
Under consideration for publication in J. Functional Programming 1

A Calculus with Polymorphic

and Polyvariant Flow Types

J. B. WELLS∗

Heriot-Watt University

ALLYN DIMOCK†

Harvard University

ROBERT MULLER‡

Boston College

FRANKLYN TURBAK§

Wellesley College

Abstract

We present λCIL, a typed λ-calculus which serves as the foundation for a typed interme-
diate language for optimizing compilers for higher-order polymorphic programming lan-
guages. The key innovation of λCIL is a novel formulation of intersection and union types
and flow labels on both terms and types. These flow types can encode polyvariant control
and data flow information within a polymorphically typed program representation. Flow
types can guide a compiler in generating customized data representations in a strongly
typed setting. Since λCIL enjoys confluence, standardization, and subject reduction prop-
erties, it is a valuable tool for reasoning about programs and program transformations.

1 Introduction

Explicitly typed intermediate languages (TILs) facilitate the safe and efficient com-

pilation of programming languages (Morrisett, 1995; Tarditi et al., 1996; Pey-

ton Jones, 1996; Peyton Jones & Meijer, 1997; Shao, 1997; Benton et al., 1998;

Tolmach & Oliva, 1998; Morrisett et al., 1999; Fitzgerald et al., 1999; Cejtin et al.,

2000). The type information in the intermediate representation can be used to guide

program analyses and transformations and to support run-time operations such as

∗ (e-mail: jbw@cee.hw.ac.uk), Edinburgh EH14 4AS, Scotland. This author’s work was done while
at Boston University, the University of Glasgow, and Heriot-Watt University. It was partially
supported by NSF grants CCR–9113196, CCR–9417382, EIA–9806745 and EPSRC grant GR/L
36963.

† (e-mail: dimock@deas.harvard.edu), Cambridge, MA 02138, USA. Supported by NSF grants
CCR–9417382, EIA–9806745/9806746/9806747.

‡ (e-mail: muller@cs.bc.edu), Chestnut Hill, MA 02467, USA. Supported by NSF grant EIA–
9806746.

§ (e-mail: fturbak@wellesley.edu), Wellesley MA 02481, USA. Supported by NSF grant EIA–
9806747.

2 Wells, Dimock, Muller and Turbak

garbage collection. TILs are also an important debugging aid in the compiler de-

velopment process. Finally, there is growing recognition of the importance of TILs

in certifying compilers (Necula & Lee, 1998; Appel & Felty, 2000).

TILs are especially important for the safe and efficient compilation of modern

programming languages that support higher-order functions, polymorphic types,

abstract data types or objects. These features make it difficult to compute efficient

data and control representations. In the absence of type information, compilers

for these language have usually adhered to a strong uniform representation as-

sumption (URA), which dictates (1) that each type constructor in the language is

associated with a single representation in the target machine language and (2) that

all values are accessed through a fixed-size interface (usually achieved by “boxing”

(Leroy, 1992)). While the URA simplifies compilation and facilitates the support of

polymorphism and separate compilation, it stands in the way of customized data

representation and classical optimizations. TIL-based compilers can use type infor-

mation to choose different representations for different instances of the same type

constructor. For example, a function mapping integers to integers can be given a

different calling convention than a function mapping reals to reals — something

not possible under the URA.

Typed intermediate languages based on System F (Girard, 1972; Reynolds, 1974)

represent type polymorphism with universally and existentially quantified type vari-

ables. The explicit type information in these languages can be used to relax the URA

for monomorphically typed data, however, these languages still impose the URA

in a weaker form. First, the binding occurrences of the type variables effectively

hide the types at which the polymorphic value is used. This makes it difficult to

customize data representations. Second, even in the best case, data representa-

tions are computed on a per-type basis. But it is often desirable to choose different

representations for values of the same type based on their usage. Multiple represen-

tations are often suggested by polyvariant analyses, i.e, those in which a given value

or a given usage type is analyzed in multiple contexts. System F is not expressive

enough to encode many polyvariant analyses.

In this paper we introduce λCIL, an explicitly typed λ-calculus that serves as a

basis for a TIL in compilers for higher-order polymorphic programming languages.1

The key innovation of the language is the integration of polyvariant flow information

and polymorphic type information into a single flow type system that supports

transformations into customized data representations. The type system represents

flow information using a novel formulation of intersection and union types as well

as flow label annotations on both terms and types. The types and annotations

approximate the flow of values from the points where they are defined (their sources)

to the points where they are used (their sinks).

The flow annotations can be used to construct data representations tailored

1 “CIL” is an acronym for “Church Intermediate Language”. The authors are members of the
Church Project (http://www.cs.bu.edu/groups/church/) which is investigating the applica-
tion of type systems in the safe and efficient compilation of higher-order typed programming
languages.

