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ABSTRACT
Cyclic data structures can be tricky to create and manipu-
late in declarative programming languages. In a declarative
setting, a natural way to view cyclic structures is as denot-
ing regular trees, those trees which may be infinite but have
only a finite number of distinct subtrees. This paper shows
how to implement the unfold (anamorphism) operator in
both eager and lazy languages so as to create cyclic struc-
tures when the result is a regular tree as opposed to merely
infinite lazy structures. The usual fold (catamorphism) op-
erator when used with a strict combining function on any in-
finite tree yields an undefined result. As an alternative, this
paper defines and show how to implement a cycfold operator
with more useful semantics when used with a strict function
on cyclic structures representing regular trees. This paper
also introduces an abstract data type (cycamores) to sim-
plify the use of cyclic structures representing regular trees in
both eager and lazy languages. Implementions of cycamores
in both SML and Haskell are presented.

1. INTRODUCTION

1.1 Cycles are Tricky to Manipulate
Cyclic structures — collections of linked nodes containing

paths from some nodes back to themselves — are ubiquitous
in computer science. These structures tend to be tricky to
create, process, and deallocate. The ease with which these
tasks can be performed depends a great deal on the pro-
gramming paradigm and particular programming language
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employed. To motivate our work, we illustrate these points
via a sequence of simple examples.

Example 1.1. Consider the following Haskell function:

altsCycle n = do putStr (show (alts!!n))

putStr (show (alts!!(n+1)))
where alts = 0 : 1 : alts

This function creates a conceptually infinite list of alternat-
ing zeroes and ones named alts, and displays the nth and
n + 1th elements of this list (0-based indexing). Haskell’s
lazy evalution not only makes the recursive definition of alts
well-defined, but the resulting “infinite” list is implemented
particularly efficiently using just two list nodes (where the
second node is the tail of the first and the first node is the
tail of the second). Indeed, in standard Haskell implemen-
tations, invoking altsCycle requires constant space inde-
pendent of the magnitude of the input.

Example 1.2. The altsCycle function is trickier to express
in an eager language like Scheme or SML. One approach is to
simulate the laziness of Haskell, typically via a new lazy list
data type implemented using a mechanism for delaying and
forcing computations [1, 18]. Not only are there conceptual
and run-time overheads for this simulation, but in SML it is
also problematic that the recursive binding construct (val
rec) requires the bound expression to be a manifest func-
tion abstraction. These constraints effectively dictate that
recursively defined lazy lists in SML should be represented
as thunks (parameterless functions):1

datatype ’a LazyNode = znil | zcons of (’a * (’a LazyList))

withtype ’a LazyList = unit -> ’a LazyNode

fun nthThunk zlst n =

case zlst() of
zcons(x,xs) => if (n = 0) then x else nthThunk xs (n-1)

| _ => raise Fail ("nthThunk of empty list")

fun altsThunk n =

let val rec alts =
fn () => zcons (0, fn () => zcons(1, alts))

in (print (Int.toString(nthThunk alts n));

print (Int.toString(nthThunk alts (n+1))))
end

Unfortunately, the total number of list nodes created by a
call to altsThunk using this representation is proportional
to the magnitude of its argument n.2

Example 1.3. Using mutable reference cells, it is possible
to implement cyclic lists in SML using only a constant num-

1Scheme’s more lenient letrec construct allows lazy lists to
be represented as pairs with delayed second components[1].
2Only a constant number of these nodes are accessible at
any point of the computation.



ber of nodes, as shown below.

datatype ’a RefNode = rnil | rcons of (’a * (’a RefList))
withtype ’a RefList = ’a RefNode ref

fun nthRef (ref(rcons(x,xs))) n =
if (n = 0) then x else nthRef xs (n-1)

| nthRef (ref(rnil)) n = raise Fail ("nthRef of empty list")

fun altsRef n =

let val alts = ref rnil
val _ = alts := rcons(0, ref(rcons(1,alts)))

in (print (Int.toString(nthRef alts n));
print (Int.toString(nthRef alts (n+1))))

end

The key step is using assignment (:=) to “tie the knot” of
the cycle. Note how the elegance of defining alts recursively
in a single declaration is lost in this approach.

Example 1.4. Although Haskell’s laziness facilitates imple-
menting alts as a cyclic list in altsCycle, laziness alone is
often insufficient for tying cyclic knots. Consider defining
alts in Haskell via the list-generating unfold function [7]:

unfold :: (b -> Bool) -> (b -> a) -> (b -> b) -> b -> [a]
unfold p f g x

| p x = []
| otherwise = f x : unfold p f g (g x)

altsUnfold n = do putStr (show (alts!!n))
putStr (show (alts!!(n+1)))

where alts = unfold (\n -> False) id (\n -> mod (n+1) 2) 0

Since no knots are tied, representing alts requires at least n
list nodes to be resident in memory at some point during the
invocation of altsUnfold.3 The fact that a very compact
representation for alts is possible in no way guarantees that
the compact representation will be used!

Example 1.5. As a final motivating example, consider the
problem of finding the set of all the integers in a cyclic list.
For the case of alts in the above examples, the set would
be {0, 1}. Intuitively, this set can be viewed as the result of
accumulating the node values of the cyclic list via a kind of
folding process. However, this set cannot be calculated by
the classical foldl/foldr operations of SML and Haskell,
which effectively require processing the infinite number of
nodes in (the unwinding of) alts.
Calculating the set of values for an arbitrary cyclic list

involves traversing the list and determining when the list
starts to repeat; otherwise, the computation will not ter-
minate. This cannot be done by examining the node val-
ues alone, but requires knowing when a list node encoun-
tered previously is encountered again. Determining if two
list nodes are identical (i.e., pointer equal) is an operation
that is supported in Scheme, but not in SML or Haskell.4

So the problem of collecting the elements of alts is un-
solvable in examples 1.1, 1.2, and 1.4. Since SML supports
testing the (pointer) equality of reference cells, the problem
is solvable for the representation of cyclic lists in example
1.3. However, testing set membership using only an equal-

3The fact that altsUnfold subscripts alts twice is impor-
tant to this argument. If altsUnfold subsripted alts only
once, the production and consumption of the list nodes for
alts could be take place in lock step in a coroutining fash-
ion, requiring only a constant number of list nodes to be
accessible at any point in time. The presence of the second
subscript to alts implies that the list nodes comprising alts
cannot be reclaimed early.
4The GHC compiler for Haskell provides an experimental
non-standard memo function which can sometimes be used
for this purpose.

ity predicate takes time linear in the size of the set. Other
operations (e.g., ordering predicates or hashing functions)
are necessary for more efficient membership tests.
There is good reason to omit node equality in a declarative

language: it can reduce the set of valid program transforma-
tions [9]. For instance, if Haskell were to support a Lisp-like
eq operator on list nodes, β-reduction would no longer be
meaning-preserving. E.g., (\x -> eq(x,x)) [1,2] should
evaluate to True, but eq([1,2],[1,2]) might evaluate to
False, because independently allocated copies of the list
[1,2] need not be pointer-equal (unless hash-consing [9, 15]
is used).

The above examples highlight the following problems in-
volving cyclic data structures:

1. Naively generating a conceptually cyclic structure via
operations like unfold can lead to an unbounded rep-
resentation even when bounded representations exist.

2. Naively accumulating a result over a cyclic structure
via operations like foldr can diverge rather than re-
turning the result of interest.

3. The presence or lack of various programming language
features (e.g., laziness, side effects, recursive bindings,
node equality) greatly influences how easily cyclic struc-
tures are manipulated.

1.2 Contributions
In this work, we develop a theoretical foundation for ma-

nipulating regular trees, mathematical entities that corre-
spond well with typical cyclic structures. Based on this
foundation, we address the three problems motivated above:

1. We define an unfold function for generating (poten-
tially infinite) trees and present a simple condition for
guaranteeing that the resulting tree is regular. In prac-
tice, this condition justifies using memoization on the
input domain to construct bounded representations of
regular trees.

2. We specify the meaning of a fold function for accumu-
lating results over (potentially infinite) trees. We also
introduce a novel variant of fold, which we call cycfold,
that can produce useful results for regular trees when
used with a strict combining function; the usual fold
function will always yield an undefined result in this
case. In practice, cycfold can be calculated on bounded
representations of regular trees via an iterative fixed
point process. For suitable arguments to cycfold, the
same results will be obtained for any finite represen-
tative of a given regular tree; cycfold will not expose
any details about the particular finite representative
on which cycfold is invoked.

3. We introduce cycamores, an abstract data type for reg-
ular trees that is largely insensitive to the features of
the programming language in which it is embedded.
Modulo details of threading state and certain infelic-
ities involving eagerness and laziness, cycamores (in-
cluding the unfold and cycfold operations) can be im-
plemented equally well in an eager language or lazy
language. We demonstrate this by presenting imple-
mentations of cycamores in both SML and Haskell.



