law of composition, possessing an
identity element and under which every elements is invertible, is called a
group. [...] A group G is called finite if the underlying set of G is finite [...]
A group [with operators] G is called commutative (or Abelian) if its group
law is commutative. N. Bourbaki [2, Chapter I, §4]

Fig. 1. Two examples of CML.

and \end{definition} to guide the output. In this approach, a computer program
can produce a visual representation of the CML, but a computer program will
have great difficulty in automatically recognizing the semantic content of the
ETEX encoding even if the TEX macros are being carefully chosen as proposed
by Kohlhase [13]. Even in the best case, WTEX can not be expected to capture the
semantic content of natural language text any better than OMDoc (see below).

Semantic markup languages. A more advanced solution is computerization
of CML that records more semantic content. In the semantic markup languages
MathML-Content (http://www.w3.org/Math/) and OpenMath (http://www.openmath.
org/), symbolic formulas are encoded using a library of predefined symbols. OM-
Doc (http://wuw.mathweb.org/omdoc/) adds a theory level. There are many ways
to write our examples from figure 1 in OpenMath/OMDoc using a mixture of
structural and symbolic XML elements and chunks of natural language. A pos-
sible encoding of our examples in OpenMath/OMDoc is sketched! here:

<!-- First example -->
<theory name="Euclid -book-1">
<symbol id="equilateral-triangle">
<CMP>An equilateral triangle is [...]
<!-- Second example -->
<theory name="Group">
<symbol id="x">
<symbol id="E">
<CMP>A set with <OMOBJ>%</0MOBJ>, associative
law of composition.

<FMP>(a*b)*xc=ax* (bxc)
<symbol id="e"> [..]
<theory name="FiniteGroup">
<imports from="Group"> [...]

Natural language can only be stored in OMDoc in CMP elements as uninterpreted
“blobs”, while precise mathematical structure requires using symbolic encoding
(e.g., in FMP elements). Thus, for natural language mathematics, one must choose
between retaining knowledge of the precise phrasing and presentation chosen by
the mathematician, or capturing more of the structure via conversion to symbolic
formula. Of course, one could do both like in our example above, keeping the

! For readability and brevity, we show only the opening tag of each XML element for
most elements; instead we use indentation to express nesting. We also use traditional
mathematical output for OpenMath formulas instead of showing the XML tree.

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM ’05 3

uninterpreted natural language “blob” while adding a symbolic formula, but then
the format does not support verifying they are mutually consistent. Generally,
one does not expect formal checking of mathematics encoded in OMDoc.

Full formalization. Theorem Provers (TPs) such as Mizar (http://www.mizar.
org/)7 Isabelle (http://www.cl.cam.ac.uk/Research/HVG/Isabelle/), and Coq
(http://coq.inria.fr/) have made a tremendous contribution to computeriz-
ing mathematics, providing frameworks in which a full formalization can be
written and verified automatically. However, they do not support important is-
sues of mathematical text, such as control over presentation and phrasing and
processing of the semantic structure. Furthermore, because full formalization is
very expensive in human time, most mathematical texts are unlikely to be fully
formalized, but might still benefit from some form of computerization.

Semi-formalization. Lighter TPs have been proposed, such as the work by
Wiedijk [17] defining Formal Proof Sketches (FPS) as light Mizar proofs. An
FPS article is a basically a Mizar article with holes. This approach reduces the
expense of computerization via formalization (and also loses the certainty of full
formalization), but does not appear to greatly improve control over presentation
and phrasing and support for semantics-based manipulation.

Computerizing the mathematical vernacular. N. G. de Bruijn, founder of the
Automath project [4], suggested capturing the essence of CML through his Math-
ematical Vernacular (MV) [5], a language with substantives (nouns), adjectives,
and flags. Weak Type Theory (WTT) [12] adapted the ideas from MV in a type-
theoretical fashion. To evaluate the practicality of MV and weak types for math-
ematical texts, we developed MathLang-WTT [11,10].? (In related work, others
have investigated translating from WTT into type theory [9,8].) MathLang-
WTT improved over WTT by internalizing flags and blocks and by implement-
ing a type checker and various automated output views of MathLang documents
which are faithful to CML. See [10] for a description (which is still applicable to
MathLang) of these MathLang-WTT features.

Limitations of MathLang-WTT. Despite the features of MathLang-WTT,
our plan to closely follow the expressiveness of CML in a computerized language
was still not fully satisfied. Limitations of MathLang-WTT (and hence also of
MV and WTT) appeared during the translation of Euclid’s Elements [7] in de-
scribing mathematical entities such as triangles and lines. Consider the example
from Euclid in figure 1. A triangle is intrinsically related to the three lines it is
formed by, but encoding it in MathLang-WTT was unsatisfactory. One approach
was for each triangle to define the three lines and the triangle separately and
then to state their relation. This was awkward, and more importantly there was
clearly a missed opportunity to do some simple type checking, like complaining
if there was an attempt to define some triangle as consisting of four surfaces
(like a tetrahedron) instead of three lines. Another approach was to define a
triangle-constructing function, but then the type system could not check that
the result was a valid triangle and could be used where a triangle was required.
Description of mathematical objects needed improvement.