A Calculus with Polymorphic and Polyvariant Flow Types 3

specifically to source/sink pairs and to implement efficient control structures. For

example, a compiler may choose to represent a function flowing to several applica-

tion sites with several customized pieces of run-time code. If the function is given

an intersection type, the run-time code may be specialized for the various con-

crete types in the intersection type. Intersection and union types together with

flow labels support a more expressive notion of type polymorphism which can sup-

port customizing the run-time code for many context dependent properties such as

callee-save register conventions, activation record layout, stack availability of free

variable values, etc.

In λCIL, customization opportunities are represented by virtual forms. Virtual tu-

ples introduce values of intersection type. Their components, whose code is identical

except for type annotations, are duplicated (or split) representations of a value that

is used in different contexts. Virtual case expressions eliminate values of union type.

Their clauses, whose code is identical except for type annotations, can be thought

of as duplicated (or split) contexts. These forms are virtual in the sense that they

are compile-time entities that are not represented in the run-time code.

To customize code, the compiler may reify the virtual forms into corresponding

real forms that are represented at run-time. When the compiler elects to customize

a source, it reifies the virtual tuple by converting it to a real tuple and by convert-

ing the corresponding virtual projections to real ones. Additionally, reification of

virtual tuples typically introduces customized code for the components that is no

longer the same modulo type annotations. Similarly, the compiler may elect to rep-

resent a given application site with several customized run-time calling sequences,

possibly inlining some number of the calls. In this case the compiler reifies a virtual

case expression by converting it to a real one and by converting the corresponding

virtual injections to real ones (i.e., ones with run-time tags). Once all represen-

tation decisions have been made, many virtual entities that have not been reified

can be merged into a single real representation. Any virtual tuple (resp. virtual

case expression) that persists to the back end is compiled into the code for one of

its components (resp. clauses), since all of these are guaranteed to compile to the

exactly the same code. A concrete example of the sort of customization supported

by λCIL is presented in section 2.2. See (Dimock et al., 2001a) for an extensive

discussion of how λCIL supports customized function representations.

Flow types naturally integrate types with the sorts of control and data flow

analyses that are computed in most modern compilers. The main benefit of this

integration is that it helps to maintain the consistency of analyses across program

transformations. Although it is in general difficult to maintain this consistency, it is

easier than when the information is recorded separately, and, most importantly, the

type checker can mechanically certify the consistency. In a well-typed λCIL program,

any flows encoded in the types are conservative approximations of run-time flows.

In contrast, in systems that maintain type and flow information separately, it can

be difficult to update the flow information to be consistent with the results of a

program transformation. In such systems, it may be necessary to reanalyze the

program after every transformation. Not only is reanalysis potentially expensive,

4 Wells, Dimock, Muller and Turbak

but analysis of a transformed program may yield less precise information than for

the original program.2

The benefits of flow types are not achieved without cost. First, the encoding of

flow information in the types and the duplication implied by virtual tuples and

case expressions can lead to extremely large terms and types. Much of our effort in

implementing a compiler based on λCIL has been focused on reducing the space re-

quired by our intermediate language. We have adapted the space-saving techniques

described in (Shao et al., 1998) as well as introduced some new techniques. These

engineering issues are outside the scope of this paper and are reported elsewhere

(Dimock et al., 2001b).

Second, in their simplest form, flow types appear to require analysis of a whole

program, and so seem to be at odds with separate compilation. Indeed, our pro-

totype ML compiler based on λCIL assumes whole-program compilation. In this

respect, it follows many other modern compilers for higher-order polymorphic lan-

guages that have used whole-program compilation to achieve high degrees of effi-

ciency (Chambers et al., 1996; Tolmach & Oliva, 1998; Benton et al., 1998; Siskind,

1999; Cejtin et al., 2000). But it is worth noting that flow types may not be in-

herently incompatible with separate compilation. Type systems closely related to

that of λCIL (such as (Banerjee, 1997; Kfoury & Wells, 1999)) have a principal

typing property – a key property for modular systems (Jim, 1996). (In contrast,

neither System F nor the Hindley-Milner system have principal typings. The weak

“principal types” property of the Hindley-Milner system does not support modular

analysis.) This suggests the tantalizing possibility that λCIL could be the basis for

a modular compilation system in which some compilation is performed at link-time

(e.g., see (Fernandez, 1995)). Even if flow types do prove useful in a modular set-

ting, they may be too “low-level” for user-level specification of module interfaces;

universal and existential types seem more appropriate for such specification. Since

intersection and union types appear to have different strengths and weaknesses than

universal and existential types, it may be fruitful to integrate them into a single

type system.

Flow and type information have been combined in other type systems, but most

of these can only express monovariant flow analyses and none has been the basis for

a calculus at the core of a typed intermediate language. The first correspondence

between a type system and a monovariant flow analysis was shown in (Palsberg &

O’Keefe, 1995). Heintze coined the term “control flow types” in the context of a

system in which function types are annotated with sets of source labels (Heintze,

1995); the system is limited to the expression of monovariant flow analyses. The

control flow effect system in (Tang & Jouvelot, 1994) also involves source label

annotations of arrow types but cannot express polyvariant flow analyses. The first

formal correspondence between a class of polyvariant flow analyses and intersec-

2 This is particularly true in the case of modular analyses such as that of Banerjee (Banerjee,
1997), where the rank restriction can force flow information about the various inputs of a
function to be merged when the function is passed to another function. Note that for some
combinations of transformation and analysis, the reanalysis of the transformed program can
yield more precise information. Indeed, that is one of the goals of some transformations.

