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Abstract. Many differentmobile process calculhave been invented, and for
each some number of type systems has been developed. Sssiratme other
properties must be proved separately for each calculus ye dystem. We
present thgenericpolymorphic type systefolyd which works for a wide range
of mobile process calculi, including thecalculus and Mobile Ambients. For any
calculus satisfying some general syntactic conditiongl-feemedness rules for
types are derived automatically from the reduction rulesRaly(] works other-
wise unchanged. The derived type system is automaticaliyds(@.e., has subject
reduction) and often more precise than previous type sysfemthe calculus,
due toPoly['s spatial polymorphismWe present an implemented type inference
algorithm for Poly[d which automatically constructs a typing given a set of re-
duction rules and a term to be typed. The generated typirgprancipal with
respect to certain natural type shape constraints.

1 Introduction

Many calculi that intend to capture the essencenobile anddistributed computing
have been invented. The most well-known of these are prghiablm-calculus [19]
and theMobile Ambientgalculus (MA) by Cardelli and Gordon [9], but they have in-
spired the subsequent development of a wide variety of marend alternatives, which
are variously argued to be easier to program in or reasontaiod/or closer to some
operational intuition about how programs in a mobile, distied setting can be imple-
mented. The field stays productive; new calculi are stilhggiroposed and there is not
a clear consensus about what should be consideefdndamental mobility calculus.
The majority of these calculi share the basic architectfiddAx They borrow from
thetrcalculus the syntactic machinery for talking about sefsashllel, communicating
processes, plus its primitive operatofor generating unique names. To this they add
some kind ofpatial structureusually in the form of a tree of locations where processes
can reside. The tree can generally evolve under programatas the processes in it
execute; the different calculi provide quite differentmpitives for mutating it. Mobil-
ity calculi also provide focommunicatiorbetween processes that are near each other,
usually modelled on the communication primitive of tizealculus, but again with vari-
ations and often extended with the possibility to commuei¢eapabilities”, “paths”,
or other restricted pieces of process syntax, rather trtmpames.
Most process calculi have an associatgie systemeither one that was designed
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with the calculus from the beginning, or one that was retatfitater. These type sys-
tems are closely tied to a specific calculus and its partiquienitives. Once a type

system has been designed and its properties (such as sesmuatriiee applicability of a

particular type inference algorithm) have been proved, iihigeneral not trivial to see
whether these properties will survive changes to the cadcul

1.1 A generic type system.In contrast, this paper presents tEnerictype system
Polyd which works for a wide range of mobile process calculi. To Bs¢y/[], one
simply instantiates it with the reduction rules that spedife semantics of the target
calculus’s primitives. From this, a set of provably soundvi@medness rules for types
can bemechanicallyproduced, guaranteeing that types that satisfy the rueesaund
with respect to the reduction rules, i.e., subject reductiolds. The reduction rules
can also be used to guide an automégioe inferencealgorithm for the instantiated
type system. The inference algorithm produces a type wisiphimcipal with respect
to certain natural constraints on the shape of types. Ouleimgntation offers several
possibilities for tuning therecisionof the type system it implements, but the use of
these is optional — it will always produce a typing even whéreg only the raw
reduction rules of the target calculus.

For this to work, the target calculus must make one small ession toPoly(],
namely that itsyntaxis sufficiently regular that the implementation can makeseesf
its terms and reduction rules. We definenatacalculusMetall which gives a syntax
that is easy to parse and manipulate, while flexible enoughrttany calculi can be
viewed as instances of it without deviating much from theitive notationsMetall
does not include any fixesemanticexcept for the usual semantics of parallelism and
name restriction, but instead provides a common notion b$tiution and a notation
for rewriting rules that fits how semantics for process dake usually defined.

1.2 Poly's relation to other reasoning principles. A long-term goal ofPoly(] is
to make it possible to view many previously existing mopitglculi type systems as
instances oPoly[], at least with regards to using the type system to stativellify that
certain bad behaviours do not occur. The design we preseatdo@s not quite reach
that point; there are features of existing type systemswigdiave not yet incorporated
in Poly[. We believe it will be particularly important to express soform of thesingle-
threadedocations introduced by the original type system for Safefants [17].

We do not expect actual programming environments based dailitpecalculi to
use the fully generdPoly) formalism as their type discipline. Considerations of per-
formance and integration will generally dictate that pratin environments instead
use hand-crafted specialised type systems for the langhagesupport, thougldeas
from Poly(0 may well be employed.

A generic implementation dPoly(], such as the one we present here, should be a
valuable tool forexploring the design spader mobility calculi in general. It will make
it easy to change some aspect of one’s rewriting rules, tanadyse some terms, and
see which effect the new rules have on, for example, thefertmce-control properties
of one’s calculus. At the same time, dewly[] implementation makes it easy to exper-
iment with exactly how strong a type system one wants to ugedotice, because our
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implementation supports tuning the precision of types iry senall steps.

Like every nontrivial type system with an inference aldumit Poly(] can be used
as acontrol/data flow analysito provide the substratum for more specialised automatic
program analyse$ (Readers who are uncomfortable about applying the terne“sys-
tem” to Poly[d are invited to think “versatile program analysis framewagkch time
we write “type system”.) However, we have no pretension dissuning all other anal-
ysis techniques for mobility or process calculi in gendPabcess calculi have provided
the setting for many advanced techniques for reasoningtaloo@xample, behavioural
equivalence of processd®ly] does not claim to compete with these.