2 We call the old version MathLang-WTT to distinguish it from this paper’s version.

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM ’05 4

In trying to solve these problems, we noticed that (a) N. G. de Bruijn’s
informal definition of substantives and adjectives could be better formalised in
MathLang and (b) work in object-oriented programming carries useful clues.

Object-oriented concepts. Some programming language research has focused
on allowing organizing programs in the way that seems most natural to the
programmers. Classes are a way of packaging definitions so that it is easy to
obtain not only instances (objects) but also multiple distinctly modified and
extended variants (subclasses) via inheritance. Mizins [3] are abstract subclass
generators that allow reusing modifications and extensions.

Classes and objects. In object-oriented programming, a class is usually defined
by a set of fields and methods. An object is an encapsulated sub-program with
an internal state that is an instance of a particular class. Classes define the
common behavior of a group of objects. Fields are named values associated with
each instance, while methods are named operations on the instances.

Inheritance. Class inheritance avoids repeating the definition of fields and
methods shared by several classes. A new class can be defined by inheriting
from an existing parent class, and the child’s set of fields and methods will by
default contain those of the parent.

Mizins. With simple class inheritance, to make two classes share a common
set of new methods without duplicating the method definitions, the classes must
inherit from an ancestor class containing the new methods. This may require
radical rearrangement of an existing class hierarchy. To alleviate this problem,
mixins are subclass definitions that are parameterized on their superclass, and
thus act as functions from classes to classes. When a mixin is applied to a class,
this makes a new subclass that adds or redefines fields and methods.

Contributions of this paper. The needs of encoding mathematical texts led
to the design of the following new features for MathLang reported in this paper.

1. Lighter abstract syntax and an accessible type system. We simpli-
fied the syntax and type system of MathLang-WTT. The new syntax of
MathLang contains only one kind of identifier in contrast to the variables/
constants/binders of both WTT and MathLang-WTT (section 2 and 4).

2. Generalised reasoning structure. This paper refines MathLang-WTT’s
blocks to a simpler yet more general notion and replaces MathLang-WTT’s
flags and contexts by a more flexible and general local scoping. Our new block
and local scoping constructs are cases of steps, which are MathLang’s generic
structuring concept (section 2).

3. Turning nouns into classes. We combine MV’s substantives (inherited
via the nouns of WTT and MathLang-WTT) and object-oriented classes
to make MathLang’s nouns (section 3.1). Nouns are conceptually similar to
classes, terms are objects, and sets can be defined from nouns.

4. Turning adjectives into mixins. We combine MV’s mathematical adjec-
tives with object-oriented mixins to make MathLang’s adjectives, which can
be used in different ways with nouns, adjectives, sets, and terms (section 3.2).

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM ’05 5

2 A more generic and structured MathLang

This section shows how MathLang improved over MathLang-WTT by defining
more generic and structured constructions.

One class of identifiers. In MathLang’s predecessors WT'T and MathLang-
WTT, identifiers are separated into three disjoint sets: variables, constants, and
binders. The rest of this paragraph briefly describes how identifiers work in
the older MathLang-WTT: All three kinds of identifiers have a weak type, and
this is all that variables have. Constants also have a definition and parameters
(each parameter being a variable declaration). Each use of a constant is applied
to arguments of the right weak type. Binders have parameters like constants,
and one additional special parameter for the bound variable. Unlike variables
and constants, binders can not be defined inside a document but can only be
declared in the preface. Binders can not be given definitions; a statement using
a binder can act as a definition but there is no way to indicate this.

In encoding texts, we found these restrictions of the different identifier kinds
problematic, so MathLang instead now has just one kind of identifiers and dis-
tinguishes the uses via types. To fit binders in our new scheme and to allow
declaring/defining new binders in documents, we replace the old single spe-
cial parameter of each binder with a new kind of parameter with a declaration
type usable with any identifier. For example, the binder V might be declared
as forall (dec(a), stat) : stat, making it an identifier with output type
stat and two parameters: a declaration of an identifier of arbitrary type a and
an expression of type stat (statement). An example using this identifier is the
translation forall (n:N, >=(n,0)) of the proposition Vn € N.n > 0 (assuming
N, >= and 0 are already declared). Similarly, Russell’s definite description binder
¢ (iota) could be declared with two parameters, a declaration and a statement.
The first parameter is a variable that stands for the entire expression, and which
should therefore have the same type: iota (dec(a), stat) : a. The expres-
sion tn € N. (3 <n < 5) (meaning, “the unique n € N s.t. 3 < n < 5”) would
then be encoded as iota (n:N, and(<(3,n),<(n,5))).