A Calculus with Polymorphic and Polyvariant Flow Types 5

tion and union types was shown in (Palsberg & Pavlopoulou, 2001). An improved

correspondence presented in (Amtoft & Turbak, 2000) involves a type system with

tagged intersection and union types that is closely related to that of λCIL. Flow and

type information are also merged in constrained types (Curtis, 1990; Eifrig et al.,

1995; Aiken & Wimmers, 1993; Aiken et al., 1994). Palsberg and Smith (Palsberg

& Smith, 1996) show that the system of constrained types in (Eifrig et al., 1995)

accepts the same programs as the type system of Amadio and Cardelli (Amadio &

Cardelli, 1993). Two recent compilers (Tolmach & Oliva, 1998; Cejtin et al., 2000)

have used flow information to reduce the size of closure datatypes introduced by

defunctionalization. The resulting sum-of-product closure representations can be

viewed as a simple flow type system in which all virtual tuples and variants have

been reified.

Unlike many other typed intermediate languages, λCIL is a calculus (an equa-

tional theory of program fragments) rather than just a language with a determin-

istic operational semantics. In this paper, we prove that λCIL is confluent and has

the subject reduction property. The former property ensures that the equational

theory of λCIL is non-trivial. Elsewhere, we prove that λCIL has a standardization

property, which effectively determines an operational semantics for λCIL by speci-

fying an evaluation relation that is a subrelation of the calculus relation (e.g., see

(Ariola & Felleisen, 1997)). Taken together, confluence and standardization imply

computational soundess: terms equated by the theory can be shown to be observa-

tionally equivalent. This is an essential property of an intermediate language, since

compiler writers can use the theory to justify an important class of local program

transformations.

The remainder of this paper is organized as follows. Section 2 presents an informal

overview of λCIL motivating the properties of the calculus with examples. Section 3

discusses design trade-offs in the formulation of the calculus as well as related

work. Section 4 gives a formal presentation of three related calculi: an untyped

calculus (λCIL
ut), an explicitly typed calculus (λCIL), and an implicitly typed calculus

(λCIL
i). Section 5 concludes with a brief discussion of our practical experience using

a typed intermediate language based on λCIL. The appendix presents the details

of combinatory reduction systems which are used in our proof of confluence.

2 Informal Overview of λCIL

In this section, we give an informal overview of λCIL by discussing its syntax and se-

mantics in the context of a series of simple examples. We present two versions of the

calculus: the untyped calculus λCIL
ut and the typed calculus λCIL.3 The connection

between these two calculi will be developed in section 4.

3 In section 4 we present yet another language: the implicitly typed language λCIL
i . This calculus is

different from the two summarized here. Because λCIL
i is not critical to the informal exposition,

we will not discuss it here.

6 Wells, Dimock, Muller and Turbak

2.1 The Untyped Calculus λCIL
ut

The untyped language λCIL
ut is a call-by-value lambda calculus extended with con-

stants, recursion, tuples, and variants. For presentational purpose, we use standard

infix primitives in our examples even though they do not appear in the formal

calculus. As a first example, consider the following λCIL
ut term:

M̂a ≡ let f = λx.x in ×(f @ 17, f @ 23, f @ true)

In the untyped language, let is the familiar syntactic sugar for an application of an

abstraction to a term. The body of the let expression is a tuple containing three

applications of the identity function. Tuples are written as ×(. . .), where the symbol

× serves to distinguish the subterm from a virtual tuple, which will be introduced

later. Function application is indicated by an explicit @ symbol, which serves as

a placeholder for flow labels in the typed versions of the language. The call-by-

value reduction rules for λCIL
ut (see section 4.2.1) are straightforward. Under these

rules,M̂a reduces to the normal form ×(17, 23, true).

As a second example, consider:

M̂b ≡ let g = λs. case+ s bind w in

×(λx.x+ 1, w),

×(λy.y ∗ 2, w + 1),

×(λz.if z then 1 else 0, w)

in let h = λa. let p = g @ a

in(π×
1 p) @ (π×

2 p)

in ×
(

h @
(

in+
1 3

)

, h @
(

in+
2 5

)

, h @
(

in+
3 true

))

In this example, g and h are let-bound to functions that take variants as arguments.

The term π×
i M extracts the ith component of the tuple to which M evaluates.

Variants are constructed via
(

in+
i M

)

, which injects the value of M into a variant

with positional tag i. The symbol + serves to distinguish these from virtual variants,

which will be introduced later. Variants are deconstructed via case+ expressions.