1.3 Spatial polymorphism. ThePoly[] type system descends from (but significantly
generalises and enhances) our earlier work [2PolyA, a polymorphic type system
specific to Mobile Ambients. It inherits froPolyA the difference from most other type
systems for mobility calculi that the emphasis is on typepfocessesather than types
for (ambient or channehames® In fact, types for names have completely vanished: A
name has no intrinsic type of its own, but is distinguishedlgdy the way it can be
used to form processes.

PolyO works by approximating the set of terms a given term can pbssiolve to
using the given reduction rules. Its central concept isdfashape predicatewhich is
an automaton that describes a set of process terms. Shajiegpes that satisfy certain
well-formedness rules atgpes These rules are derived from the reduction rules of the
target calculus and guarantee that the set of terms dengpi@type is closed under the
reduction relation, i.esubject reductiofolds.

This design gives rise to a new (witfolyA) form of polymorphism that we call
spatial polymorphism. The type of a process may depend on where in the spatial
structure it is found. When the process moves, it may comeninfluence of another
part of the type which allows more reductions. For exampasier a calculus which
has the single reduction rutgeat b | P| | b[Q] < a[P | b[Q]]. In this calculus, the term
x[eatzl | eat z2] | ylleatx | z1[0]] | y2[eat x | z2[0]] has &oly type, shown in Figure 1,
that says that[] may contairel[] when it it insidey1[], orz2[] when it it insidey2[], but
can contain neither when it is found at the top level of thentérhusPoly[] can prove
that the term satisfies the safety policy thhtandz2 may never be found side by side.
To our knowledge, type systems based on earlier paradignmotdo this.

With spatial polymorphismmovements what triggers the generation of a poly-
morphic variant of the original analysis for a piece of cotlleis is different from, and
orthogonal to, the more conventional form of name-paramewlymorphism in the
polymorphicrecalculus [25], where it isommunicatiorthat causes polymorphic vari-
ants to be create®oly does not support the latter form of polymorphism (and neithe

1 These fine tuning options are omitted from this paper duedk ¢d space, but they are de-
scribed in detail in the implementation’s documentation.

2 Indeed it is well known [21, 4] that the difference betweeradmanced flow analysis and an
advanced type system is often just a question of differerggeetives on the same underlying
machinery. The presentation Bbly is closer to the data-flow viewpoint than is common for
type systems, though this of course does not nidtel] any less a type system.

3 There are a number of type systems for process calgtiibutan explicit notion of locations
which assign types to processes rather than names, for é&x@nas, 28, 12].
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active{ P in x[P] }
reduce{ a["eat" b|P] | b[Q] --> a[PIb[Q]] }
analyse{ x[eat zl | eat z2]
| yileat x | z1[] ]
| y2[eat x | z2[1 1 }

Fig. 1. Input to our type inference implementation for analysingiant in the fictional “eat cal-
culus”, and the inferred type graph as rendered by the VCGobrkayout tool [24] (the dashed
lines represent subtyping edges).

does any type system for a mobility calculus with explictdtions that we are aware
of); we leave it to future work to try to combine the strengbfishese two principles.

1.4 Notation and preliminaries. , whereX is any metavariable symbol, stands
for the set thaiX ranges overz;,(A) is the set of finite subsets of the etA fin, g

is the set of finite partial maps frod to B. Dom f is the set ofX's such thatf(x) is
defined. In contexts where a sequence of similar objectsxdexed with indexes up to
k, it is to be understood th&tcan be any integer 0. Thus, if the first index is 0, the
sequence must have at least one element; sequences inderedtbk may be empty.

2 Metall: A metacalculus of concurrent processes

The metacalculuMetal defined in this section is th&yntacticsetting forPoly[l. Its
role is to let us present the generic propertieBalf/[] without resorting to handwaving.
Though we define a reduction relation and some other fornwdgaties forMetald,
these exist solely as support for making formal statemelndsitzPoly[]. We do not
intendMetall to take the place of any existing calculi or frameworks.

As a first approximationiVetall is a “syntax without a semantics” except that it
does give semantics to a few basic constructs, e.g., proggissation and substitution.

2.1 Terms. Figure 2 shows the syntax of process termilgtal]. The trivial process
0, parallel composition of processEs Q, process replicatiohP, and name restriction
v(x).P are all well-known from most process calculi, includirgralculus and MA.
They are given their usual behaviour by the structural coagce relatiorE.

Metall amalgamates all other process constructors into the decmmaept of a
form. Forms have no intrinsic meaning until a set of reductioesujive them one.
Examples of forms include the communication actiorsy®>” and “x(y)” from the
T-calculus, the movement capabilitieia X", “ out X”, and “open X’ from Mobile Am-
bients, and even ambient boundaries themselves, which iteasrk [ 1”. We support
the traditional syntaxx{P]” for ambients by interpretingE; ... Ex[P]E; ... E},” as syn-
tactic sugar for E;...Ex[1E;... E..P". Except for this syntactic convention, the sym-
bol [1 has no special interpretation Metall and it is a (single) name just like and
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Names: Xy:=a|b...z|aa|ab...eas|eat|eau ... |[[1]|"|:|*]|/...|e
Sub-forms:  fi=XgX1... X

Messages: M,N::=f | 0 | M.N

Elements: E =X (X1, X1, .., %) | <M1, Mo, ..., My>

Forms: F: =EgE;...Ex

Processe®, Q,R::=F.P| IP|v().P|0|(PIQ)

Free and bound names in terms are defined thus (the omittesd lsaig purely structural):

FN(x) = {x} BN(x) =@

FN((X1,...,%)) =@ BN((X1,..., X)) = {X1,...,. X%}

FN(F.P) = FN(F) U (FN(P) \ BN(F)) BN(F.P) = BN(F) UBN(P)