1.3 Related Work
There is a vast literature on programming with fold and

unfold operators on a variety of data structures; references
include [14, 16, 8, 2, 7, 11]. Terminology differs widely in
this literature. In the terminology of [16], fold and unfold are
only given the informal names of “bananas” and “lenses”
for the symbols used to write them, the results of fold(φ)
and unfold(ψ) are called, respectively, catamorphisms and
anamorphisms, and the terms in and out are used for what
we call make and make−1. Howard’s [8] it (iteration) and
gen (coiteration) loosely correspond to our fold and unfold,
but Howard (like many other authors in type theory) uses
the names fold and unfold for type-level operations that have
the same role as make and make−1 do here. It is especially
important to avoid confusion with the terminology of the
“unfold-transform-fold” program transformation methodol-
ogy that involves unfolding a recursive definition, perform-
ing local simplifications, and then (re)folding to make a new
recursive definition [3].
Using memoization to effectively manipulate cyclic struc-

tures is not at all new. It goes at least far back as Hughes’s
1985 work on lazy memo functions [9]. Our contribution
to this dimension are (1) developing a theoretical justifica-
tion for memoization based on regular trees; (2) observing
that while memoization is essential for building cyclic struc-
tures via unfold, laziness is not; (3) noting that many cyclic
structures can be effectively generated by unfold [14, 7, 10],
the underappreciated sibling of fold; and (4) explaining the
pitfalls to be avoided and the tradeoffs that must be made
when doing this.
Our approach to folding over regular trees contrasts with

approaches like that of Fegaras and Sheard [5], which accu-
mulate results over a term representing a graph and which
can produce different results for different representatives.
The notion of distinguishing two different forms of fold on

cyclic structures has recently been independently explored
in unpublished work on graph catamorphisms by Gibbons [6]
and Wile [21]. Gibbons presents Haskell definitions for two
folding functions on graphs, ifold and efold, which corre-
spond to our fold and cycfold, respectively; see sections 4
and 5 for more detailed comments comparing these func-
tions. Gibbons does not consider expressing graph folds in
an eager language, nor does he develop any theory for his
two folding functions.
The theory of fold builds on classical results of fixed point

theory from denotational semantics (e.g., [19]). The fixed
point iteration performed by cycfold is similar to that per-
formed in traditional compiler data flow analysis; see [17]
for a nice summary of of this area.

2. THE THEORY OF UNFOLD AND FOLD
ON REGULAR TREES

2.1 Mathematical De£nitions

2.1.1 Numbers, Sets, Binary Relations, Posets, Cpos
Let the usual natural numbers be given as N = {0, 1, 2, . . .}.

Let i, j, and n range over N. When ω is added to the natural
numbers as in N ∪ {ω}, let i < ω for all i ∈ N. Given any
set S, let P(S) = {S′ | S′ ⊆ S }.
A binary relation R is transitive iff R(x, y) and R(y, z)

imply R(x, z), antisymmetric iff R(x, y) and R(y, x) imply

x = y, and reflexive over a set S iff R(x, x) for all x ∈ S.
An object y is an upper bound (resp. lower bound) of a set S
w.r.t. a transitive binary relation R iff R(x, y) (resp. R(y, x))
for all x ∈ S. Furthermore, w.r.t. a transitive, antisymmet-
ric binary relation R, an upper (resp. lower) bound y for set
S is a least upper bound (resp. greatest lower bound) for S
iff R(y, z) (resp. R(z, y)) for any upper (resp. lower) bound
z for S such that z 6= y. Given a transitive, antisymmetric
binary relation R and a set S, the expression

⊔

R
S (resp.d

R
S) denotes the least upper (resp. greatest lower) bound

of S w.r.t. R if it exists and is otherwise undefined. A least
upper (resp. greatest lower) bound is called a join (resp.
meet).
A binary relation R is a partial order over a set S iff R

is reflexive over S, transitive, and antisymmetric. A poset
is a pair P = (S,R) of a carrier set S and a partial order
R over S. The restriction of a binary relation R to a set
S is R ↓ S= R ∩ (S × S). Given a poset P = (S,R), let
the notation

d
P (resp.

⊔

P) stand for
d
R↓S (resp.

⊔

R↓S).

A poset P = (S,R) has a bottom (i.e., a least element) iffd
P S is defined. In this case the symbol ⊥ is usually used

to denote
d
P S. Given a poset P = (S,R), a non-empty

subset X ⊆ S is a chain in P iff X 6= ∅ is totally ordered by
R (i.e., either R(x, y) or R(y, x) for every {x, y} ⊆ X). A
poset C = (S,R) is a complete partial order (cpo) iff

⊔

C X
is defined for every chain X in C. A cpo C is a pointed cpo
iff it has a bottom.
The product of two sets S1 and S2 is defined as usual

as S1 × S2 = { (x, y) | x ∈ S1 and y ∈ S2 }. Given binary
relations R1 and R2, their product is the relation R = R1 ×
R2 such that R((w, x), (y, z)) iff R1(w, y) and R2(x, z). The
product of two posets P1 = (S1, R1) and P2 = (S2, R2) is
P1 ×P2 = (S1 × S2, R1 ×R2).
Given sets S1 and S2, define the function space S1→S2 =

{ f | f ⊆ S1 × S2 and {(x, y), (x, z)} ⊆ f ⇒ y = z }. Given
a poset (S1, R), the extension of R to functions of type S2→
S1 for some S2 is the relation S2→R such that (S2→R)(θ, θ′)
iff R(θ(x), θ′(x)) for all x ∈ S2. Given a poset P = (S1, R),
let S2 →P = (S2 → S1, S2 → R). Given posets P = (S,R)
and P ′ = (S′, R′), a function f from S to S′ is monotone
w.r.t. P and P ′ iff R(x, x′) implies R′(f(x), f(x′)) for ev-
ery x, x′ ∈ S. Given cpos C = (S,R) and C′ = (S′, R′),
a function f from S to S′ is continuous w.r.t. C and C′

iff f(
⊔

C X) =
⊔

C′ { f(x) | x ∈ X } for every chain X in C.
Given cpos C1 = (S1, R1) and C2 = (S2, R2), define the

space of continuous functions from C1 to C2 as S1−cont−−−C1,C2
→S2 =

{ f | f ∈ S1 → S2 and f is continuous w.r.t. C1 and C2 } and
define the cpo of continuous functions from C1 to C2 as
C1 −

cont−−→ C2 = (S1 −
cont−−−C1,C2
→ S2, S1 →R2).

The lifting of a set S, written S⊥, is the set S ∪ {⊥}
where ⊥ is a symbol used to stand for some fresh object not
in S. Given sets S and S′ and a function f from S to S′⊥, let
dom(f) = {x | x ∈ S and f(x) 6= ⊥}. The lifting of a poset
P = (S,R), written P⊥ = (S,R)⊥, is the poset (S⊥, R⊥),
where R⊥ is defined so that R⊥(⊥, x) for all x ∈ S, R⊥(x,⊥)
implies x = ⊥, and R(x, y) implies R⊥(x, y).

2.1.2 Sequences
A sequence s over some set S is a function from N to S⊥

such that if s(i) 6= ⊥ and j ≤ i then s(j) 6= ⊥. Let Sω be the
set of all sequences over S. Given a sequence s, let the length
of s be given by |s| = t<{ i | s(i) 6= ⊥}, where < is taken



to work over N∪ ω. Let S∗ be the set of all finite sequences
over S, i.e., S∗ = { s | s ∈ Sω and |s| < ω }. Given a poset
P = (S,R), the extension of the partial order R to Sω is
the partial order Rω such that Rω(s, s′) iff |s| = |s′| and
R(s(i), s′(i)) for i < |s|. The sequence extension of P is
Pω = (Sω, Rω).
Let [x0, . . . , xn] denote the sequence s such that s(i) = xi

for i ≤ n and s(i) = ⊥ otherwise. In particular, [] is the
empty sequence. Given s ∈ S∗ and s′ ∈ Sω, let s;s′ be the
sequence that begins according to s and then continues with
s′, i.e., (s;s′)(i) = s(i) if i < |s| and (s;s′)(i) = s′(i − |s|)
otherwise. In the rest of this paper, where appropriate, there
is an implicit coercion from S into Sω which maps every
element x ∈ S into the length 1 sequence [x]. For example,
using this implicit coercion, when s ∈ Sω and x ∈ S the
notation s;x stands for s;[x] and x;s stands for [x];s.
For any sets S1 and S2, the map function of type (S1 →

S2)→ S1
ω → S2

ω is defined so that map(φ)(s)(i) = φ(s(i))
for i < |s| and |map(φ)(s)| = |s|.