In particular, a term of the form case+M0 bind x in M1, . . . ,Mn discriminates

on the variant value denoted by M0, which should reduce to a subterm of the form
(

in+
i V

)

, where 1 ≤ i ≤ n, and V is a value (i.e., constant, abstraction, tuple of

values, or variant of a value). The value of the case+ expression is the value of the

clause Mi in a context where x is bound to V (the same bound variable is used in

all clauses for convenience). The case+ term within g evaluates one of three tuple

terms depending on the tag of s. Each of these terms pairs an abstraction with an

argument value to which it will be applied (in h). Thus, the tuples have the form of

thunks (nullary functions) that have been closure-converted (Dimock et al., 1997).

The term M̂b reduces to the normal form ×(4, 12, 1).

2.2 The Typed Calculus λCIL

The typed language λCIL is an extension of λCIL
ut in which all occurrences of variables

(except the binding occurrences of case-bound variables) and variants are anno-

tated with a type. λCIL supports the familiar types: base types, function, product,

A Calculus with Polymorphic and Polyvariant Flow Types 7

variant and recursive types. In addition, λCIL includes two features for representing

information that approximates the flow of values from their sources to their sinks:

(1) intersection and union types and (2) flow annotations on terms and types.

As an illustration of intersection types, consider the following explicitly typed

version of M̂a:
4

Ma ≡ let f∧[int→int,bool→bool] =
∧

(

λxint.x, λxbool.x
)

in ×((π∧
1 f) @ 17, (π∧

1 f) @ 23, (π∧
2 f) @ true)

The term
∧

(

λxint.x, λxbool.x
)

denotes a virtual tuple — a value of intersection type.

Intuitively, a virtual tuple is an entity that represents a polymorphic value as multi-

ple copies of a term that differ only in their type annotations. The virtual projection

π∧
i M selects one of the type-annotated copies from the virtual tuple. Virtual tuples

and projections are entirely compile-time constructions whose purpose is to facili-

tate type-checking by tracking the different types at which a polymorphic value is

used. All components of a virtual tuple denote the same run-time value; no code

will be generated to construct or access the slots of a virtual tuple at run-time.

Because λCIL uses virtual copies of terms as a kind of type annotation, we refer to

it as a duplicating calculus. An implementation using λCIL has the responsibility of

performing as much sharing as it can between the virtual copies.

Terms and types in λCIL are annotated with flow labels taken from a given set.

To simplify notation, when this set is a singleton, the flow labels are omitted, as

they were in the preceding example. As an illustration of non-trivial flow labels,

consider another typed term corresponding to M̂a:

M ′
a ≡ let f

∧

[

int−{1}−−−{4,5}→int,bool−{3}−−{6}→bool

]

=
∧

(

λ1
{4,5}x

int.x, λ3
{6}x

bool.x
)

in ×
(

(coerce
(

int −{1}−−−
{4,5}

→ int, int −{1}−−
{4}
→ int

)

(π∧
1 f)) @

{1}
4 17,

(coerce
(

int −{1}−−−
{4,5}

→ int, int −{1}−−
{5}
→ int

)

(π∧
1 f)) @

{1}
5 23,

(π∧
2 f) @

{3}
6 true

)

Each source term (abstraction) is annotated with a single source label and a set of

sink labels that approximate the sink terms (applications) to which values produced

at the source may flow. Each sink term is annotated with a single sink label and

a set of source labels that approximate the source terms from which the values

consumed by the sink may flow. Arrow types are annotated with a set of source

labels and a set of sink labels that approximate the sources and sinks of the values

that they specify.5 The coerce terms are explicit subtyping coercions that can add

source labels to and/or remove sink labels from a type.

4 To aid readability, the types of most variable occurrences have been elided; they can be deter-
mined from the type annotation on the corresponding binding occurrences.

5 In the calculus of this paper, the only labelled sources are abstractions, the only labelled sinks
are applications, and the only labelled types are arrow types. In our compiler implementation,
we have extended the calculus to support labelling of all type constructors and their introduction
and elimination forms.

8 Wells, Dimock, Muller and Turbak

An intersection type represents flow information in the sense that it approximates

how a value at one point of a program (the intersection term) fans out to other

parts of the program (the projection terms). In λCIL, there must be at least one

component of an intersection type for each usage type of a polymorphic value, but

the analysis may be even more fine-grained. For example, this is yet another typing

of the untyped term M̂a:

M ′′
a ≡ let f∧[int→int,int→int,bool→bool] =

∧
(

λxint.x, λxint.x, λxbool.x
)

in ×((π∧
1 f) @ 17, (π∧

2 f) @ 23, (π∧
3 f) @ true)

Here there are two virtual copies of the (int → int) identity: one destined to be

applied at 17, the other destined to be applied at 23. Intersection types can be

used in this way to track different flows of any value, even one that would be

given a monomorphic type by a traditional type system. The ability to represent

different analyses of a single term used in multiple contexts is the hallmark of

polyvariant flow analysis (Nielson & Nielson, 1997; Banerjee, 1997; Jagannathan

et al., 1997; Palsberg & Pavlopoulou, 2001; Amtoft & Turbak, 2000). The above

example illustrates how intersection types can represent polyvariant flow analyses

in λCIL.