FN(vO).P) = FN(P) \ {x} BN(v(x).P) = BN(P)
P=P P=Q=0Q=P P=QAQ=R=P=R PIQ=QIP
PI(QIR=(PIQ) IR Plo=P IP=P|!P 10=0
P=Q=FP=FQ P=Q='P=1!Q P=Q=Vv(X).P=v(x).Q
P=Q=—P|R=QIR x¢& FN(F) Ax & BN(F) = F.v(x).P = v(x).F.P
XZ FN(P) =P 1 v(x).Q=v(X).(P 1 Q)
y & FN(P) = v(0.P=v(y).[x:=Yy|P V(X).v(y).P=v(y).v(x).P

Fig. 2. Syntax ofVletall plus its structural congruence relation

out. The proces§.0 can be abbreviated &s

A form consists of a nonempty sequenceetdments each of which is either a
name, abinding element, or anessageslement. Names are used to name channels,
ambients, and so on, but also work as keywords that dissihgiarms with different
roles in the calculus. A keyword is simply a free name that &ahned explicitly by
some reduction rule. Most non-alphanumex&cii characters that do not have any
special meaning? :, *, /, etc.) are also names and so can be used as keywords. With
these we can encode, e.g., annotated communication atikietigM) " or “ (x)¥” from
Boxed Ambients [6] using pseud@X notation as the forms<M> =~ x” and “(x) ~y".

Binding elementgx1,...,Xc) are used to create forms that bind names in the pro-
cess they are applied to. The canonical use of this is fortnmtsg receive actions,
but again the meaning of the form is specified only by the rédoaules. Message
elements- - -> allow a form to contain other forms, which — given appromiegduc-
tion rules for communication — can later be substituted prtocesses. For technical
reasons we have to restrict the forms contained in messageats in that they cannot
contain message or binding elements themselves. We redectorestricted forms and
their elements asub-forms andsub-elements In future work we hope to be able to
handle calculi such as the spi-calculus [1] which commumis&uctured messages.

It is not uncommon for calculi to prefer using an explicit wesion construction
“P::=rec X.P" to express infinite behaviour rather than the processaatitin oper-
ator “!”. There are certain technical problems with supporting thirectly inMetall
(which may however be approachable by novel techniquedvimgregular grammars
developed by Nielson et al. [20]). In the common case whezddlget calculus does
not allow location boundaries to come betweenriteX binder and the bouny, it can
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X whenx ¢ Doms
E M S(x) whenxe Doms
SEx= 4y whens(x) =y for somey SVx= .
. X otherwise
e otherwise

p
SP(VO0).P) =v(x).5PP SP(xP) = {S(X)*(S P)  whenx & Dom.s

x.(sPP) otherwise

Fig. 3. The actions of term substitution™ is the action on messages’ the action on elements,
sF on (sub)forms, and P on processes. The omitted cases (including the ong Trsimply
substitute componentwise into the syntactic element istiue The MP helper operator serves
to linearise messages once we do not need to keep track dievlieey are composite or not. (In
other systems, this is often done by the structural congreieglation instead.)

easily be simulated iMetald by adding the reduction rukawn a | rec a.P — P and
then representingec X. - -- .X asv(x).(spawn x | !recx.--- .spawn x).

2.2 Well-scoped terms. The process terrR is well scopediff it contains no nested
binding of the same name and none of its free names also appead in the term.
Formally, it is required that (1) BiP) and FNP) are disjoint, (2) whenevd? contains
F.Q, BN(F) and BN Q) are disjoint, and (3) whenevercontains/(x).Q, X ¢ BN(Q).
We generally require that terms are always well scoped. €daation rules in an
instantiation oMetald must preserve well-scopedness. This simplifies the typlysina
because then we do not have to suppeconversion of ordinary binding elements.
We must still handl@-conversion of private names, which is built into theaela-
tion, but we will assume that it is not used to create termsatanot well scoped.

2.3 Substitutions. Substitutions inMetall] substitutemessagefor names The fact
that entireprocessesannot be substituted is an important technical premigtoyf ;
it means that substitution can preserve well-scopedneisstdmarkable that mobility
calculi in general refrain from substituting processes;asuch as Seal [26] ankl 3
[13] which allow exchange of entire processes do it by loecavementather tharsub-
stitution This probably reflects the intuition that a running prodes$srder to distribute
across a recipient process than a mere name or code sequence.

A (term) substitution s is a finite map from names to messages. Figure 3 de-
fines the action ofs on the various syntactic classes Mgtall. In Mobile Ambi-
ents and its descendant calculi, the value exchanged in enooination operation can
be either a name or a (sequence of) capabilities. The forsnéirei case in reduction
(b) | (a).outa.0 — outb.0 and the latter inlinb) | (a).x[a.inc.0] — x[inb.inc.0]. To
support this, Fig. 3 contains special cases for the syctaatieM ::= F andP ::=F.P
when the formF is a lone name. In that case the substitution for the nameséestied
directly into the message (or process structure).

In cases likg{a — b}Px[out a.0] where the substituted name occurs properly inside
a form, the substitution is carried out componentwise fahefarm element, and the
name is replaced in the rule fef x. In this context the replacement must be a name
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too. This will be false if the term tries to reduce @sb) | (a).outa.0 — out(inb).0.
The published formalisms of most ambient-inspired caloatlially regard Sut (inb)”
assyntacticallypossible busemanticallymeaningless. That this configuration cannot
occur is often the most basic soundness property of typemgstor such calculi.