2.1.3 Labelled Trees
Let p, q range over N∗, the set of positions. Given a non-

empty set L of labels, a function t from N∗ to L⊥ is a (pos-
sibly infinite) L-labelled tree iff t satisfies all of the following
conditions:

1. t([]) 6= ⊥. (The tree t has at least one node.)

2. If t(p;i) 6= ⊥, then t(p) 6= ⊥. (The tree t only has a
node at a position if it has a node at the appropriate
parent position.)

3. If t(p;(i + 1)) 6= ⊥, then t(p;i) 6= ⊥. (The children of
a node in t are numbered consecutively starting with
0. This condition is not essential, but it makes things
more convenient.)

Let Tree(L) be the set of L-labelled trees and let t range
over labelled trees. A tree t is finitely branching iff for all
p ∈ dom(t) there exists some i such that (p;i) /∈ dom(t).
A tree t is finite iff dom(t) is finite. A tree t is of fi-
nite height, written finHt(t), iff there is a k ∈ N such that
|p| ≤ k for all p ∈ dom(t). Given a tree t and a posi-
tion p, let t[p] = { (q, l) | t(p;q) = l }. If t is a tree and
p ∈ dom(t), then t[p] is not ∅ and qualifies as a tree; it
is called the subtree of t at p. Let the set of all subtrees of t
be subtrees(t) = { t′ | ∃p. t[p] = t′ and t′ is a tree }. A tree t
is regular iff subtrees(t) is finite.
Given a label l ∈ L and a sequence s ∈ (Tree(L))ω of

L-labelled trees t0, t1, . . . , let make(l, s) denote the tree t
such that t([]) = l, t(i;p) = s(i)(p) = ti(p) for i < |s|, and
t(i;p) = ⊥ for i ≥ |s|. When t = make(l, s), let label(t) = l
and children(t) = s. Observe that the make function is a
bijection between Tree(L) and L×((Tree(L))ω). Let make−1

be the inverse of make.

Remark 2.1. The presentation in this section avoids han-
dling the following practical issues faced in programming
languages, because the extra complexity would be orthogo-
nal to the main issues this paper addresses. The presenta-
tion can be extended to handle these issues.

1. Although not necessary, the labels in L are often given
arities so that a node labeled with l is required to have
arity(l) children. More generally, the labels may have
sorts, so that a given label produces a tree of some

sort s and expects subtrees of some sorts s0, s1, . . . .
Even more generally, the sorts may be parameterized.
These features are needed to implement the typing re-
strictions on trees imposed by datatype definitions in
Haskell and SML.

2. In lazy implementations (e.g., datatypes in Haskell) it
is possible to have partially defined trees, where at-
tempts to explore certain branches will diverge. The
type Tree(L) given here does not admit partially de-
fined trees, either finite or infinite. The presentations
of unfold and fold below are simplified as a result.

Remark 2.2. The mathematical presentation here allows
infinitely branching trees. This does not make the math-
ematical results presented in this section any more difficult,
and these results are still applicable to the finitely branch-
ing case. Due to practical difficulties implementing infinitely
branching trees in eager programming languages, the SML
implementation we describe later will differ on infinitely
branching trees from the presentation in this section.

Example 2.3. Let t1 and t2 be trees over the label set
L = {a, b, c, d} whose positions are generated by the reg-
ular expression 1∗ · (ε|0) (where ε is the empty string, “·” is
concatenation, “|” is alternation, and “∗” is Kleene closure)
and whose labels are given by the rules:

t1(p) =

{

a if p ∈ (1∗),

b if p ∈ (1∗0)
t2(p) =



















a if p ∈ ((11)∗),

b if b ∈ ((11)∗0),

c if p ∈ ((11)∗1),

d if p ∈ ((11)∗10)

The tree t1 has two subtrees: t1 itself, and t1[0], whose
positions are given by the regular expression ε. Even though
t2 has the same positions as t1, it has four subtrees: t2 itself,
t2[0], t2[1], and t2[1;0]. As diagrams, t1 and t2 look like:

t1 t2

a

b a

b a

b

a

b c

d a

b

2.2 Unfold
The unfold function will be treated first, because its treat-

ment is simpler. For any non-empty sets S and L, the unfold
function of type (S→ (L× (Sω)))→ S→Tree(L) is defined
as

unfold(ψ) = θ where isUnfold(ψ)(θ)

where the predicate isUnfold(ψ) is defined so that:

isUnfold(ψ)(θ)⇔



θ(x) =





let (l, s) = ψ(x),
s′ = map(θ)(s)

in make(l, s′)









The definitions here do not mathematically admit the possi-
bility for ψ or make to yield some kind of undefined value, so
there is exactly one function θ satisfying isUnfold(ψ)(θ). The
definition of unfold is written in two parts using a separate
isUnfold predicate in order to make clearer the symmetry
with the later definition of fold.



Remark 2.4. An attempt to implement the definition of
unfold given here in an eager language can easily result in an
implementation of a different function. This is because (1)
every type in an eager language is implicitly lifted and has
an ⊥ element indicating an undefined result which in prac-
tice is implemented by simply diverging and (2) the easy
implementation of make evaluates its arguments first and is
strict, i.e., if one of the arguments evaluates to ⊥ then the
result of make is ⊥. The SML implementations of unfold
described later in this paper have this problem for the case
where the result is an irregular infinite tree, because some
pragmatic issues led us to decide against using suspensions
to have a lazy implementation. Our SML implementations
take advantage of lemma 2.7 below in order to faithfully im-
plement the semantics of unfold for some of the cases where
the result is a regular tree. A faithful implementation of
unfold in a lazy language is quite easy. However, the Haskell
implementation described later is not faithful because of its
approach to tying cycles in regular trees. Inspecting a sub-
tree to the right of a subtree which our Haskell unfold fails
to represent as a finite graph will diverge.

Example 2.5. The tree t1 in example 2.3 can be generated
as follows using S = {0, 1}:

t1 = unfold(ψ)(0) where ψ(i) =

{

(a, [1, 0]) if i = 0,

(b, []) if i = 1

Example 2.6. The tree t2 in example 2.3 can be generated
as follows using S = {0, 1, 2, 3}:

t2 = unfold(ψ)(0) where ψ(i) =



















(a, [1, 2]) if i = 0,

(b, []) if i = 1,

(c, [3, 0]) if i = 2,

(d, []) if i = 3

There are many interesting issues that arise in implement-
ing unfold in various settings, but they are discussed in later
sections of this paper. There is one theoretical point we
wish to make. Given sets S and L, a function ψ from S to
L × (Sω), and x ∈ S, let the dependencies of x w.r.t. ψ be
deps(x, ψ) = S′ where S′ is the least set containing x and
satisfying this closure condition:

(y ∈ S′ and ψ(y) = (l, s) and s(i) = z 6= ⊥)⇒ z ∈ S′

Lemma 2.7. Given sets S and L, a function ψ from S to
L×(Sω), and x ∈ S, if deps(x,ψ) is finite, then unfold(ψ)(x)
is a regular tree.

Example 2.8. The converse of lemma 2.7 does not hold.
If unfold(ψ)(x) is a regular tree, this does not mean that
deps(x, ψ) is finite, as illustrated by the following alternative
definition of t1 from example 2.3 using S = N:

t1 = unfold(ψ)(1) where ψ(i) =

{

(a, [0, i+ 1]) if i > 0,

(b, []) if i = 0

It should be clear that deps(1, ψ) = N, which is not finite,
although t1 is regular.

2.3 Fold
Here we present the usual definition of the fold function

on trees. In section 2.4 an alternative definition will be pre-
sented which has more useful behavior in certain situations.

Let L be a non-empty set of tree labels and let Cres =
(S,v) be a pointed cpo intended to be used as the type of
results from folding functions over trees. Let Carg be the cpo

(L,=) × (Cres
ω). Let Ccmb be the cpo Carg −

cont−−→ Cres. Let Φ
be the carrier of Ccmb and let φ range over Φ. Let Cfun be
the pointed cpo (Θ,¹) = (Tree(L),=)−cont−−→Cres. Let θ range
over Θ.
The fold function of type Φ→Θ is defined as

fold(φ) = min¹{ θ | isFold(φ)(θ) }

where the predicate isFold(φ) is defined so that:

isFold(φ)(θ)⇔



θ(t) =





let (l, s) = make−1(t)
s′ = map(θ)(s)

in φ(l, s′)









Define recalc(φ) as:

recalc(φ)(θ)(t) =

(

let (l, s) = make−1(t)
in φ(l,map(θ)(s))

)

It is clear that isFold(φ)(θ) iff recalc(φ)(θ) = θ, i.e., isFold(φ)
is true on exactly those functions that are fix points of
recalc(φ). It can be checked that recalc(φ) is a continu-
ous function from Cfun to Cfun, and therefore has a least fix
point because Cfun −

cont−−→ Cfun is a pointed cpo. Thus fold is
well defined. In order to make fold(φ) computable when φ
is computable, it is sufficient to interpret the bottom of Cres

as divergence.