Functions that are type polymorphic in the type system of the source language

may become type monomorphic in a representation type system. For example, if

the compiler chooses to represent both integer and boolean values as 32-bit words

then the types of the components of the virtual tuple in M ′
a and M ′′

a are identical

and the virtual tuple may be merged into a single abstraction.

M ′′′
a ≡ let fword− {1}−−−−{2,3,4}→word = λ1

{2,3,4}x
word.x

f2
word−{1}−−{2}→word = coerce

(

word −{1}−−−−
{2,3,4}

→ word,word−{1}−−
{2}
→ word

)

f

f3
word−{1}−−{3}→word = coerce

(

word −{1}−−−−
{2,3,4}

→ word,word−{1}−−
{3}
→ word

)

f

f4
word−{1}−−{4}→word = coerce

(

word −{1}−−−−
{2,3,4}

→ word,word−{1}−−
{4}
→ word

)

f

in ×
(

f2 @
{1}
2 17, f3 @

{1}
3 23, f4 @

{1}
4 true

)

The coercions in the above example can be interpreted as moves of the code pointer

of the function to the registers used at the respective call sites.

Although the polymorphism in the above examples can be expressed in the

Hindley-Milner system (Damas & Milner, 1982), intersection types can represent

polymorphism that is not expressible in let-style polymorphism. For example, a

polymorphic function can be returned as a result or passed as an argument as in

the following example.

Mc ≡ let p∧[∧[τ1,τ2]→×[int,int,bool],∧[τ3,τ4]→×[real,real,real]] =
∧

(λf∧[τ1,τ2].×((π∧
1 f) @ 17, (π∧

1 f) @ 23, (π∧
2 f) @ true),

λf∧[τ3,τ4].×((π∧
1 f) @ 17, (π∧

1 f) @ 23, (π∧
2 f) @ true))

in

×((π∧
1 p) @

∧
(

λxint.x, λxbool.x
)

,

(π∧
2 p) @

∧
(

λyint.3.141, λybool.3.141
)

)

A Calculus with Polymorphic and Polyvariant Flow Types 9

where τ1 ≡ int → int, τ2 ≡ bool → bool, τ3 ≡ int → real and τ4 ≡ bool → real.

There are two levels of polymorphism here: one for the identity and constant func-

tions, and one for the function p that is applied to these functions.

Whereas intersection types represent fan-out in flow paths (i.e., a value that flows

to multiple destinations), union types represent fan-in of flow paths (i.e., multiple

values flowing to a single destination). Union types are necessary for expressing the

untyped sample term M̂b in λCIL:

Mb ≡ let g+[int,int,bool]→∨[ρ1,ρ2] =

λs+[int,int,bool]. case+ s bind w in

int ⇒
(

in∨
1 ×

(

λxint.x+ 1, wint
))∨[ρ1,ρ2]

,

int ⇒
(

in∨
1 ×

(

λyint.y ∗ 2, wint + 1
))∨[ρ1,ρ2]

,

bool ⇒
(

in∨
2 ×

(

λzbool.if z then 1 else 0, wbool
))∨[ρ1,ρ2]

in let h+[int,int,bool]→int =

λa+[int,int,bool]. let p∨[ρ1,ρ2] = g @ a

in case∨ p bind r in

ρ1 ⇒ (π×
1 r

ρ1) @ (π×
2 rρ1)

ρ2 ⇒ (π×
1 r

ρ2) @ (π×
2 rρ2)

in ×
(

h @
(

in+
1 3

)

, h @
(

in+
2 5

)

, h @
(

in+
3 true

))

where ρ1 ≡ ×[int → int, int] and ρ2 ≡ ×[bool → int, bool]. In λCIL, each clause a of

case+ term and a case∨ term is introduced with the notation τ ⇒. This notation

indicates that the bound variable declared by the case term has type τ within the

clause. The two incompatible types returned by the body of g are merged into the

union type ∨[ρ1, ρ2]. Terms of union type are constructed by injecting a term into

a virtual variant. Virtual variants are analyzed by virtual cases (i.e., case∨ terms),

which are the duals of virtual tuples. A virtual case contains multiple copies of

clauses that differ only in their type annotations. As with intersection components,

the case analysis of a case∨ is a compile-time operation that implies no run-time

computation. All the clauses of a case∨ represent the same computation.

Our framework requires that differently typed values flowing to a polymorphic

context must be injected into virtual variants of the same union type with different

virtual tags. However, finer grained flow can be represented by injecting values of

the same type into values of the same union type with different virtual tags. For

instance, in the above example, ×
(

λxint.x+ 1, wint
)

and ×
(

λyint.y ∗ 2, wint + 1
)

could be injected with different virtual tags, which would allow customization of

the corresponding case∨ clauses to be made based on flow information finer-grained

than the type information.