In Metald such a semantic error becomes a syntactic one: It is simplpossible
to use an entire form as an element (except indirectly thi@umessage element). If,
at runtime, a substitution nevertheless tries to do so, Wstiute the special name™,
which is to be interpreted as, “an erroneous substitutiggpbaed here”. Thus, with
the MA communication ruleMetal] reduces<in b>.0 | (a).out a.0 < oute.0. This
convention is technically convenient because it allowsaubdund the nesting depth
of forms (using the sub-form restriction). Because mostliphbd calculi attach no
semantics to forms likesut (inb)”, we do not lose any real expressiveness.

Forms that contaim are inert inMetalJ unless there are reduction rules that explic-
itly match one. The calculus designer can also define reduction rules thate's in
other situations to mark reduction results as “erronedust’.example, in the polyadic
T-calculus, it is usually considered a run-time error if sometries to send am-tuple
on a channel where another process is listening fon-&uple, with n = m. By writ-
ing explicit ruleg for such situations, they can be handled in parallel withfomaded
substitutions. (One cannot straightforwardly write pateto test for malformed sub-
stitutions, which is one reason for building the generatibsinto MetalJ).

In either case, th@oly type system will conservatively estimatehether(and
where) ae can occur. Which conclusions to draw from this (e.g., réecthe input
program due to “type error”) is up to the designer of the dalsu

The definitions in Figure 3 do not worry about name capturgelneral, therefore,
sX X is only intuitively correct if BN X) is disjoint from the names mentionedJn In
practise, this will always follow from the assumption thikterms are well scoped.

2.4 Reduction rules. Figure 4 defines most of the syntax and semantics of reduction
rules forMetall. Our full theory (and implementation) allows a slightly ra@xpressive
template language to the right of the arrow@uducerules, but the subset we present
here is sufficient to express the calculi listed in Sect. 2.5.
As an example, with this syntax we can describe Mobile Amisiby the ruleset
®ma = { active{P in a[P]},

reduce{a(inb.P | Q] | b[S] — bla[P | Q] | S]},

reduce{ablouta.P | Q] | S] — a[s] | b[P | Q]},

reduce{opena.P | a[R] — P | R},

reduce{<M>.P | (a).Q—P | {a:=M}Q} }

These five rules are all that is necessary to instanizte (] to be Mobile Ambients.
The fourreducerules directly correspond to the reduction axioms of thgeacalcu-
lus. The ruleactive{P in a[P]} is theMetall notation for the “evaluation context” rule

4 E.g.,reduce{<M1,M2> P | (x1,%x2,x3).Q — .0} for (m,n) = (2,3). Our implementation pro-
vides an extension for writing a single rule that catchepaills(m,n) at once.

5 The rules are not sufficient to get communication reductidth arbitrary arity. Our imple-
mentation provides a syntax for defining arbitrary-arityntounication rules, but for reasons
of space and clarity we omit it in our formal development.
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Name variables: Xi=a [blc]- -
Message variablesn:3=M | N | ---
Process variables:p:*=P|Q|R] -

Substitutes: su=X|m
Element templatesE ;=X | x| (Xq,...,%) | <fy,..., >
Forms templates: F ::=EgE1...Ex
Process template® =P |E.P| 0| (P | P2)
| {(Xo=s50, K=} B (R)
Rules: %1 ::=reduce{P; — P,} | active{ pin P}

Rulesets: R € Tﬁn()

The syntactic choice markd®) is allowed only in areducerule to theright of the arrow.

Let anterm instantiation % map[X] to [X]\ {e}, [f] to [M], and to[P]. It applies to

templates strictly componentwise, except for the caséfittsin and applies a substitution:

VP =8, D) =L Y (R) = Y (S)... P (D)

As a special exceptiony PP is consideredundefinedf v/ (%) = ¥’ (%) for %1 # % such
thatx; occurs inP below a form template containing a binding elemént ,%,...).

For example{a — x,b — x, c — x} cannot be applied t¢a).c.0 | (b).c.0, which would
otherwise capture names and prodge.x.0 | (x).x.0.

reduce{P; — P} € % RFP—Q

R bE VPP — VPP, % FV(X).P—v(X).Q
active{pinPle®x & FP—=Q REP—Q P=Q ®FQ=R
RF(‘V[f)n—»P])PE%('V[f)n—»Q])PE RFPIR—=QIR R FP—=R

Fig. 4. Syntax and semantics of reduction rules.

P — P’ = a[P| — a[P']. This is, in fact, the only concretetive rule that we have so
far needed for encoding existing calculi. We might just hiaaed-coded something like
this rule intoMetal], but we find it cleaner not to have any built-in distinctioriieeen
“action” forms and “process container” forms in the theory.

The lower half of Figure 4 defines how to derive a reductioatieh between pro-
cess terms from a ruleset. For example Aet: be the ruleset for the fictional calculus
from Fig. 1:Rear= { active{P in a[P]},reduce{aleatb | P] | b[Q] — a[P | b[Q]]} }. We
can then instantiate the first inference rule in the bottand thf Fig. 4 to obtain

Reatt ylleat x | z1[0]] | x[eat z1 | eat z2] < y1[x[eat z1 | eat z2] | z1[0]]

by choosingy to be{a— yl, b x, P +— z1[0], Q — (eat z1 | eat z2)}.

A reduction rule must not allow a well-scoped term to reduca hon-well-scoped
one. In order to guarantee this, the process templatesriminest satisfy some scoping
restrictions that are not apparent from the syntax. Theicésns will be satisfied by
most rules that are intuitively sensible; because a pragiskerstanding of how the
restrictions work is not important for a high-level undarsiling ofMetal, we refer to
this paper’s long version [18] for a precise definition.
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2.5 Example instantiations. We have checked (using machine-readable rulesets for
our type inference implementation fisteta 0/Poly[J) thatMetald can handletcalculus
[19]; Mobile Ambients [9]; Safe Ambients [17] and variousrieants regarding where
the out capability must be found and which name co-capabilitiestmefer to (vari-
ants with anonymous co-capabilities also exist [16]); teal®alculus [26] in the non-
duplicating variation of [11]; Boxed Ambients [6], as wel &s “asynchronous” and
“Seal-like” variants (the latter being what later paperstradten refer to as BA); Chan-
nelled Ambients [22]; NBA [7]; Push and Pull Ambient Calcsilf23]; andM® [13].