Example 2.9. This example illustrates the reason why the
definition of fold needs a pointed cpo. Let Bool = {true, false}
be the usual booleans and let b range over Bool. Let B =
Bool ∪ {?}. Let L = {x, y}, let S′ = L × B, and let
Cres = (S,v) = (S

′,=)⊥. Let ⊥undef be the bottom added in
going from S′ to S. Let ¹ be the partial order Tree(L)→v.
Define the function φ1 as follows:

φ1(l, [(l
′, b)]) = (l,¬b) if l 6= l′,

φ1(l, s) = (x, ?) otherwise, if ∀i < |s|. s(i) 6= ⊥undef ,
φ1(l, s) = ⊥undef otherwise

Let the tree t3 be given by this rule:

t3(p) =

{

x if p ∈ ((00)∗),

y if p ∈ ((00)∗0)

Here are some of the functions satisfying isFold(φ1):

θ1(t3) = (x, true),
θ1(t3 [0]) = (y, false),
θ1(t) = (x, ?) otherwise

θ2(t3) = (x, true),
θ2(t3[0]) = (y, false),
θ2(t) = (x, ?) if finHt(t),
θ2(t) = ⊥undef otherwise

θ3(t3) = (x, false),
θ3(t3 [0]) = (y, true),
θ3(t) = (x, ?) otherwise

θ4(t3) = (x, false),
θ4(t3[0]) = (y, true),
θ4(t) = (x, ?) if finHt(t),
θ4(t) = ⊥undef otherwise

θ5(t) = (x, ?) θ6(t) = (x, ?) if finHt(t),
θ6(t) = ⊥undef otherwise

Note that θ6 is the bottom w.r.t. ¹, so fold(φ1)(t) = θ6(t)
for all t. If isFold were taken instead to be of type ((L ×
(Sω))→S)→Bool, then the only functions above satisfying
isFold(φ1) would be θ1, θ3, and θ5. No pair of these would be
ordered by ¹, so there would be no way to decide what the
answers to fold(φ1)(t3) and fold(φ1)(t3[0]) should be.



Example 2.10. This example illustrates that sometimes the
least function satisfying isFold(φ) is not the most useful one
and also why the definition of fold needs the bottom of Cres

to be interpreted as divergence. Define the function labels

to compute the set of all labels in a tree as follows:

labels(t) = { l | ∃t′ ∈ subtrees(t). label(t′) = l }

The labels function seems like one that ought to be definable
using fold. An attempt to do so is as follows:

φlabels′(l, s) = {l} ∪ (
⋃

i<|s| s(i))

labels′(t) = fold(φlabels′ )

If Cres is (P(L),⊆), this gives the correct mathematical result
that labels′ = labels. Unfortunately, this is not computable.
An additional bottom below ∅ is needed to represent diver-
gence.
We can instead define Cres to be (P(L),=)⊥. Then the

function φlabels′ is of the wrong type (L× (P(L))
ω)→ P(L),

when instead it needs to be of type (L × ((P(L))⊥)
ω) →

(P(L))⊥. The definition of labels
′ can be fixed to work with

fold as follows. Let ⊥undef be the element added in going
from P(L) to (P(L))⊥, and make these definitions:

φlabels′′(l, s) =

{

{l} ∪ (
⋃

i<|s| s(i)) if ∀i < |s|. s(i) 6= ⊥undef ,

⊥undef otherwise

labels′′(t) = fold(φlabels′′ )

The function labels′′ is well defined and it is not hard to
check that labels(t) = labels′′(t) if t is of finite height. How-
ever, labels′′(t) = ⊥undef 6= labels(t) for every infinite height
tree t. This is a general phenomenon: Whenever the func-
tion φ is strict (as φlabels′′ is), the function fold(φ) will yield
⊥ on infinite height trees.

2.4 Cycfold
The discussion in examples 2.9 and 2.10 leads to a ques-

tion: is it possible to define fold(φ) in a computable way
so that it returns non-trivial results on infinite-height trees
when φ is strict? The development of an alternative to fold
for this purpose is the purpose of the rest of this section.
A new function cycfold will be introduced below such that
cycfold(φ) will coincide with fold(φ) for finite trees, but for
infinite regular trees cycfold may be able to find a more in-
teresting result. The cyc part of the name refers to the fact
that implementations of cycfold will take advantage of cycles
in the representations of regular trees.
Before defining cycfold, some auxiliary notions are needed.

Let L, Cres, S, v, Carg, Cfun, Θ, and ¹ be as in the definition
of fold in section 2.3. Let θ range over Θ.
The main difference is that it is required that Cres =

(S,v) in fact is the result of lifting a pointed cpo Cuser =
(Suser,vuser), i.e., Cres = (Cuser)⊥. Let ⊥undef be the bottom
added in going from Suser to S. Let ⊥user be the bottom of
Cuser. Another difference is that the combining functions
are required to yield ⊥undef iff ⊥undef is one of the argu-
ment values. Let (Φ, R) = Carg −

cont−−→ Cres, let allowed(φ) ⇔
(φ(l, s) = ⊥undef ⇔ ∃i < |s|. s(i) = ⊥undef), and let Φallowed =
{ φ | φ ∈ Φ and allowed(φ) }. Let Ccmb = (Φallowed, R) and
let φ range over Φallowed.

Let ;φ be the binary relation on Θ such that:

θ ;φ θ
′

m














θ′ 6= θ
and ∃ finite T ⊂ Tree(L).








(∀t ∈ (Tree(L) \ T ). θ′(t) = θ(t))
and ∀t ∈ T .
(

(θ′(t) = ⊥user and θ(t) = ⊥undef)
or ⊥undef 6= θ′(t) = φ(label(t),map(θ)(children(t)))

)























Let ;
∗
φ be the transitive, reflexive (on Θ) closure of ;φ.

Let θundef(t) = ⊥undef for every t ∈ Tree(L).

Lemma 2.11.

1. θundef ¹ θ for any θ ∈ Θ.

2. If θ ;
∗
φ θ

′, then θ ¹ θ′.

3. If θundef ;
∗
φ θ and isFold(φ)(θ′), then for every t ∈

Tree(L) either θ′(t) = ⊥undef or θ(t) v θ′(t).

Let isFoldRel(φ) be the predicate such that

isFoldRel(φ)(T, θ)
m

∀t ∈ T .





subtrees(t) ⊆ T

and θ(t) =

(

let (l, s) = make−1(t)
in φ(l,map(θ)(s))

)





The foundation has been prepared to define cycfold. Given
the assumptions indicated above, the cycfold function of type
Φallowed →Θ is defined as follows:

cycfold(φ)(t) =











θ(t) if θundef ;
∗
φ θ,

isFoldRel(φ)(T, θ), and t ∈ T,

⊥undef otherwise.

The cycfold function differs from fold only in the way that
cycfold(φ) picks the particular θ such that isFold(φ)(θ). The
θ is found by starting with θundef and iteratively improving it
until a fold is found by using φ to recompute the values for
some number of trees using the old values for the subtrees.
This approach is computable with ⊥undef given the usual
interpretation of divergence and its implementation will be
discussed in the rest of the paper.

Example 2.12. Let labels and φlabels′′ be defined as in ex-
ample 2.10. Let the poset Cuser = (Suser,vuser) required by
cycfold be just (P(L),⊆). It can be checked that φlabels′′ ∈
Φallowed. Thus, labels

′′′(t) = cycfold(φlabels′′ ) is well defined.
It can now be checked that labels′′′(t) = labels(t) if t is
a regular tree. For example, using t2 from example 2.3,
labels′′′(t2) = {a, b, c, d}, the desired result.

3. USING CYCAMORES IN SML
To investigate the practical aspects of the theory devel-

oped in the previous section, we have implemented the no-
tions of unfold, fold, and cycfold on regular trees in both an
eager language (SML) and a lazy language (Haskell). To
simplify the presentation, we introduce a new abstract data
type for cyclic trees which we call a cycamore. Discussing
the interface to and implementation of what is effectively
the same data type in different settings helps to highlight
the essential differences between the implementations while



hiding inconsequential details. It also helps us to explore
the space of possible interfaces and implementations.
Cycamores serve a pedagogical role and are not intended

as a proposal for the most elegant or efficient implementa-
tion of regular trees. To facilitate the comparison between
languages, we have made design decisions that make sense
in one language but seem cumbersome in the other. How-
ever, we believe that cycamores are a reasonable starting
point for implementing regular tree manipulations in any
language, and that the implementations presented here can
effectively be specialized to particular languages.
We begin in this section by presenting the interface to cy-

camores in SML, and illustrating the use of this interface in
various examples. In Section 4, we discuss issues in imple-
mentating the interface. In Section 5, we discuss interface
and implementation issues in the context of Haskell.