Simpler grouping and scoping. A fundamental idea of MathLang (inherited
from MV) is capturing the grammatical and binding structure of a mathematical
text. In MV and WTT, each line of a book has a context representing the set of
assumptions about types of variables (“let « be a natural number”) and truths
(“suppose x = y? for some natural number y”) used in the definition or statement
made by the line. MV allows using flags as a secondary graphical 2-dimensional
way of writing the current context in a book; an element repeated in the contexts
of consecutive lines can be written as a flag whose head contains the repeated
element and whose flagstaff goes through all the lines repeating the element. MV
also has a secondary notion of blocks derived from flag nesting. (WTT could have
used flags and blocks like MV, but this was never done.)

Unlike MV, MathLang-WTT directly supports flags and blocks rather than
treating them as secondary syntax-sugaring notions derived from the contexts [11].
Upon careful examination of MathLang-WTT’s flags and blocks, we found that

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM ’05 6

they overlapped in function. MathLang-WTT’s blocks allow grouping lines and
sub-blocks and limiting to a block the scope of some of the constants defined in
the block. MathLang-WTT’s flag allow identifying a group of lines in which a
context element is active.

In MathLang, we instead merged similar functionality. A block, written
{step,, ..., step,}, is a sequence of statements. The local scoping construct step, >
step, makes the declarations, definitions, and assertions inside step, assumptions
used by step, and restricts declarations and definitions inside step; to be visible
only in stepy. Both blocks and local scoping constructs are steps, as are dec-
larations, definitions, and assertions. Steps can be of various sizes, such as the
declaration of a variable, the definition of a function, a proof, or an entire book.

FEzxample 1. Sequences of statements in a proof are represented by a block.

{ x.(y+1) = x.y°;
X.y’ = X.y+x;
X.y+x = x.y+x.1 }

Similarly each different sub-part of a proof as well as the overall proof is represented by
a block. Sections and chapter are also blocks in MathLang as they decompose the text.
For example, a proof by induction could be a block with two sub-blocks (note that the
second sub-block carries a local scoping which holds the inductive hypothesis):

{ --4 proof of P by induction—-

{ --Proof of the base-- [...]; P(0) };
{ --Proof of the induction--
{ n:N; P(m) } I> {[.]; P(n+1) } } }
An entire proof (e.g., a proof by contradiction) can be contextualised in a local scoping.
{ --Proof of the contradiction-- [...] }
| > { --Statement proved by contradiction—- [...] }

Note that we write a block in braces { and } , the elements of the block are separated by
a semi-colon ; . We write a local scoping with a step (which is the context), followed by
the symbol |> (ASCII representation of), followed by a step (in which the elements of
the context will be available). In these examples we added some comments in between
-- and cut some pieces of code ([...]). For readability, we make use of infix notation.

3 Abstraction with nouns and adjectives
3.1 Nouns as classes

If we say that p is a demisemitriangle, one does not think of the set or the
class of all demisemitriangles in the first place, but rather thinks of
“demisemitriangle” as a type of p. It says what kind of things p is. [...] MV
does not take sets as the primitive vehicles for describing elementhood but
substantives (in the above example semidemitriangle is a substantive).

N. G. de Bruin [5]

Nouns are abstractions that classify objects according to their common fea-
tures. Nouns have an important place in some previous systems of representa-
tions of mathematics, such as WT'T and MathLang-WTT, in which one of the
weak types is noun. Nouns have used in translations of the first chapter of E. Lan-
dau’s Foundation of Analysis [14] into WTT [16] and MathLang-WTT [11].

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM ’05 7

As already mentioned in section 1, we encountered limitations of the expres-
siveness of WTT-style nouns when we started translating Euclid’s Elements [7].
Euclid starts his first chapter by defining basic geometric objects such as points,
lines, figures, triangles, angles, etc. The definition of a line is as follows: A line is
breadthless length. In MathLang-WTT, one way to write this is by defining line
by forming a noun characterized by two statements: one that line “has length”,
the other that line is breadthless (does not “have breadth”). This uses a con-
stant “has” which takes two nouns and returns a statement. This constant was
unsatisfactory because it is hard to define its semantics precisely and because
MathLang-WTT could not make any use of it for checking well-formedness. Be-
cause “has” deeply characterises the noun line and by consequence any concrete
line — weak typed as “term” — created as a line instance, we felt it should be
replaced by something that informs the language that lines have length, to allow
approving of statements about the length of a line and disapproving of those
about nonsense properties like its breadth, angle, weight, etc.

We found a solution in the concept of classes and objects in programming.
A line is a class with one field length. Any instance of line is an object with a
length. We characterise a line as breadthless in our translation with the absence
of such a field. Table 1 gives more examples.