In many of these caseb]etal] supports the straightforward way to notate process
terms as flaiscli text, but in some cases the native punctuation of the tagjetic
lus must be changed superficially to conformMetall conventions about how a form
looks. For example, the original send actiptfrom [19] is represented ag<x>" (but
“/y X' would also have worked), anctfiter(x,y)” from [7] becomes &o-enter (X)y”,
because it bindg in its continuation but usegto handshake with the entering ambi-
ent. The h[cy, ..., ck; P]” construction in Channelled Ambients [22] can be represgnt
as Nfcs.(c1.0 | --- | &.0) | ps.P]". In our ruleset for Mobile Ambients with Objective
Moves [8], the fact that reduction rules cannot inspect thecture of messages forces
us to represent the originagb M.m[P]” as “go.M.m[P]".

3 Polyll: Types for Metall

3.1 Shape predicates.As described in the introductioshape predicateare the
central conceptifoly[]. A shape predicate denotes a set of process terms; cerégia sh
predicates that are provably closed under reductiotygess The full language of shape
predicates is somewhat complex, so let us introduce it pisee The basic idea of
shape predicates can be explained simplghape predicate looks like a process term.
It matches any process term that can arise by repeatedlyichtilg and/or removing
sub-terms of the shape predicattere, “duplicating” and “removing” sub-terms means
applying the rewriting rulest~ 11| TtandT~~ 0 to any syntactic subterm of the shape
predicate, in addition to using the structural congrueetaion for terms.

For example, a shape predicate writtginb | inc] | c[0] would match the terms
afinb | inc] | ¢[0] (which is identical to the shape predicate) aifichb] | afinc] | c[0]
(which arises by duplicating[- - -] and then removing one of thie subterms in each of
the copies). But[inb] | c[a[0]] does not match, because duplicating subterms cannot
makeal[] appear below @[]. Neither isinb | inc | c[0] allowed — when removing
thea[] form, the entire subterm below it must be removed.

The type in Fig. 1 can be written in term shapeyaeat x | z1[0] | x[z1[0] | eat z1 |
eat z2]] | x[eat z1 | eat z2] | y2|x[eat z1 | eat z2 | z2[0]] | eatx | z2[0]].

In practice shape predicates cannot be exactly term-shhpei pays to keep this
naive idea in mind as an intuition about what shape predicate When we introduce
complications in the rest of this subsection, they shodld@linderstood as “whatever
is necessary to make the naive idea work in practice”.

Replication (P) is ignored when matching shape predicates. This is senbil
cause! P behaves like an infinite number Bfs running in parallel, and anfynite num-
ber of P’s in parallel match a shape predicate exactly if a sifgjtioes.
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Message types: pi={f1,..., fild* | {x}>
Elementtypes: e:=x| (X1,...,%) | <H1,..., >
Form types: ¢=¢€p€1...8

Node names: X,Y,Z:=X|Y|Z] --

Type substitutionsT fin,

Edges: n:= LIV \ X dr}—=Y
Shape graphs: G € #in([n])

Shape predicates: ::= (G| X)

M¢ M*0:f14f24.4fk40 {f17.4.,fk}g{f’7.4.7f|i,}

EM:{f],. . T3 Fx:{xt
FMpiw - Mgtk
FX:x Xy, X0 - (X, e, XKD F<Mq,...,M> <, ... >
FEp:gg -+ FEy: &k X&Y)eG  FF:p  FP:(G]Y)
FEg...Ex:€p...8 FF.P:(G|X)
FP:m FP:mt FQ:m
FIP:m FPIQ:T Fo:m

Fig. 5. The syntax and semantics of shape predicates. Edges ofrtheXfelz]— Y do not influ-
ence the semantics of the shape predicate; Sect. 3.2 egpldiat they are for.

We want to represent all possible computational future chdarm smashed to-
gether in a single shape predicate. This creates problenthdmaive idea, because
terms such asx[eat x] can evolve to arbitrary deep nestingsx¢f--]. Therefore we
need shape predicates toibénitely deep trees. We restrict ourselves to infinite shape
predicates with finiteepresentations— in other words, regular trees.

There are several known ways of representing regular tielsear syntax, but we
have found it easier to work directly witgraphs A shape predicate now has the form
(G| X), whereG is a directed (possibly cyclic) graph where each edge idlebwith a
form, andX is a designated root node in the graph. A term matches thegiragicate
if its syntax tree can be “bent into shape” to match a subgsaph that each form in the
term lies atop a corresponding edge in the graph (edges magdaemore than once),
and groups of parallel compositioh,ando lie within a single node in the graph.

The formal structure dPoly(] uses graphs where node names are just opaque identi-
fiers and the meaning is given by edge labels. Wiisplayingthe graphs (as in Fig. 1)
we have found it useful to put each edge label inside the sdgajet node. Of course
this can’t be done in the rare cases when two edges that skemgeadisagree.