3.1 SML Interface to Cycamores
Figure 1 presents the SML signature for cycamores. Con-

ceptually, a value of the abstract type ’a Cycamore is a po-
tentially cyclic rose tree — i.e., a tree in which each node
has two components: (1) a label of type ’a and (2) a (nec-
essarily finite) list of children (subtrees), each of which has
type ’a Cycamore. New cycamore nodes are constructed via
make and are deconstructed via view.5

Example 3.1. The finite tree t0 shown below

a

b c

d

is built by the following expression of type string Cycamore:

val t0 = make("a", [make("b", []),

make("c", [make("d",[])])])

Infinite trees cannot be constructed directly via make, but
can be constructed via unfold, which takes three arguments:
(1) a memoization key ; (2) a generating function; (3) a seed
at which the unfolding process starts.
As we shall see in Section 4, tying structural knots in cy-

camores is achieved by memoizing source domain elements;
the memoization key argument specifies how this is done. In
the given signature, the abstract type ’a MemoKey denotes
a memoization key for type ’a. In a typical implementa-
tion, such a memoization key might be an ordering function
between two elements of type ’a, or it might be a hashing
function that maps an element of type ’a to an integer. In
the given signature, it is assumed that memoization keys
are created by applying makeMemoKey to a comparison func-
tion of type (’a * ’a) -> order, where order is a standard
SML data type with elements LESS, EQUAL, and GREATER.
The generating function plays the role of ψ in Section 2.2.

It takes an element of the source type ’a and returns a pair
(l, ds), where l is a label of target type ’b and ds is a list
of immediate dependencies (elements of source type). For a
given source value, unfold returns a cycamore whose label
is l and whose children are the cycamores resulting from
recursively processing ds.

5The fact that cycamores have abstract type means that
we cannot use SML or Haskell’s pattern matching facilities
to deconstruct them – something that makes manipulating
cycamores somewhat cumbersome. This problem could be
addressed by using some sort of view mechanism (e.g., [20]).

signature CYCAMORE = sig

type ’a Cycamore

type ’a MemKey

val make : (’a * ’a Cycamore list) -> ’a Cycamore

val view : ’a Cycamore -> (’a * (’a Cycamore list))

val unfold :

’a MemKey (* key function *)
-> (’a -> (’b * ’a list)) (* generating function *)
-> ’a (* seed *)

-> ’b Cycamore (* resulting cycamore *)

val cycfix : (’a Cycamore -> ’a Cycamore) -> ’a Cycamore

val memofix :
’a MemKey (* memoization key *)

-> ((’a -> ’b Cycamore) -> (’a -> ’b Cycamore))
(* function to fix over *)

-> (’a -> ’b Cycamore) (* resulting fixed point *)

val fold :
(’b -> (’a list) -> ’a) (* combining function *)

-> (’b Cycamore) (* source cycamore *)
-> ’a (* result *)

val cycfold :
’a (* bottom *)

-> ((’a * ’a) -> bool) (* geq *)
-> (’b -> (’a list) -> ’a) (* combining function *)
-> (’b Cycamore) (* source cycamore *)

-> ’a (* result *)

val makeMemKey : ((’a * ’a) -> order) -> ’a MemKey

val pairMemKeys : (’a MemKey) * (’b MemKey) -> (’a * ’b) MemKey

val cycMemKey :(’a Cycamore) MemKey

end

Figure 1: SML signature for cycamores.

Example 3.2. The infinite tree t1 from example 2.3 can be
constructed using the following function psi t1 that imple-
ments the function ψ in example 2.5:

fun psi_t1 0 = ("a", [1,0])
| psi_t1 1 = ("b", [])

val t1 = unfold (makeMemKey Int.compare) psi_t1 0

As a consequence of lemma 2.7, The unfold function is
guaranteed to terminate and return a cycamore with a finite
number of nodes if the transitive closure of the immediate
dependencies from the original seed yields a finite set, where
equality of elements in the set is determined by the compar-
ison function that serves as the memoization key. In the
case where the transitive closure of immediate dependencies
yields an unbounded set, unfold will not terminate in SML.

Example 3.3. The translation into SML of example 2.8 is
an expression which diverges upon evaluation:

unfold (makeMemKey Int.compare)
(fn i => if i = 0 then ("b", []) else ("a", [0, i+1]))
1

The cycfix function is handy for computing fixed points
over cycamores. It takes a single function argument of type
’a Cycamore -> ’a Cycamore and returns a cycamore that
is a fixed point of this function.

Example 3.4. Another way of creating the infinite tree t1
from example 2.3 is to use cycfix as follows:

val t1’ = cycfix (fn c => make ("a", [make ("b", []), c]))

The result of cycfix f is well-defined as long as each use
of the value of the argument of f within the body of f is
guarded by a make. If this condition is violated, the seman-
tics of cycfix is unspecified.

Example 3.5. The value of these expressions is unspecified:



cycfix (fn c => c)

cycfix (fn d => let val (x,[y]) = view(make ("a", [d]))
in y

end)

In the second expression, although the parameter d is guarded
by make, the alias y for the same value is not guarded.

The memofix function is a third way to create cycles in cy-
camores. Given (1) a memoization key (as in unfold) and
(2) a function f of type ((’a -> ’b Cycamore) -> (’a ->

’b Cycamore)), it returns a function (’a -> ’b Cycamore)

that is a fixed point of f . Additionally, all calls to the pa-
rameter of f within the body of f are memoized on the do-
main ’a, thereby allowing cycamore knots to be tied. The
name “memofix” is intended to convey the intuition that its
semantics is similar to memo o fix, where fix is the usual
fix point operator and memo is the usual notion of taking a
function and returning a memoized version of it.

Example 3.6. The following function constructs a regular
binary cycamore whose nodes have the values of the argu-
ments to a version of the Fibonacci function. In this version,
the base cases are replaced by subtraction modulo n. Since
all arguments to g are in the range [0..n], the resulting cy-
camore is regular.

fun fibModTree n =
memofix (makeMemKey Int.compare)

(fn g => (fn v => make (v, [g ((v-1) mod n),
g ((v-2) mod n)])))

n

The previous example is rather contrived, since it could
easily be expressed via unfold. However, in cases where the
immediate dependencies of a source value are not apparent,
memofix can be signficantly easier to use than unfold.
The memofix function is similar in spirit to the memo func-

tion of the Glasgow Haskell Compiler (GHC) and the (im-
plicit) memoization function in Hughes’s work on lazy memo
functions [9]. These have type (’a -> ’b) -> (’a -> ’b).
The memofix function differs from these in two ways: (1) be-
cause it has the form ((’a -> ’b) -> (’a -> ’b)) -> (’a

-> ’b), it does not rely on the recursive binding construct
of the language in which it is embedded; and (2) because
its purpose is to support knot tying in cycamores, the out-
put type ’b is constrained to be a cycamore type. Point (1)
effectively circumvents SML’s restriction on recursive bind-
ings. For instance, here is an attempt to express fibModTree
using a GHC-like memo function in SML:

(* Illegal SML example *)

fun fibModTree n =
let val rec g =

memo (fn v => make (v, [g ((v-1) mod n),
g ((v-2) mod n)]))

in g n
end

The above declaration is not legal SML because the expres-
sion memo . . . is not a manifest abstraction.
The fold function implements the “standard” notion of

folding over (possibly infinite) trees presented in section 2.3.
Because SML is an eager language, the first argument to fold
(a combining function) is necessarily strict, and fold will
diverge on any cycamore that represents an infinite tree.
However, fold can return a value for finite trees.

Example 3.7. The following function counts the nodes in
a finite cycamore:

fun countNodes t =

fold (fn _ => fn ns => 1+(List.foldr op+ 0 ns)) t

For example, countNodes(t0) returns 4, where t0 is the tree
defined in example 3.1. But countNodes(t1) diverges since
t1 stands for an infinite tree.

The cycfold function implements the alternative notion
of folding over regular trees developed in Section 2.4. It
takes four arguments: (1) a bottom element of the target
type ’a that is used to prime the fixed-point process; (2)
a comparator that determines if one target type element is
greater than or equal to another; (3) a combining function
that at each node combines the label of the node (of type
’b) with the results of accumulating over the list of children
to produce an element of target type ’a; and (4) a source
cycamore over which the accumulation takes place. The
result returned by cycfold is the final value of the fixed
point process accumulated at the root node of the source
cycamore. An alternative design would be to return a table
specifying the final values at all nodes in the cycamore.