Euclid’s Elements MathLang translation
A point is that which has no parts|point := Noun
A line is breadthless length line := Noun {length:term}

A surface is that which has length|surface := Noun {length:term; breadth:term}
and breadth only

Table 1. Examples of noun definitions

Consider the first definition in figure 1. Definition 20 of Euclid’s example
uses the noun figure (we see in section 3.2 how we encode the other nouns of
this example). In the preceding definitions in [7], figures (rectilinear figures)
are defined as those contained by straight lines. Therefore we define the noun
figure with one field being the set of straight lines (we shorten it to lines in
this example) and a statement precising that the figure is contained by this
set of lines. The Noun constructor describes the noun with a step (in between
braces { and }). The first unit of this step defines the field sides. Sides is a
set of lines. The second unit of this step is a statement which uses an identifier
contained_by. This identifier (declared earlier) takes a term and a set and
returns a statement (contained_by (term,set): stat). The two parameters
passed to this identifier are the future instance of the figure itself (encoded by
the keyword self) and by the sides of the figure (field sides of self).

figure := Noun { sides : set(line);
contained_by(self,self.sides) }

Our second example in figure 1 is the definition of group by N. Bourbaki. We
define group as a noun, The fields of this noun are identifiable in the text. The
set F, the compositional law * and the neutral element e. Two statements also
define a group: the associativity of * and the existence of an inverse of any
element of E' (we use an infix notation for =).

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM ’05 8

group := Noun { E:set; { a:E; b:E } |> *x(a,b):E; e:E;
forall (a:E, forall (b:E, forall (c:E,
*(x(a,b),c) = *(a,*(b,c)))));
forall (x:E, invertible (e,x)) 1}

3.2 Adjectives as mixins

An adjective belongs to a substantive, and serves a double purpose: (i) to
form a new substantive, and (ii) to form a new sentence.

N. G. de Bruijn [5]

According to (i), an adjective is a function from noun to noun. An adjective,
like isosceles, when applied to a noun like triangle creates a new noun isosceles
triangle. In our system where nouns are classes, the adjectives will be mixins [6].
Intuitively, a mixin is a function from class to class. As in mixin calculi, an
adjective can also be applied to an adjective to form a new adjective, to a term
to form a new term, and to a set to form a new set (mapping the adjective across
all members of the set). In MathLang, we call these constructions refinements.
Following (ii), we also incorporate the possibility that an existing term has the
properties held by an adjective. For example one can describe a triangle ABC'
and demonstrate that this triangle is isosceles. The last line of this demonstration
can be written in MathLang as the statement: ABC << isosceles (read ABC is
isosceles). In our syntax we join this adjective statement to a sub-noun statement.
The sub-noun statement A < B, given by N. G. de Bruijn in MV, states that
“every A is a B”. For example, triangle << trilateral figure. We kept this
notation in MathLang.

Let us see the use of these notions in our two examples. In the example
taken from Euclid’s Elements, several adjectives are defined. The noun triangle
is defined as a refinement of the noun figure using the adjective trilateral. We
define the adjective trilateral with the constructor Adj. The Adj constructor
takes as a parameter the noun to be extended to form the new noun. In the case
of our example, trilateral could only be applied to figures as it requires the
field sides. The body of Adj is a step (similarly to the Noun constructor). In
this step two specific objects are available. self which refers to the instances of
the noun being defined (see section 3.1) and super which refers to the instance
of the noun being refined (only needed when a component of the old noun is
hidden by a component with the same name of the new noun). After the defini-
tion of trilateral, triangle is simply defined as a trilateral figure. We
similarly define the adjectives equilateral, isosceles and scalene (We use an in-

fix notation for the identifiers = (term,term) :stat and !'= (term,term):stat
and and (stat,stat):stat).

trilateral := Adj (figure) { card(self.sides) = 3 };

triangle := trilateral figure

equilateral := Adj (triangle) {

forall (sidel:self.sides,
forall (side2:self.sides,
sidel.length = side2.length)) }
isosceles := Adj (triangle) {
exists (sidel:self.sides,

exists (side2:self.sides,
sidel != side2

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM ’05 9

and sidel.length = side2.length)) }
scalene := Adj (triangle) {
forall (sidel:self.sides,
forall (side2:self.sides,
sidel.length != side2.length)) }

3.3 Multi adjective refinements

With adjectives we have an operation of simple inheritance between nouns. Let
us see with this last example how multi adjective refinements work.
Our group example defines two adjectives. These adjectives for groups are finite
and Abelian. Finite states that the set E of the group is finite. Abelian (or com-
mutative) states that the operator of the group is commutative. In MathLang,
we write the definitions of these adjectives as follow.