2.3 An Example of Flow-Based Customization

By combining the fan-out flow of intersection types with the fan-in flow of union

types, it is possible to construct networks of flow paths connecting the sources and

sinks of values. These flow path networks can guide flow-based customization (Di-

mock et al., 1997).

10 Wells, Dimock, Muller and Turbak

As a concrete example of such customization, we illustrate how flow types can

guide an uncurrying transformation. Consider the following λCIL
ut term:

M̂d ≡ let k=λx.λy.x

g=λx. let y = x ∗ x in λz.y

h=λf.f @ 1 @ 2

in ×(k @ 3 @ 4, h @ k, h @ g)

The function named k is a curried function of two arguments. We want to in-

vestigate transformations that would allow uncurrying this function to the form

λ[x, y].x6. Of course, any application sites to which k flows must also be trans-

formed in a consistent manner. Matters are complicated by the fact that k can

flow to application sites to which other functions can flow. For example, both k

and the function g, which cannot be uncurried, are arguments to the h function. In

traditional approaches to uncurrying, e.g., (Appel, 1992; Tarditi, 1996; Hannan &

Hicks, 1998), this fact would prohibit k from being uncurried. This is an instance of

a representation pollution problem, in which (1) the assumption that every source

term has a single representation for all usage contexts and (2) the fact that an

unoptimizable representation flows to some usage context together preclude using

customized representations for some of the contexts.

Flow types are an effective language for addressing the pollution problem. We

show this by presenting two strategies for customizations based on the following

λCIL term, which is a typing for the untyped term above:

Md ≡ let k=
∧

(

λ1
{4}x

int.λ7
{11}y

int.x, λ2
{6}x

int.λ8
{14}y

int.x
)

g=
(

in∨
2 (λ3

{5}x
int. let y = x ∗ x in λ9

{12}z
int.y)

)τ

h=λ10
{13,15}f

τ .case∨f bind f ′ in

int −
{1}
−−{4}→ int −

{7}
−−{11}→ int ⇒ f ′ @

{1}
4 1 @

{7}
11 2

int −{3}−−
{5}
→ int −{9}−−

{12}
→ int ⇒ f ′ @

{3}
5 1 @

{9}
12 2

in ×((π∧
2 k) @

{2}
6 3 @

{8}
14 4,

(coerce (ρ1, ρ2)h) @
{10}
13

(

in∨
1 (π∧

1 k)
)τ
,

(coerce (ρ1, ρ3)h) @
{10}
15 g)

where τ =
∨

[

int −{1}−−
{4}
→ int −{7}−−

{11}
→ int, int −{3}−−

{5}
→ int −{9}−−

{12}
→ int

]

, ρ1 = τ −{10}−−−−
{13,15}

→ int, ρ2 =

τ −{10}−−
{13}
→ int and ρ3 = τ −{10}−−

{15}
→ int. The typed abstractions λ1

{4}x
int.λ7

{11}y
int.x and

λ2
{6}x

int.λ8
{14}y

int.x are components of a virtual tuple that represent the untyped

abstraction λx.λy.x. (The correspondence between typed and untyped expressions

is formalized by a notion of type erasure presented later in section 4.3.1.) The virtual

tuple represents a polyvariant flow analysis in which the abstraction is analyzed at

6 The deconstruction of a tuple argument via pattern matching is not supported by the formal
λCIL
ut syntax, but is used informally here to highlight the connection between the curried and

uncurried forms of the function.

A Calculus with Polymorphic and Polyvariant Flow Types 11

two call sites. The typed applications f ′ @
{1}
4 1 @

{7}
11 2 and f ′ @

{3}
5 1 @

{9}
12 2 are

the code parts of clauses of a virtual case expression. They represent the untyped

applications λf.f @ 1 @ 2. The virtual case expression represents a polyvariant

flow analysis in which the application λf.f @ 1 @ 2 is analyzed with respect to the

two abstractions k and g.

To better highlight the flow-based nature of the customizations, the typed term is

presented using a more graphical notation in figure 1. In this notation, arrows denote

the flow of values from their source to their destinations. The product combining

the components of the resulting triple has also been elided.