Example 3.8. The following labels function is the trans-
lation into SML of the function given in example 2.12 (see
also example 2.10). It takes (1) a label comparison function
of type (’a * ’a) -> order and (2) a cycamore of type ’a
Cycamore, and returns a set of all the labels in the cycamore.

fun labels compare =

let val emptySet = Set.empty compare
in cycfold emptySet

(fn (s1,s2) => Set.isSubset(s2,s1))
(fn lab =>

fn sets => Set.add(List.foldr Set.union

emptySet
sets,

lab))
end

Assume that Set.empty compare creates a set that uses
compare to test element equality, and that Set.isSubset,
Set.add, and Set.union are, respectively, the subset test-
ing, insertion and union operators on sets. For example,
labels String.compare t1 returns the set {"a", "b"}.

3.2 Example: Cyclic Lists
As an extended example involving cycamores, we con-

sider examples involving infinite lists similar to those in [9].
Figure 2 gives operations for cyclists — values of type ’a
CycList—which are potentially cyclic lists with elements of
type ’a. Cyclists are constructed via cons and cnil and de-
constructed via the head (hd) and tail (tl) operations. The
match construct serves as a poor man’s pattern matcher for
cyclists. The toCyclicCycList function uses fix to create
a infinitely repeating cyclist of the given elements.
Given a memoization key k, a function f and a seed value

x, infList k f x constructs a conceptually infinite list whose
ith element (0-based) is f i(x). If the set S = {f i(x) | i ≥ 0}
is finite, then the result of infList is a regular tree and will
be represented as a finite cycamore. For example, upto n
returns an infinite repeating cyclist of the integers 0, 1, . . . n.
Note that infList will diverge (or, in practice, run out of
memory) if S is infinite.
The CLmap function maps a given function over a cy-

clist. It uses the special memoization key cycMemKey ex-
ported by the Cycamore module that allows cycamore nodes
themselves to be memoized. The existence of cycMemKey
means that cycamores created via unfold and memofix can



datatype ’a CycListLabel = Nil | Cons of ’a

type ’a CycList = ’a CycListLabel Cycamore

fun cnil () = make (Nil, [])

fun cons a b = make (Cons a, [b])

fun match cycl nullCase nodeCase =
case view cycl of

(Nil,[]) => nullCase()

| (Cons(hd),[tl]) => nodeCase(hd,tl)

fun hd cycl = match cycl

(fn () => raise Fail "head of empty CycList")
(fn (hd,_) => hd)

fun tl cycl = match cycl
(fn () => raise Fail "tail of empty CycList")

(fn (_,tl) => tl)

fun toCyclicCycList xs =
cycfix (fn c => let fun to [] = c

| to (y::ys) = cons y (to ys)
in to xs

end)

fun infList MemKey f = unfold MemKey (fn x => (Cons x, [f x]))

val infInts = infList (makeMemKey Int.compare)

fun upto n = infInts (fn y => (y + 1) mod n) 0

fun CLmap f = unfold (cycMemKey)
(fn c => (Cons (f (hd c)), [tl(c)]))

fun CLzip (xs,ys) =
unfold (pairMemKeys(cycMemKey,cycMemKey))

(fn (c1,c2) => (Cons (hd(c1),hd(c2)),

[(tl(c1),tl(c2))]))
(xs,ys)

Figure 2: Cyclists implemented as SML cycamores.

themselve be used as the source domain for creating new
cycamores via these functions. This closure property is ex-
tremely important in practice.
The CLzip function zips together two infinite cyclists.

Given lists L1 of length m and L2 of length n, CLZip L1 L2

returns a list whose length is the least common multiple ofm
and n. The CLzip function uses the function pairMemKeys

to construct a memoization key for a pair from the mem-
oization keys for its components. This abstract manipula-
tion of memoization keys means that the details of compar-
isons on cycamore nodes effectively remain hidden. That is,
there is no direct way for a client of the Cycamore module to
compare two cycamore nodes for “pointer equality”. This
helps to prevent small changes in the order of creation of
cycamores from changing the meaning of the program and
prevents clients from determining for a given cycamore its
particular finite representation of the regular tree it denotes.
Of course, these notions only makes sense in the context of
a purely functional subset of SML; using unfold, cycfold,
memofix, etc., with functions that perform assignments or
raise exceptions can potentially be used to explore the in-
ternal representation of a cycamore.

4. IMPLEMENTING CYCAMORES IN SML

4.1 A Simple Implementation
We first consider a straightforward implementation of cy-

camores in SML, and then discuss alternative strategies.
Here is a simple representation of the Cycamore type:

datatype ’a CycTree = CycNode of (’a * (’a Cycamore list))

withtype ’a Cycamore = (int * (’a CycTree option)) ref

In this representation, each cycamore is a mutable reference
cell that contains a pair of a unique identifer (UID) and
an optional tree node that pairs a label with children. The

reference cell enables tying knots in cycamores. SML’s refer-
ence cells can be compared via pointer equality, but cannot
be arranged in a total order or used as the argument to a
hash function; using them directly as keys in a memoization
table would be inefficient. This problem is solved via node
UIDs, which support the memoization and comparison of
nodes. The node UIDs are implemented in terms of a global
counter, which is bumped each time make is invoked:

val uidRef = ref 0

fun nextUid() = (uidRef := (! uidRef) + 1; !uidRef)

fun uidOf(ref(uid,_)) = uid

fun make(lbl,kids) = ref (nextUid(), SOME(CycNode(lbl, kids)))

As part of the knot-tying process, a reference representing
a cycamore node is sometimes initialized to a pair of a UID
and NONE. Examine the contents of such a node leads to a so-
called black hole error common in Haskell implementations.

fun view cycref =
let val (_, nodeOpt) = !cycref

in case nodeOpt of
(SOME (CycNode (valu,kids))) => (valu,kids)

| NONE => raise Fail "Cyacamore black hole!"
end

The workhorse for tying knots in cycamores is memofix:

fun (’a,’b) memofix (memKey : (’a MemKey))
(f : (’a -> ’b Cycamore)

-> (’a -> ’b Cycamore)) =
let val mtab = MemoTable.new memKey

fun cyc (src : ’a) =
case MemoTable.find (src, mtab) of

(SOME result) => result

| NONE =>
let val trg = ref (0, NONE)

val _ = MemoTable.bind(src, trg, mtab)
val _ = trg := (! (f cyc src))
(* can yield black hole if f returns trg! *)

in trg
end

in cyc
end

The implementation of memofix assumes the existence of a
MemoTable module with stateful operations for creating a
new memo table (new), inserting a key/value binding into
a memo table (bind), and looking up the value associated
with a key (find). Cycamore knots are tied by first binding
the source value src to trg, a fresh reference cell containing
the black hole token (0, NONE), and later setting this cell
to the result of calling f. Note in this implementation that
the memoization table mtab is shared across different calls
to the returned cyc function. An alternative strategy would
be to allocate a new table for each call to cyc. The above
strategy enhances opportunities for sharing, but in so doing
might increase space complexity.
Both fix and unfold can be implemented in terms of

memofix, as show below:

fun ’a fix (f : ’a Cycamore -> ’a Cycamore) =

memofix (makeMemKey (fn ((),()) => EQUAL))
(fn g => fn x => f (g x))

()

fun (’a,’b) unfold (MemKey : (’a MemKey))
(f : ’a -> ((’b Cycamore list -> ’b Cycamore) * ’a list)) =

let fun f’ cyc src = let val (cnstr,deps) = f src
in cnstr (map cyc deps)

end
in memofix MemKey f’

end

The fold function is a straightforward recursive accumu-



fun (’a,’b) cycfold (bottom : ’a)
(geq : (’a * ’a) -> bool)

(f : ’b -> (’a list) -> ’a)
(cyc : ’b Cycamore) =

let

fun eq(x,y) = geq(x,y) andalso geq(y,x)
fun get m x =

case Tbl.find (m, x) of
SOME y => y

| NONE => raise (Fail "cycfold invariant failed!")

val emptyTbl = Tbl.empty cycMemKey
fun insertAll (cyc, tbl) =

case Tbl.find (tbl, cyc) of
SOME _ => tbl

| NONE => let val (_, kids) = view cyc
val tbl’ = Tbl.insert (tbl, cyc, bottom)

in List.foldl insertAll tbl’ kids

end
val initialTbl = insertAll (cyc, emptyTbl)

fun updateTbl tbl =
let val flag = ref false

fun updateNode (node, prev) =

let val (lbl, kids) = view node
val curr = f lbl (List.map (get tbl) kids)

val changed = not (eq (prev, curr))
val _ = (flag := (!flag orelse changed))

in if not (geq (curr, prev)) then
raise (Fail "cheating in cycfold")

else curr

end
in (Tbl.mapi updateNode tbl, !flag)

end
fun fixedPoint tbl =

let val (tbl’, changed) = updateTbl tbl

in if changed then fixedPoint tbl’ else tbl
end

val finalTbl = fixedPoint initialTbl
in

get finalTbl cyc
end

Figure 3: SML implementation of cycfold.