finite := Adj (group) { finite_set (self.E) }

Abelian := Adj (group) {
forall (x:self.E, forall (y:self.E, self.*x(x,y) = self.x(y,x))) }

We could combine these two adjectives to obtain either Abelian finite group
or finite Abelian group. In MathLang both expressions share the same type.
Their meaning may differ as the statements introduced by the adjectives may
overlap. It is for instance possible to define an isosceles equilateral scalene
triangle. This expression is perfectly typable but of course would be consid-
ered as inconsistent even by pupils in primary schools. This reflects exactly the
purpose of this first layer of MathLang which is to capture the structure of the
text and its elements to allow, in a later stage, semantical analysis.
group AEEBEES» finite group

Abelianl lAbelian

Abelian finite group

Abelian group finite Abelian group

finite
4 Language description

Abstract syntax The syntax of MathLang is given in Table 2. An arrow on
top of a meta-variable represents a sequence of 0 or more meta-variables. For
example €zp is a sequence of exp. The elements of the sequence are separated
with a comma “” in ident, category and exp and a semi-colon “;” in step.

Note the existence of a category constructor noun which describes a category
expression and of a noun constructor Noun which describes a noun expression.
In the following example, three identifiers with field a are defined: p is a noun,
p’ is a term instance of a noun, p’’ is defined as a noun.

{ p:noun(Noun {a:term});

p’:Noun {a:term};
p’’ := Noun{a:term} }

We use the following notational conventions in this document:

1. When an identifier has no parameters we omit the (). E.g., we write ident in
place of ident() and ident : ¢ in place of ident() : c.

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM 05 10

ident, 1
label, 1

cvar, v

cident, ci
step, s

phrase, p

erp, e

category, c ::

denumerably infinite set of identifiers
denumerably infinite set of labels
denumerably infinite set of category variables

term(ezp) | set(ezp) | noun(ezp) | adj(exp, exp)
stat | dec(category) | cvar

ident | exp.cident Identifiers anf fields

phrase Basic unit

label label step Labelling

step > step Local scoping

{step} Block

exp

cident(M) = exp Definition

ident(ezp) := exp Definition by matching case
ident < cident Sub-noun and adjective statement
cident(ezp) Instance

ident(category) : exp Elementhood declaration
ident(category) : category Declaration

Noun {step} Noun

Adj(exp) {step} Adjective

erp exp Refinement

self | super Self and super

ref label Referencing

Table 2. Syntax of MathLang

2. We do not leave double braces in noun and adjective expressions defined
with a block step. E.g., we write Noun {s1;...;s,} and Adj (e) {s1;...;sn}
instead of Noun {{s1;...;s,}} and Adj (e) {{s1;..-;8n}}.

3. We abbreviate category expressions to shorten the syntax of some term,
noun and set categories. E.g., we write noun (resp. set and term) in place

of noun(Noun {{}}) (resp. set(Noun {{}}) and term(Noun {{}})).

Example 2. The following illustrate this syntactic sugaring:

1. We write x in place of x().

2. We write x:term in place of x() : term.

3. We write Noun {x:term; >(x,0)} in place of Noun {{x:term; >(x,0)}}.
4. We write point :noun in place of point:noun(Noun{{}}).

Type system We now present the typing rules of our language. Each typing
rule has the form: context - construction ¢ type judgement where:

— A context of typing is a step of the language (with two additional markers
that hold the type of self and super and the labels). It represents the
previous steps of reasoning in which the ezpression is to be typed.

— A type judgement is either an atomic type or a type where:
atomic type = Term(T) U Set(T) U Stat U Noun(T) U Adj(7T,T) U Step U
cvar U Dec(type) U Def (type)
7T is the set of mappings from ident to type.

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM 05 11

type is the set of mapping from sequences of atomic type to atomic type.
T (resp. at and t) ranges over 7 (resp. atomic type and type).

Here are some functions used in the derivation rules of our type system.

I : step — ident |Gives the set of declared, defined and updated (sub-noun statement)
identifiers in a step.

dI : step — ident |Gives the set of declared identifiers in a step.

DI : step — ident|Gives the set of defined identifiers in a step.

L : step — label |Gives the set of defined labels in a step.

dom(f) Being the domain of the function f.
Ty T TU{ (G, T'() | i & dom(T)}
TeT { (3, T®))]|i¢gdom(T")}

And here is the subtyping relation between types and atomic types.
— Term(T) < Term(T') if Vi € dom(T), T (i) < T'(i).
— Set(T) < Set(T') if Vi € dom(T), T'(i) < T'(4).
— Stat < Stat and Step < Step.
— Dec(t) < Dec(t') if t < t'.
— Def(t) < Def(t') if t < t'.
— Noun(T) < Noun(T') if Vi € dom(T), T(3) < T'(3).
— Adj(Ty, T2) < Adj(T1, T3)
if Vi €dom(T), T2(i) < T5(i) and Vi€ dom(T1), Ti(z) < Ti(7).
- v <.
— (at1,...,at,) — at < (aty,...,aty) — at’ if at < at’ andVj € [1...n], at; < at'j
(after renaming of the category variables).
— T < T ifViedom(T), T(i) < T'(i).