∧

(λ1
{4}x

int.λ7
{11}y

int.x,

λ2
{6}x

int.λ8
{14}y

int.x)

λ3
{5}x

int. let y = x ∗ x in λ9
{12}z

int.y

(π∧
2 2) @

{2}
6 3 @

{8}
14 4 (in∨

1 (π∧
1 2))

τ
(in∨

2 2)
τ

(coerce (ρ1, ρ2) 2) @
{10}
13 2 (coerce (ρ1, ρ3) 2) @

{10}
15 2

λ10
{13,15}f

τ .case∨f bind f ′ in

int −
{1}
−−{4}→ int −

{7}
−−{11}→ int ⇒ f ′ @

{1}
4 1 @

{7}
11 2

int −{3}−−
{5}
→ int −{9}−−

{12}
→ int ⇒ f ′ @

{3}
5 1 @

{9}
12 2

where
τ =

∨

[

int −{1}−−
{4}
→ int −{7}−−

{11}
→ int, int −{3}−−

{5}
→ int −{9}−−

{12}
→ int

]

ρ1 = τ −{10}−−−−
{13,15}

→ int, ρ2 = τ −{10}−−
{13}

→ int, ρ3 = τ −{10}−−
{15}

→ int

Fig. 1. Uncurrying Term before Transformation.

Using λCIL, the representation pollution in the uncurrying example can be re-

solved by one of two of splitting strategies. The first strategy, which we call source

splitting, is to reify the virtual tuple as a real tuple whose two components have

different representations (see figure 2). The component flowing to application site

6 has been uncurried, while the component flowing to application site 4 has been

left in a curried form to match the type of the other function flowing there. The

virtual projections associated with the reified virtual tuple have also been reified

as real projections. The virtual case expression and its associated injections have

been eliminated as a result of merging case clauses that manipulate the same rep-

resentation.

The second strategy, which we call sink splitting, is to reify the virtual case

expression and its associated injections. The injections tag the two incompatible

function representations that will arrive at the application sites 4 and 5 (figure 3). In

this case, the two components of the virtual tuple are merged into a single uncurried

abstraction labelled 1. The flow path from this abstraction to the discriminant of

12 Wells, Dimock, Muller and Turbak

the reified case expression includes an injection that tags the abstraction, in order

distinguish it from the curried abstraction 3. The flow path from abstraction 1 to

call site 6 does not need to be tagged, since no other representation reaches that

site.

×(λ1
{4}x

int.coerce (σ4, σ6)λ7
{11}y

int.x,

λ2
{6}

[

xint, yint
]

.x)

λ3
{4}x

int. let y = x ∗ x in
(coerce (σ5, σ6)λ9

{11}z
int.y)

(π×
2 2) @

{2}
6 [3, 4] coerce (σ1, σ3) (π×

1 2) coerce (σ2, σ3) 2

(coerce (ρ′1, ρ
′
2) 2) @

{10}
13 2 (coerce (ρ′1, ρ

′
3) 2) @

{10}
15 2

λ10
{13,15}f

τ ′ .f @
{1,3}
4 1 @

{7,9}
11 2

σ1 = int −{1}−−
{4}
→ int −{7,9}−−−

{11}
→ int, σ2 = int −{3}−−

{4}
→ int −{7,9}−−−

{11}
→ int, σ3 = int −{1,3}−−−

{4}
→ int −{7,9}−−−

{11}
→ int

σ4 = int −
{7}
−−{11}→ int, σ5 = int −

{9}
−−{11}→ int, σ6 = int −

{7,9}
−−−{11}→ int, τ ′ = int −

{1,3}
−−−{4}→ int −

{7,9}
−−−{11}→ int

ρ′1 = τ −{10}−−−−
{13,15}

→ int, ρ′2 = τ −{10}−−
{13}

→ int, ρ′3 = τ −{10}−−
{15}

→ int

Fig. 2. Uncurrying term with split sources and merged sinks.

λ1
{4,6}

[

xint, yint
]

.x
(

in+
2 (λ3

{5}x
int. let yint = x ∗ x in λ9

{12}z
int.y)

)τ ′′

(coerce (σ′
1, σ

′
3) 2) @

{1}
6 [3, 4] 2 @

{10}
13

(

in+
1 (coerce (σ′

1, σ
′
2) 2)

)τ ′′

2 @
{10}
15 2

(coerce (ρ′′1 , ρ
′′
2) 2) (coerce (ρ′′1 , ρ

′′
3) 2)

λ10
{13,15}f

τ ′′ .case+f bind f ′ in

[int, int] −
{1}
−−{4}→ int ⇒ f ′ @

{1}
4 [1, 2]

int −{3}−−
{5}
→ int −{9}−−

{12}
→ int ⇒ f ′ @

{3}
5 1 @

{9}
12 2

σ′
1 = [int, int] −

{1}
−−−{4,6}→ int, σ′

2 = [int, int] −
{1}
−−{4}→ int, σ′

3 = [int, int] −
{1}
−−{6}→ int

τ ′′ = +
[

[int, int] −
{1}
−−
{4}
→ int, int −

{3}
−−
{5}
→ int −

{9}
−−
{12}

→ int
]

ρ′′1 = τ ′′ −
{10}
−−−−{13,15}→ int, ρ′′2 = τ ′′ −

{10}
−−{13}→ int, ρ′′3 = τ ′′ −

{10}
−−{15}→ int

Fig. 3. Uncurrying term with split sinks and merged sources.