lation on a rose tree:

fun (’a,’b) fold (f : (’b -> (’a list) -> ’a))

(cyc : (’b Cycamore)) =
let val (label,kids) = view cyc

in f label (map (fold f) kids)
end

The cycfold function (see figure 3) is a simple (and in-
efficient) implementation of fixed point iteration. For each
time step t of the fixed point iteration process, it builds a ta-
ble mapping each cycamore node to the result accumulated
at that node during iteration t. The process starts with a
table in which all nodes map to the bottom value and stops
when no change to a table is detected during an iteration.
This process is similar to the fixed point iteration in data
flow analysis [17], except that the node functions take mul-
tiple arguments rather than merging the information from
multiple inputs. As in dataflow analysis, the iteration is
guaranteed to terminate if the target domain is a finite lat-
tice and the combination function is monotonic. If either of
these conditions does not hold, cycfold may diverge.
The comparison function argument geq of cycfold is used

for two purposes: (1) to determine when the fixed point it-
eration should stop (when used within eq); and (2) to check
that the combination function is monotone w.r.t. the partial
order of the result. Purpose (2) is not strictly necessary, but
is practically helpful in debugging for catching a combining
function that “cheats” by producing a new result lower than
or incomparable with the previous one. If only purpose
(1) is desired, an equality predicate is sufficient.6 Indeed,

6If purpose (2) is also desired, it is more efficient (but also

this is the approach taken by Gibbons in the Haskell im-
plementation of his efold function [6]. Modulo differences in
implementation language, table representation, and means
of testing termination, the implementation of efold is effec-
tively the same as that of cycfold.
Memoization keys are just comparison functions:

type ’a MemKey = (’a * ’a) -> order

fun makeMemKey cmp = cmp

fun cycMemKey (c1,c2) = Int.compare(uidOf(c1),uidOf(c2))

fun pairMemKeys (cmp1, cmp2) ((x1,y1),(x2,y2)) =

case cmp1(x1,x2) of
EQUAL => cmp2(y1,y2)

| other => other

Exporting makeMemKey but not the implementation of the
MemKey type makes MemKey an abstract data type. Export-
ing cycMemKey with (abstract) type (’a Cycamore) MemKey

permits it to be used as an argument to unfold and memofix,
but prohibits it from being used to directly compare cy-
camore nodes. The UID information encapsulated in this
manner does not “leak out” to the rest of the program.
The pairMemKeys function is just one example of a library
of memoization key combinators that should be exported.
Without such combinators, the cycMemKey black box would
be rather inflexible. For example, pairMemKeys is essential
for implementing CLzip in Section 3.2.

4.2 Alternative Implementations
We have experimented with several implementation strate-

gies other than the simple one presented above. One strat-
egy saves both space and time by using reference cells only
at the points where knots need to be tied. The data type
declaration for this implementation disinguishes such refer-
ence (indirect nodes) from direct nodes:

datatype ’a Cycamore =
(* direct node *)

CycNode of (int (* UID *)
* ’a (* node value *)
* (’a Cycamore list)) (* children *)

(* indirect node *)

| Indirect of ’a Cycamore option ref

It is an invariant of the implementation that the reference
in an indirect node contains a direct node.
We have also implemented cycamores on top of a sys-

tem for cyclic hash consing. In cyclic hash consing, each
regular tree is guaranteed to be represented by a unique fi-
nite representation using the minimal number of nodes. We
use an implementation of cyclic hash consing developed by
Considine and Wells that is an improvement upon the one
proposed in [15]. An intriguing feature of this implementa-
tion is that it is not necessary to hide node equality — the
uniqueness of cycamore nodes representing regular trees im-
plies that node equality is the same as tree equality. Node
equality checking, which is implemented as a fast pointer-
equality check in such a system, can and should be exposed
in the cycamore interface for this implementation.
The implementation of cycfold is independent of the rep-

resentation details for cycamore nodes; it only depends on
view and the ability to index a table with cycamore nodes
(which is permitted inside of but not outside of the cycamore
implementation). We have experimented with two imple-

more cumbersome) to supply a separate equality predicate
rather than simulating it with two calls to the comparator.



mentations of cycfold that are more efficient than the one
presented above in terms of reducing the number of invoca-
tions of the combining function during the fixed point iter-
ation. One strategy builds a specialized updating function
on tables in an initial walk over the cycamore graph, and
repeatedly executes this function starting with an initial ta-
ble until no change is detected. The other strategy schedules
updates of the combining function at individual nodes based
on heuristics involving changes to children values since the
last update. Our experiments with these strategies are still
preliminary, and it is too early to report how they compare
with the naive strategy and with each other.

5. CYCAMORES IN HASKELL

5.1 Implementing Cycamores in Haskell
As evidence that cycamores are a reasonable abstraction

for cyclic data, we now discuss implementing cycamores
in Haskell. Our implementation uses Haskell’s laziness to
tie knots in cycamores. The tricky part of this exercise is
threading the state of a global UID counter and memoiza-
tion tables through a purely functional computation.
We begin with a simple data type declaration:

data Cycamore a = CycNode Integer -- UID

a -- value
[Cycamore a] -- subtrees

instance Eq (Cycamore a) where
(CycNode i1 v1 l1) == (CycNode i2 v2 l2) = (i1 == i2)

instance Ord (Cycamore a) where
compare (CycNode i1 _ _) (CycNode i2 _ _) = compare i1 i2

As in SML, Haskell does not support user-visible pointer
equality on heap allocated values, so cycamore nodes must
maintain UIDs for memoization and comparison. Using
Haskell’s Eq and Ord type classes obviates the need to pass
memoization keys explicitly to unfold and memofix. While
this Haskell idiom is convenient, it unfortunately allows UID
information to “leak out”, making it possible for small changes
in the order of creation of cycamores to affect the results.
We leave plugging this leak as future work.
Haskell implementations of the core cycamore functions

are presented in figure 4. While view is trivial, make is any-
thing but. Each call to make needs to somehow update a
global UID counter that is threaded through the computa-
tion. To do this, and also to handle the threading of mem-
oization tables, we introduce the Cycle monad (figure 5).
The Cycle monad, which is implemented in terms of the
state transformer monad ST [13], uses a state variable (of
type STRef s Integer) to maintain the value of the UID
counter. As with the state transformer monad’s runST, the
similar runCycle function requires a rank-2 polymorphic
type in order for type checking to guarantee the encapsu-
lation of state.
The make function (see figure 4) extracts the UID counter

from the monad and updates it as part of creating a new
node. Note that the type signature for make in Haskell is
necessarily different than that in SML because it must ex-
pose the threading of state in the type. Because the type
Cycle s (Cycamore a) will appear many times below, we
introduce the following abbreviation:

type Cycamore’ s a = Cycle s (Cycamore a)

The cycfix function computes a fixed point over a cy-
camore but not over the monadic state. It is implemented

view :: Cycamore a -> (a, [Cycamore a])
view (CycNode _ val kids) = (val,kids)

make :: (a, [Cycamore a]) -> Cycle s (Cycamore a)
make (val, kids) =

C(\uidRef -> do uid <- readSTRef uidRef

writeSTRef uidRef (uid + 1)
return (CycNode uid val kids))

cycfix :: (Cycamore a -> (Cycamore’ s a)) -> (Cycamore’ s a)
cycfix f = C( uidRef -> fixST (\x -> (unC (f x)) uidRef))

unfold :: Ord a => (a -> (b, [a])) -> a -> (Cycamore’ s b)
unfold gen seed =

do mtab <- memTabNew
cyc mtab seed
where cyc mt src =

do probe <- memTabFind src mt
case probe of

Just result -> return result
Nothing ->

let (label, deps) = gen src

in cycfix (\trg ->
do memTabBind src trg mt

deps’ <- mapM (cyc mt) deps
trg <- make(label, deps’)

return trg)

memofix :: Ord a => ((a -> (Cycamore’ s b))
-> (a -> (Cycamore’ s b)))