Figures 2, 3, 4, 5, 6 and 7 compose MathLang type system. According to these
typing rules the group identifier defined in section 3.1 has type
Noun({(E, Set), (x,(Term, Term) — Term), (e, Term)}). Similarly the noun
triangle and the adjective isosceles have respective types:

Noun({(sides, Set({(length, Term)})}) and

Adj({(sides, Set({(1length, Term)})}, {(sides, Set({(1length, Term)})}).
The type system prevents any misuse of identifiers’ fields. For instance, let ABC
be a declared triangle (ABC:triangle). This triangle is therefore a term with
type Term({(sides, Set({(1length, Term)})}). According to our definition of
triangle, the only defined field is sides, the set of lines composing a triangle. The
expression ABC.sides refers to the sides of our triangle ABC. The set ABC.sides
has type Set({(length, Term)}).

The scopes of the identifiers depends on the location of the declaration or
definition. Declarations could occur anywhere in an expression or could be an
atomic step. We explain here the three possible cases: a declaration/definition
in the flag part of a local scoping, a declaration/definition as atomic step in
the body of a local scoping, a declaration as a parameter of an identifier. The
first two are shared by definitions and declarations. The third one is declaration
specific.

1. The first case is the presence of a declaration or a definition inside the flag
of a local scoping. The introduced identifier is available in the step (and its
sub-steps) covered by the flag-context. Here, an identifier x is declared in

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM 05 12

Fs e Step stkes Term(T) 1 € dom(T)
skeis T()

IDENT-FIELD

F{%;p} s Step {F}Fpe Dec(t) dl(p)={i}
{®ptFitt

IDENT-DEC

F{s;p} s Step {FT}rps Def(t) DI(p) ={i}
{Zippridt

IDENT-DEF

= {?, 1 <K Cig}
{?} Fip s Term(Th) {?} F cio
{41 < cia} b i1 & Noun(T1 W Ta)

Step
Adj (T2, T%) Ty < T

1
IDENT-ADJ-TERM

F{%;s' >s"} ¢ Step i€ I(s") {788 Fiet
{7 >s"}Fist

IDENT-LOCAL-SCOPING

F{%;s'} s Step i g I(s) {T}trist
{Z;s'yrist

IDENT-SKIP-STEP

These rules indicate how we retrieve the type of an identifier from the context. They decompose
the step as context of typing to find the declaration IDENT-DEC, definition IDENT-DEF or the
adjective statement IDENT-ADJ-TERM. In the case of a field of a term (e.i) the IDENT-FIELD
rule applies first.

Fig. 2. Identifiers

Fs ¢ Step ste s Noun(T)
s+ term(e)/set(e)/noun(e) s Term(T)/Set(T)/Noun(T)

CATEG-TERM/SET/NOUN

Fs e Step skees Noun(T) ske' s Noun(T') T<T

CATEG-ADJ
st adj(e,e) s Adj(T, T")

s s Step s s Step skc$ at
————————— CATEG-STAT CATEG-DEC
sk stat 3 Stat st dec(c) & Dec(() — at)

s e Step
——— CATEG-VAR
skvaew

Category expressions are used in declarations. These category expressions set the category of
the parameters and of the output of an identifier. Some category constructors (term, noun,adj
and set) are parametrised by a noun expression.

Fig. 3. Categories (we use the symbol / to group the three similar rules)

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM 05 13

s Step
stkci e (at1,...,atn) — at Viell...n],{s;e1;...;ej_1} Fej s at;
at’ & cvar ati,...,aty) — at < (at},...,at)) — at’ satisfiable
z (aty ”) < (aty i n) fi INSTANCE
sk ci(er,...,en) s at
s s Step

{s; self : Term(T)} s ¢ Step Vi € I(s),{s; self : Term(T); s’} i ¢ T(i)
s Noun {s'} ¢ Noun(T)

NOUN

s s Step
stes Noun(T) T<T {s; super : Term(T); self : Term(T')} s ¢ Step
Vi € I(s"), {s; super : Term(T); self : Term(T');s'} =i ¢ T'(4)
sk Adj (e) {s'} ¢ Adi(T, T

ADJ

s s Step
sker $ Adj(Ty, Ty) st ez s Noun(Tz)/Set(T2)/ Term(T2) T < To
. . ; . REFINEMENT
st eiea o Noun(T{ W To)/Set(T] W T2)/ Term(T] & T2)

s s Step
skep s Adj(Ty, T{) stkea o Adj(Tg,TQ/) T < TQ/ T{

T:
- 7 7 7 2 ADJ-REFINEMENT
skerea o Adj(T1] (TQ o Tl)v T, ¥ TQ)