Graphs alone are not enough to guarantee a finite type foy &aren. For example,
the term<x> | ! (y).<y.y> can (given the reduction rules of MA) evolve into terms
with messages that contain arbitrarily long chaing’efwithin a single form. We need
to abstract over messages such that an infinity of forms tiudt &like except having
messages of different length within them can be describethbéysame shape graph
label. This is the job ofmessage typeg, which are defined in Figure 5.
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The message typgfq, ..., fy}* describes any message built from the any of forms
fi — exceptmessages that are single names; such a message is matchedrbgs-
sage type(x} instead. Wherx} is theonly message type that matchesve can see
unambiguously from a message type whethevill result from trying to substitute a
message it matches into an element position. Weelesaent typese andform types
¢ to build form-like structures out of message types and nessage elements.

The syntax and semantics of shape predicates is defineduneFsg To save space
and present the basic theory more clearly we do not hamatee restrictionhow to
treat it is described in [18]. We have also omitted a thirdrfaf message types, se-
quenced message types, which allow more precise typesaddfimed in [18, sec. 5.2].

Define themeaningof message/element/form types and of shape predicates by

W={M[EM:u} [e]={E|-E:e} [o]={F|FF:0} [n]={P[FP:m}

Proposition 3.1. The meanings of shape predicates respect the structurgraence:
IfP=Qthen-P:m <= FQ:1forall Tt O

Let w2 be the least message type whose meaning inclidiés for all M €
[Ma],N € 2] . With the language of message types presented here (ayrséiquenced
message types from [18]) .2 always has the forndfy,. .., fy}*, where thef;'s are
all the sub-forms that appear in eithgror [z in some canonical order (for this purpose
the sub-fornx is considered to appear in= {x}). The .|&> operation is associative.

3.2 Flow edges and subtyping.The only part of the shape predicate syntax of Fig-
ure 5 that has yet not been explained isfloev edgesX —{z}—-Y. They are not used at
all in the above definition of thmeaningof the shape graph, but they will be important
for distinguishing between types and non-types. In brief, ftow edgeX —71— Y as-
serts that there may be a reduction where a process desbgbéis moved toy and
in the process incurs a substitution describedby

Alternatively,X -{7}—Y can be viewed asdemandhat wheneveP < [(G| X)] and
Q arises by applying a substitution describedibyo P, it must hold thaQ € [(G|Y)].
Because flow edges do not contribute to the meaning of shagakicptes, there is no
guarantee that this demand is actually satisfied for a shisggicate that contains the
flow edge. This is a global property of the shape graph, and iNeshortly define a
class offlow closedshape graphs where the interpretation of flow edges is altvags

An important special case is whan= &, where the process movesthout any
substitution. TherX —{z1— Y can also be viewed as an assertion #@tX) is asub-
typeof (G|Y), or, symbolically, thaf (G| X)] C [(G]|Y)]. We therefore also speak of
X —{z—Y as asubtyping edge

Write - s : 7 iff Dom § = Dom<7 andk s (x) : 7 (x) for all xe Dom.s.

Define the action of type substitution on subforms and megségment types by
the rules in Figure 6. This definition ensures tfrat” ] contains the result of every
termsubstitutionsM M wheret- s : 7 and- M : 4, and likewise for elements.

Definition 3.2. The shape graph G ifow closediff whenever G contains %Y and
X -z}~ Z such thatBN(¢) nDom T = &, then there is a W such that G contains
Y —{r—W and additionally it holds that
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T (Xo) whenk = 0 andxp € Dom T
{7Exy...7Ex3* otherwise

‘Tf(Xo.uxk)—{

7(x) if xe DomT

MLt R = O T T i TM{x3 = :
{x} otherwise

LEx_ )Y whenTM {x} = {y} for somey
e otherwise

TE<|J.1,.A.7Uk>:<‘TM},117.4.7‘TMpk>

TE X, %) = O, ..., %)

Fig. 6. The action of type substitutions.’ f is the action on subforms; ™ 1 is the action on
message types, amF € is the action on element types.

Let atype instantiation « map X|to[X]\ {e},|h .to Itapplles to element
and form templates completely componentwise (g |V|ng med form types), just like

term instantiations do. The relation betwen type instéiotis and process templates a
given by this inference system:

0]

X =u(p) (u(P) {21~ X) G (u(B) {uf)—u’s..>X) €G
Uk p:(G|X) Uk P (GIX) Uk {- % =S, .} P (GIX)
UEP T uEPy T X ZLEY)eG  ukP:(G|Y)

UK 0:T UFPy I Py:Tt U FE.P: (G| X)

whereu St = {u (%)} andu Sth= u (rh). The rules for template processes havé aariant
and anR variant; the variable lettesranges ovekt andR.

As a special exceptiory = P : Ttis not considered to hold if1 (X1) = u (X2) for X; # %o
such thaty occurs inP below a form template containing a binding elemént ,X,,...).

Fig. 7. Matching of reduction rules to shape graphs.

1. If ¢ = x and7 (x) = {y}, then G contains 2> W.
2. Ifg =xand7 (x) ={fq,..., fy}*, thenW=Z and G contains 24 Z for 1 <i<k.

3. If none of the above apply ad= €. .. &, then G contains Zoe0T e\

We call a shape predicat& | X) flow closed iff its G component is. O

Intuitively, a flow-closed graph is one where the intuitiveanings of flow edges
are true. That is the content of the following theorem:

Proposition 3.3. Let G be flow closed and containX—Y . Assume that s : 7 and
thatBN(P)NDomT = @. ThenP: (G| X) implies- sPP: (G|Y) O

The assumption that Bff) nDom 7 = & will be true in our uses because we are
assuming that all terms are well-scoped.
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3.3 Semantic and syntactic closure; typesCall the shape predicatesemantically
closedwith respect ta iff - P:mand® - P <— Qimply - Q: 1t

As described above, we watypesto be semantically closed shape predicates. But
it is not easy to recognise semantic clostise will therefore define a restricted, but
easier to decide, class syntacticallyclosed shape predicates, which will be the types.