-> (a -> (Cycamore’ s b))
memofix f start =

do mtab <- memTabNew
cyc mtab start

where cyc mt src =
do probe <- memTabFind src mt

case probe of

Just result -> return result
Nothing ->

cycfix (\trg ->
do memTabBind src trg mt

-- next line can yield black hole

-- if f returns (lifted) trg
trg <- (f (cyc mt) src)

return trg)

fold :: (b -> [a] -> a) -- combining function

-> (Cycamore b) -- source cycamore
-> a -- result

fold f cyc = f label (map (fold f) kids)

where (label,kids) = view cyc

cycfold :: (POrd a) =>

a -- bottom
-> (b -> [a] -> a) -- combining function

-> (Cycamore b) -- source cycamore
-> a -- result

cycfold bot f cyc =

get finalTbl cyc where
get m x =

case Tbl.search x m of
Just v -> v

Nothing -> error ("cycfold invariant failed!")
finalTbl = fixedPoint updateTbl initialTbl
initialTbl = insertAll cyc Tbl.empty

insertAll cyc tbl =
case Tbl.search cyc tbl of

Just _ -> tbl
Nothing ->

foldr insertAll (Tbl.insert cyc bot tbl) kids

where (_,kids) = view cyc
fixedPoint f x = fp x

where fp z = if z == z’ then z else fp z’
where z’ = f z

updateTbl m =
Tbl.mapi (\cyc ->

\val ->

let val’ = f label (map (get m) kids)
(label,kids) = view cyc

in case pordCompare val’ val of
(Just GT) -> val’

(Just EQ) -> val’
_ -> error "cheating in cycfold"

)

m

Figure 4: Cycamore operations in Haskell.



newtype Cycle s a = C { unC :: STRef s Integer -> ST s a }

instance Monad (Cycle s) where

return = returnCycle
(>>=) = thenCycle

returnCycle :: a -> Cycle s a
returnCycle x = C(\uidRef -> return x)

thenCycle :: Cycle s a -> (a -> Cycle s b) -> Cycle s b
thenCycle (C c) f = C(\uidRef -> do x <- c uidRef

((unC (f x)) uidRef))

runCycle :: (forall s. Cycle s a) -> a
runCycle c = runST (do uidRef <- newSTRef 0

((unC c) uidRef))

Figure 5: The Cycle monad.

type MemTab s a b = STRef s (Tbl.Map a (Cycamore b))

memTabNew :: Cycle s (MemTab s a b)

memTabNew = C(\uidRef -> newSTRef (Tbl.empty))

memTabFind :: Ord a => a -- key
-> (MemTab s a b) -- table

-> Cycle s (Maybe (Cycamore b)) -- result
memTabFind key mt =

C(\uidRef -> do mtMap <- readSTRef mt
return (Tbl.search key mtMap))

memTabBind :: Ord a => a -- key
-> (Cycamore b) -- value
-> (MemTab s a b) -- table

-> Cycle s () -- result
memTabBind key val mt =

C(\uidRef -> do mtMap <- readSTRef mt
writeSTRef mt (Tbl.insert key val mtMap))

Figure 6: Memoization table interface in Haskell.

in terms of fixST, the fixed point function for the ST monad.
The implementation of unfold and memofix require mem-

oization tables. Assuming the existence of a Tbl module im-
plementing finite tables, these can be implemented as state
variables in the Cycle monad (see figure 6). In order to tie
the cyclic knot, unfold and memofix use a combination of
cycfix and laziness. Such idioms for computing recursive
values in the context of a monad are explored in [4].
Unlike the SML implementation, the Haskell implementa-

tion does not share memo tables across different invocations
of unfold f for a given f. Instead, it creates a fresh memo
table for each such invocation. The definition can be modi-
fied to have greater sharing, but the signature would have to
change. In particular, the (a -> (Cycamore’ s b)) would
need to become (Cycle s (a -> (Cycamore’ s b))). Sim-
ilar comments hold for memofix.
Because the implementations of fold and cycfold are

(mostly) orthogonal to the issue of threading state, they are
implemented much as in SML. The Haskell implementation
of cycfold does not take an explicit comparator argument,
but instead takes an implicit one (pordCompare) via the fol-
lowing POrd type class, which models partial orders:

class (Eq a) => POrd a where
pordCompare :: a -> a -> Maybe Ordering

The pordCompare function returns Just ord, where ord is
the ordering (EQ, LT, or GT) between values, or Nothing if
the values are incomparable in the partial order.

Example 5.1. Since Haskell is lazy, fold can return non-
trival values for cycamores that denote infinite trees. E.g.:

one = Cyc.runCycle (Cyc.fix (\c -> Cyc.make("a",[c])))

factGen = (\c -> \[f] -> \ n -> if n == 0 then 1
else n * (f (n - 1)))

fact = Cyc.fold factGen one

Here, one is a one-node cyacamore denoting an infinite linear

chain and factGen is a factorial generating function. The
result of Cyc.fold factGen one is the factorial function.

The given implementation of fold calculates f at a node
every time that node is encountered in a walk over the cy-
camore, which is inefficient if the cycamore denotes an infi-
nite regular tree. An alternative is to memoize the results of
f in a table; Haskell’s laziness is a big help for this purpose.
This is the approach taken by Gibbons in his implementa-
tion of ifold [6]. Gibbons notes that his ifold is equivalent
to the composition of a fold function on rose trees (foldtree)
and a function that unwinds graphs into trees (untie).

5.2 Example: Deterministic Finite Automata
We illustrate the use of cycamores in Haskell in the con-

text of implementing some deterministic finite automata
(DFA) operations. We stress that laziness is not essential
for this example; it can just as well be implemented straight-
forwardly using the SML implementation of cycamores.
Suppose that a DFA is represented as a list of states:

type DFA = [State]

data State = S(Int, -- state number

Bool, -- is this an accepting state?
[(Char,Int)]) -- transitions out of state;

instance Eq State where (S(i,_,_)) == (S(i’,_,_)) = i == i’

instance Ord State where
compare (S(i,_,_)) (S(i’,_,_)) = compare i i’

Each state has an identifying number, a boolean indicating
whether it is an accepting state, and a list of character/state
number pairs indicating transitions out of the state. If a
character does not appear in the list, it is assumed that a
transition is taken to a distinguished non-accepting “dump
state”. For example, here is a sample DFA:

dfa1 = [S(0, True, [(’a’,1)]),

S(1, True, [(’a’,2), (’b’,0), (’c’, 1)]),
S(2, False, [(’b’,2), (’c’,0)])]

Given a DFA, a state s and a character c, the following
transition function returns the state that results from taking
a transition from s via c (asuming that the transition is not
to the dump state):

trans :: DFA -> State -> Char -> State

trans dfa (S(q,b,ts)) c = s
where Just (_,q) = find (\(c’,_) -> c’ == c) ts

Just s = find (\(S(q’,_,_)) -> q == q’) dfa

A DFA can also be represented as a cycamore where each
node label is of type StateLabel:

data StateLabel = SL(Int, -- state number

Bool, -- is this an accepting state?
[Char] -- transition labels

) -- (paired with children)
deriving (Show, Eq)

type DFACyc = Cyc.Cycamore StateLabel

The following function converts between the list and cy-
camore representations of DFAs. If dfa is a finite list of
states, unfold will construct a finite cycamore encoding the
possibly cyclic transition graph of the automaton.

dfaToCyc :: DFA -> Cyc.Cycle s DFACyc
dfaToCyc dfa =

Cyc.unfold (\(state @ (S(q,b,ts))) ->
let chars = map fst ts

in (SL(q,b,chars), map (trans dfa state) chars))
(head dfa)



The following strings function returns the set of all strings
whose length is less than or equal to the given number n
that are accepted by automaton represented by the given
cycamore. Here, cycfold is used to collect the strings ac-
cepted at each node via a fixed point iteration that starts
with the empty set.

strings dfaCyc n =
Cyc.cycfold Set.empty

(\(SL(q,accept,chars)) ->
(\sets ->
(Set.filter (\str -> length(str) <= n)

(foldr Set.union Set.empty
(map (\(c, set) ->

let set’ = Set.map (c :) set
in if accept

then Set.insert "" set’
else set’)

(zip chars sets))))))

dfaCyc

For example, evaluating the Haskell expression

strings (runCycle (dfaToCyc dfa1)) 4

yields the following set:

{"", "a", "aabc", "aac", "aaca", "ab", "aba", "abab", "abac",
"ac", "acac", "acb", "acba", "acc", "accb", "accc"}

6. CONCLUSION
We have presented a theory of unfolding and folding for

regular trees, and have introduced abstractions for simplify-
ing the creation and manipulation of finite data structures
that represent infinite regular trees. We have also demon-
strated that these abstractions can be implemented in both
eager and lazy languages. In each case, particular details
of the language add complexity to the implementation. In
the case of SML, the need to explicitly pass memoization
keys is cumbersome, and the restriction on recursive bind-
ings can be suffocating. In Haskell, threading the state of
the global UID counter and memoization tables through the
computation is awkward.
Cycamores would be easier to use if they were integrated

more smoothly into particular languages. We have already
noted that the lack of pattern matching on cycamores makes
them unwieldy. Having to encode information like list ele-
ments in node labels is awkward. More problematic is the
lack of typing. As currently designed, there is one space
of untyped cycamore nodes, and all checks on labels and
number of children are dynamic. We hope to address these
problems in future work.
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