IN

s e Step st i1 s Noun(Tr) st ciag & Noun(T2) To
st i < cig o Stat

1
SUB-NOUN

s Step stk ¢ Term(Ty) sk cig 8 Adj(Ta, Ts) Ty < Ty
: : ADJ-TERM
sk < cio o Stat
F{3;self : at} ¢ St
{5 self : at} s Step SELF
{s;self : at}+self 3 () — at
F{=; cat} s St Fse St lel
{7s; super : at} ep SUPER s ep (s) REF
{3 super : at} - super ¢ () — at st ref |3 Step

The typing of the parameter expressions should satisfy the type of the identifier for the instan-
tiation of the identifier (INSTANCE rule). In the NOUN rule, self is added to the context for
the typing of the step defining the noun. In ADJ, both self and super are added. A refinement
creates a noun expression from an adjective and a noun. The set of components required to
use the adjective should be a subset of the set of components of the noun.

Fig. 4. Expressions (we use the symbol / to group the similar refinement rules)

s Step sk i1 ¢ Noun(Th)
st cia § Noun(T2) dom(T2) C dom(T1) Vi € dom(T2), T1(i) < T2(%)

st i < cig o Stat

SUB-NOUN

s ¢ Step st s Term(Tr) sk ciz s Adj(Te, TS)
dom(T2) C dom(T1) Vi € dom(T2), Ti(i) < T2(%)
sk < cig o Stat

ADJ-TERM

Fig.5. Phrases

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM °05 14

Fs ¢ Step i & I(s) Viell...n], stk c; ¢ aty stes Noun(T)/Set(T)
sti(er,...,cn) te s Dec((aty,...,atn) — Term(T))

DEC-1

s s Step i & I(s) Vie[l...n],sk c; ¢ atj skce at
sti(er,...cn):c s Dec((aty,...,atn) — at)

DEC-2

s s Step i & DI(s) Vi,ke[l...n],j #k=1i; #i
Vie[l...n],sk i s () — at; Ujet...m]% = dI(s) \ {i}
skes at if i€ dI(s) then sk 1 ¢ (at1,...,atn) — at

sti(it,... i) :=e s Def((at1,...,atn) — at)

DEF

s s Step if i € I(s) then st ¢ (at1,...,atn) — at
Viel[l...n],ske; ¢ atj skes at

st iler,...,en) :=e¢ o Def((at1,...,atn) — at)

DEF-CASE

Declarations and definitions introduce new identifiers. For a declaration, the category of the
identifier could be explicitly expressed (DEC-2 rule) or an expression could be given that
represents the elementhood of the identifier (DEC-1 rule). For a definition, the parameters
could either identifiers (DEF rule) or expressions for definition by matching (DEF-CASE rule).

Fig. 6. Declarations and definitions

Fs1 8 Step 51k s 8 Step {s1;82} {7} ¢ Step
s1 b {s2; 5} s Step

STEP-COMPOSITION

s Step sk s ¢ Step {s;s'} 5" ¢ Step
sks' >s" 3 Step

LOCAL-SCOPING

Fse St =p ¢ Stat/Dec(t)/Def (t
® L P at/Dec(t)/Def () ATOMIC-STEP

skps Step
s s Step s s Step
———————— SELF-MARKER ——— SUPER-MARKER
st self :t s Step st super : t 3 Step
s Step {s;1: Label} - s" 3 Step
——— EMPTY-STEP 7 LABEL
F{} ¢ Step s label | s’ ¢ Step

Only well typed statements, declarations or definitions could be phrases (ATOMIC-STEP rule).
Phrases stand for atomic steps Blocks. Each element of a block should be a valid step in the
context formed by the preceding elements of this particular element (BLOCK rule). As presented
in section 2, a local scoping builds a step as a context for another step (LOCAL-SCOPING rule).
See example 1 for examples of steps.

Fig. 7. Steps

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM 05 15

the context part of a local scoping. x is available in the part of this context
that follows the declaration (3), and also in the body part (4) of the local
scoping. But x is not available before being declared, in the preceding steps
(1) as well as in the preceding part of the context (2) of the local scoping. x
is also not available in the steps that follow the local scoping (5).
{ (1);
{@);
x:term;
3) ¥y I>{# 3}
(5) ¥
2. The second case is a declaration or a definition as atomic step. The identifier
is therefore available for all the following steps of the MathLang document.
A declaration of a triangle is an atomic step of the sub-block of a block. The
identifier triangle is not available before being declared (1) and (2) but is
available in all what follows (3) an (4). The availability of triangle would
have been identical if the declaration had been replaced by a definition.
{ (1);
{(2);
triangle :noun;
(3) ¥;
(4) ¥
3. The last case is declarations as parameters of identifiers. If an identifier
takes a declaration as a parameter, then the declared identifier is available
for the following parameters. Let us illustrate this with the encoding of an
expression with the universal quantifier. We declare an identifier binder with
a declaration as second parameter. We also declare an identifier operator
with three parameters. In an expression using these two identifiers, a variable
x is declared. This identifier x is not available before being declared (1) and
(2). x is available in the parameters of the binder that follows the declaration
of x (3). Finally x is neither available in the remaining part of the expression
(4) nor in the steps that follow (5).
{ binder (term, dec(term), term): term;
operator (term, term, term): term;
[...] a((1), binder ((2), x:term , (3)), (4)) [...];
(5) ¥