Figure 7 defines a way to match process templates directiyp®draphs without
going via the process semantics from Fig. 4. A type instéotisapplies to message,
element, and form templates much like thé&s in Fig. 4, but the process part is different
because a type instantiation maps process metavariabtexiess in the shape graph
rather than processes. This is best illustrated with an pl@mssume we wish to find
out whetherGp |R) is closed with respect t® ea, Where

R t[] X p[] Y eatq Z foo T

W Y{J
Go = W v

S
R eat has only oneeduce rule, and we look for matches of its left-hand side, that is
(Xo, Up) such thatXy can be reached from the root by edges with labels of the shape

x[1 anduok aleatb | P] | b[Q]: (Go|Xop). The only such pair is
Xo=X, Uo={a—p,br—>qP—Y,Q—W}

For the graph to be syntactically closed, the satrend 2o must match theight-hand
side of the rule, i.etio & a[P | b[Q]] : (Go|X). This turns out not to be true; if one tries
to construct at derivation it turns out that the judgemepity, Q : (Go| V) is needed, and
that can only be true ifuo(Q) = W -z~ V) € Go which is not the case.

Thus the graph is not syntactically closed fogs, and indeed it is not semantically
closed either, becaufe = t[p[eat q] | q[s[0]]] is in [{Go | R)] butP, = t[p[q[s[0]]]] is not,
even thoughR gat- P1 < Po. If we add the missing edge, givirg = Go U {W —{z}—V},
we do getuig i a[P | b[Q]] : (G1]X), butGy is notflow closedand we need to add even
more edges to make it so. In the end we get

Rt . x pll y _etaq 5 _foo .
‘7[] 9/:/
Go= Wo——-V_2r.y

bar U

where, as in Fig. 1, subtyping edges are shown as dashed Tiheshape predicate
(G2|R) is syntactically and semantically closed.
We are now ready do define syntactic closure formally:

Definition 3.4. Let the shape predicate= (G| X) be given. The set afctivenodes for
R, Writtenactive, (11), is the least set A of nodes which contains X and such thatifor a
Y € Aand allactive{pin P} € % , it holds thatu K P: (G|Y) impliesu () e A. O

SE.g. letG={Y1 << Y0 == X0 @<}, xg 2, xy b, x3 2, x4 <, x5} Then

(G|X0) happens to be semantically closed with respe¢téaluce({ (a) <M>.P — {a:=M}P}},
but it is not trivial to see this in a systematic way.
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Definition 3.5. G is locally closedat X with respect tag iff wheneverg contains
reduce{P1 — P»} it holds thatu | Py : (G| X) impliesu & P2 : (G| X). O

Definition 3.6. The shape predicate= (G| X) is syntactically closedvith respect to
R iff G is flow closed and also locally closed at evergXctive, (17). When this holds,
we callttan ( -)type O

Checking that a purported type is really syntactically etbs algorithmically easy;
see [18] for details.

Theorem 3.7 (Subject reduction)If Ttis syntactically closed with respect #p, then
it is also semantically closed with respectqo O

3.4 Whatto do with types. Once we have a type, what can we use it for? An obvious
possibility is to check whether the term may “go wrong”. Tteeu(or, more likely, the
designer of a programming environment that UBelg[1) specifies what “going wrong”
means. It is a clear indication of errordfturns up in an active position, but opinions
may differ about if a is produced at a place in process tree that never becomes.acti

One can also imagine very application-specific propertieheck for, for example
“this process can never evolve to a configuration where ari@arhhamed is inside
one named”. This is easy to check for in the shape graph. Alternativehe may want
to write this as a rule, to haveoly[ do the checkingreduce{b[a[P] | Q] — ¢.0}. The
ability to write such rules is one of the reasons itigtal] does not distinguish strictly
between “names” and “keywords”.

Polyd makes it fairly easy to checkafety propertiedike “no unauthorised ambi-
ents (e.g.p) inside secure ambients (e.$),’, but there are also questions of safety
that Poly[) cannot help determine. This includes properties that dpentheorder
in which things happen, such as the “correspondence ass&rtiften used to specify
properties of communication protocols. There are typeesystfor process calculi that
can reason about such temporal properties (for examplef¢t4he m-calculus), but
we are aware of none that also handle locations and ambidatrsobility.

4 Type inference forPolyl]

Assume now that we are given a process tBramd a ruleseg ; we want to produce an
R -type forP. Itis trivial to construcsometype forP — one with a single node and a lot
of edges in the shape graph. However, such a type may needtairces and thus not
prove thatP “cannot go wrong”. In this section we discuss how to autooaéity infer
more informative types.

We do not know how to do type inference that is complete forftiiePoly] type
system; it allows too many types. Therefore we begin by dafirs set ofrestricted
types, for which wecanhave complete type inference.

Definition 4.1. Write 1 ~ ¢ iff [d1] N [d2] # 2. O

The~ relation is close to being equality. The only way for two ridentical$’s to
be related by is if they contain message types of the shépe}*. It is relatively safe
to imagine thex is just a fancy way to write-, at least to a first approximation.
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Definition 4.2. G satisfies thavidth restriction iff whenever it contains X Y and
X 25y’ with ¢ ~ ¢, it holds that Y=Y". O

Definition 4.3. G satisfies thelepth restrictioniff whenever it contains a chairb)(i’—%
X1 22, ... 8 X with ¢1 ~ Py, it holds that X = X O

Our type inference algorithm only produces types thatfyaisth restrictions. The
width restriction means that when type inference needsdaadutgoing edge from a
node in the graph, it never has to choose between reusingstimgyedge starting there
and creating a new edge with a fresh target node, becausattbeiks forbidden by
the restriction when there is any reusable edge. The degtticteon bounds the length
of a simple path in a shape graph that can be constructed vgthea set of names
and a given maximal form arity, and so also bounds the totalbrar of nodes in the
graph. Therefore the closing operation described belomatkeep adding edges and
nodes to the graph indefinitely and will eventually stop.€3@&two restrictions replace
the notions of “discrete” and “modest” types in [2], whichnsetimes admitted slightly
more precise types, but were very complex and hard to uradetst

In [18] we describe a feature of our implementation whiclowa it to loosen the
two restrictions by tracking the origin of ea¢hn the type graph.

The type inference proceeds in two phases. First we constratinimal shape
predicate which the term matches. Thenchesethe shape predicate — that is, rewrite
its shape graph as necessary to make it syntactically closed

The initial phase is simple. Because shape predicates flk@kerms”, we can just
convert the abstract syntax tree of the term to a tree-shsipgple graph. This graph
may or may not satisfy the width and depth restrictions. dfaes not, unify the nodes
that must be equdlThat may cause further violations of the two restrictiors)tinue
unifying nodes as necessary until the restrictions arefgadi

The closing of the shape graph is where the real work of tyfezémce happens. It
happens in a series of steps. In each step, check whethérahe graph is syntactically
closed. If it is, the algorithm ends. Otherwise, the lacklo&are can only be because
edges already in the graph imply that some other edggbtto exist (by Definitions
3.2 or 3.5) but do not. In that case, add the new nodes and eglggised by the failing
rule, and do another round of unifications to enforce the méaitd depth restrictions.

The width and depth restriction together guarantee thatltiseire phase terminates.
We do not have any good worst-case complexity bounds forltseie phase; instead
our implementation allows further restrictions on typebéapplied in order to quench
blow-ups one might observe with particular calculi and egharterms. The tightest
restrictions will enforce polynomial complexity, at thest®f losing the possibility
of spatial polymorphism. Thus restrictebly[] has a strength roughly comparable to
current non-polymorphic type systems for ambient-dersadduli.

Theorem 4.4 (Principal typings). A result of type inference is a principal typing
[27] for the input term P: For everyt such that- P: 17 it holds that[t'] D [if]. O

7 This is the only way to reach a graph that satisfies the réisimi If the width and depth
restrictions had useg instead ofx, there might also have been the option of rewritiny ta
something larger but different, but there would not be a uaitbest way” of doing that.



Makholm, Wells — Polymorphic Type Systems for Process QaletESOP '04 16

4.1 Implementation. We have implemented our type inference algorithm. Our im-
plementation is available at the URhttp: //www.macs.hw.ac.uk/DART/software/
PolyStar/), as both a source download and an interactive web interface.

Beyond the features in this paper, our implementation alfime-tuning of the anal-
ysis precision, which influences inference speed as wetifasred type size.

5 Conclusion

Poly[] extends basic properties of our previous syskagA to a more general setting:

1. Poly hassubject reductionAlso, given a process terfand a shape predicate
one can decide by checking purely local conditions whethisratype and it is
similarly decidable whethdP matchest Thus, it is decidable whether a process
belongs to a specific type.

2. PolyO supports a notion a$patial polymorphisnthat achieves what Cardelli and
Wegner [10] called “the purest form of polymorphism: the sawbject or function
can be used uniformly in different type context without cp@s, coercions or any
kind of run-time tests or special encodings of represemmati

3. The types ofPolyd are sufficiently precise that many interestisafety/security
propertiescan be checked, especially those that can be formulatedessiops on
the possible configurations that can arise at run-time.

In addition, this paper makes these completely novel doutions:

4. Metal is a syntactic framework that can be instantiated into aeléagnily of mo-
bile process calculi by supplying reduction rules.

5. Thegeneric type systeroly] works for any instantiation oMetall. We have
checked that it works for-calculus, a large number of ambient calculi, and a ver-
sion of the Seal calculus. In [2] we claimé&blyA would be easy to extend to
ambient-like calculi by hand, but extending the proofsPotyA manually would
be tedious. WitiMetald we have developed the theory to do such extensions fully
automatically.

6. For the subsystem d¥oly[] satisfying thewidth and depthrestrictions, there is
a type inference algorithm (which we have implemented) #hatys successfully
infers aprincipal typefor any process term. This means tRaty[] has the potential
for compositional analysis

7. The width and depth restriction are more natural andtimtuthan the “discrete-
ness” and “modesty” properties with respect to which we sftbexistence of prin-
cipal types forPolyA.

8. PolyI’s handling of communicatiorand substitutionhas been redesigned to be
more direct and intuitive than iRolyA.

5.1 Related work. Another generic type system for process calculi was coatgtdu
by Igarashi and Kobayashi[15]. Like the shape predicatBslyl], their types look like
process terms and stand for sets of structurally similazgsses. Beyond that, however,
their focus is different from ours. Their system is specifi¢tie -calculus and does
not handle locations or ambient-style mobility. On the othand, it is considerably
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more flexible tharPoly within its domain and can be instantiated to do such things as
deadlock and race detection which are beyond the capabitfiPoly(].

Yoshida [28] used graph types much like our shape preditate=ason about the
order of messages exchanged on each channel im-tlaéculus. Since this type system
reasoned abotitmerather tharlocation, it is not directly comparable tBoly[J, despite
the rather similar type structure.

The spatial analysis of Nielson et al. [20] produces reshlis somewhat resemble
our shape graphs, but does not have spatial polymorphism.
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