5 Conclusion and future work

To have MathLang being adopted by mathematicians is our aspiration. We are
convinced that providing yet another concrete syntax will never make a math-
ematical language widely used. We are therefore focusing on interfacing Math-
Lang with user-friendly tools. We are currently embedding MathLang concepts
and type checking in the scientific editor TEXmacs with the development of a
MathLang-plugin. This plugin is making full reuse of the mechanisms for ren-
dering MathLang texts in their original CML forms. These mechanisms were
presented in [10]. In parallel, we are implementing the MathLang’s new features

Kamareddine, Maarek, Wells — Object-Oriented Math Text — MKM 05 16

presented in this paper. These new features will be tested on already realised
translations. New translations will benefit from the assistance of the editor and
will gain in expressiveness with the new object oriented features of the language.

Concerning the language definition part, we believe that more flexible ab-
straction mechanisms could be added. For this purpose we will investigate the
possibility to integrate in our system the notion of traits, a new member of the
object-oriented programming. We would also like to relate our low level en-
coding of groups to a previous work. In the computer algebra system Focal [15],
species and collections are object oriented structures that have been used to
create an algebraic hierarchy. Finally we would be interested in comparing
MathLang’s nouns and adjectives with concepts and roles of Deductive Logics
(DLs) [1] and in investigating existing research in mixin extension of DLs.

In this paper we proposed to capture the structure of mathematical with
object-oriented features. We exposed the relevance of this approach with two
examples and presented a type system for MathLang that incorporates these
features. This work is a step of our larger aim to consider the encoding of the
natural language parts when computerizing mathematical text.

References

1. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-
Schneider, editors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

2. Nicolas Bourbaki. Elements of Mathematics - Algebra, volume II. Hermann, 1974.

3. Gilad Bracha and Gary Lindstrom. Modularity meets inheritance. In Proc. Int’l Conf. Com-
puter Languages, pages 282-290, 1992.

4. N.G. de Bruijn. The mathematical language Automath, its usage, and some of its extensions.
Lecture Notes in Mathematics, 125:29-61, 1970.

5. N.G. de Bruijn. The mathematical vernacular, a language for mathematics with typed sets. In
Workshop on Programming Logic, 1987.

6. M. Flatt, S. Krishnamurthi, and M. Felleisen. Classes and mixins. In POPL 98, pages 171-183,
1998.

7. Heath. The 13 Books of Euclid’s Elements. Dover, 1956.

8. G. Jojgov and R. Nederpelt. A path to faithful formalizations of mathematics. In MKM 2004,
volume 3119 of LNCS, pages 145-159, 2004.

9. G. Jojgov, R. Nederpelt, and M. Scheffer. Faithfully reflecting the structure of informal math-
ematical proofs into formal type theories. In MKM Symposium 2003, volume 93 of ENTCS, pages
102-117, 2004.

10. F. Kamareddine, M. Maarek, and J. B. Wells. Flexible encoding of mathematics on the com-
puter. In MKM 2004, volume 3119 of LNCS, pages 160-174, 2004.

11. F. Kamareddine, M. Maarek, and J. B. Wells. MathLang: Experience-driven development of
a new mathematical language. In MKM Symposium 2003, volume 93 of ENTCS, pages 138-160,
2004.

12. F. Kamareddine and R. Nederpelt. A refinement of de Bruijn’s formal language of mathematics.
Journal of Logic, Language and Information, 13(3):287-340, 2004.

13. Michael Kohlhase. Semantic markup for TEX/IATEX. Mathematical User-Interfaces Workshop,
2004.

14. Edmund Landau. Foundations of Analysis. Chelsea, 1951.

15. Virgile Prevosto, Damien Doligez, and Thérese Hardin. Algebraic structure and dependent
records. In TPHOLs 2002, volume 2410 of LNCS, pages 298-313, 2002.

16. Mark Scheffer. Formalizing Mathematics using Weak Type Theory. Master’s thesis, Technische
Universiteit Eindhoven, 2003.

17. F. Wiedijk. Formal proof sketches. In TYPES 2003, volume 3085 of LNCS, pages 378-393,
2004.