A Calculus with Polymorphic and Polyvariant Flow Types 13

In systems that enforce one representation per source or sink term, the repre-

sentation of a single unoptimizable term can prohibit optimizations elsehwere in

the program by dictating the representation of any term connected to it by some

sequence of flow paths. The splitting strategies sketched above can contain this

representation pollution by allowing a single source or sink term to be implemented

with multiple representations: some optimized, some not. As illustrated by the ex-

ample, the program plumbing information represented in λCIL terms and types

allows the splitting strategies to be implemented by reifying virtual terms. Which

strategy to use in practice depends on heuristics followed by the compiler; different

strategies can be used in different parts of the same program.

The data customization illustrated by the above example is only one of many op-

timizations enabled by a flow type system. The source and sink labels in λCIL allow

definition and use points to be matched up as required by conventional dataflow-

based optimizations. Indeed, when the introduction and elimination forms for prim-

itive data types are annotated with flow information, typed terms carry information

similar to static single-assignment (SSA) form (Cytron et al., 1991; Briggs et al.,

1998): source labels in λCIL play the role of SSA’s uniquely named source points. A

φ-node denotes a confluence of flow paths. In λCIL these points can be represented

either as union case forms or as coercions. Unlike SSA, λCIL supports the dual

notions of sink labels and intersection types.

3 Design Issues

In this section, we discuss the rationale behind various decisions made in the design

of λCIL. Along the way, we also discuss related calculi, type systems, and interme-

diate languages.

3.1 Explicit Types

In each stage of type-directed compilation, it is important to be able to verify that

terms are well typed and to use these types to guide translations. In order to derive

a type for a term whenever needed, λCIL annotates variables, variants and coercions

with explicit types. Such type annotations can impair readability, but this is not a

major drawback since λCIL is intended to be an intermediate language, not a source

language.

Since compiler transformations may produce typings beyond the range of com-

putable automatic type inference, automatic type inference is also not a goal of

our design. We assume that any type inference is performed before or as part of

the translation from the source language into the intermediate language. Recent

work on encoding flow information via intersection and union types (Palsberg &

Pavlopoulou, 2001; Amtoft & Turbak, 2000) demonstrates how to automatically

translate between flow analyses and type derivations similar to those of λCIL terms.

Modulo the issue of shallow subtyping (see section 3.5), these translations suggest

a simple approach to type inference in λCIL: perform one of several popular flow

analyses for a term and then translate the flow analysis into a λCIL term.

14 Wells, Dimock, Muller and Turbak

3.2 Finitary Polymorphic Types

A central goal of our work is to encode precise information obtained from program

analysis into the type systems of TILs. This information should be conveniently

accessible for use in guiding program transformations. In the case of λCIL, types are

annotated with information that tracks the flow of functions between abstractions

and applications in order to support customization at these sites.

Some type system designs conflict with the goal of encoding precise program

analysis information within the type system in an accessible manner. For example,

type polymorphism for functions is usually represented by abstractions over types,

which by themselves do not specify the types of arguments at which such functions

may be called. This information is available in the typing derivation of the whole

program, but it is not convenient to access. Dually, abstract data types are typ-

ically encoded by existential types, which do not directly provide representation

information to the clients of such abstractions. In effect, universal and existential

types are a promise of a very general implementation — a promise kept by boxing.

The dynamic-dispatch problem of object-oriented languages is similar to boxing;

in both cases, a wrapper is used to access potentially incompatible representations

via a single protocol.

In order to expose concrete type information hidden by universal and existential

types, λCIL supports type-polymorphic functions with intersection types and ab-

stract data types with union types. An intersection type lists the concrete types at

which a polymorphic function may be used in a particular program. It is the finitary

(listing-based) version of the infinitary (schema-based) universal type, which corre-

sponds to an infinite intersection of types. Dually, the finitary versions of infinitary

existential types are union types, which list the concrete types of the implementa-

tions of an abstract data type.

There are several advantages of using intersection and union types in place of

universal and existential types. First, they enable customization by indicating the

types at which polymorphic values are used. Second, they can encode data flow;

intersection types represent the possible destinations of a value while union types

represent its possible sources (Palsberg & Pavlopoulou, 2001; Amtoft & Turbak,

2000). This enables type-based customizations that are more fine-grained than those

possible using System F types; flow types can distinguish usage contexts for a

value with a given System F type. Finally, for certain classes of languages, finitary

polymorphism is strictly more powerful than infinitary polymorphism, in the sense

that it can type more terms. Intersection types can type every strongly normalizing

lambda calculus term, while the terms typable in System F are a proper subset of

the strongly normalizing terms. As a concrete example, consider the term

(λx.z(x(λfu.fu))(x(λvg.gv)))(λy.yyy) .

This term is shown in (Urzyczyn, 1997) to be untypable in System Fω , considered

to be the most powerful type system with universal quantifiers. In contrast, it is

typable not only in λCIL, but even in a very limited version of λCIL satisfying the

so-called rank 3 restriction (Kfoury & Wells, 1999). For extensions to the lambda

A Calculus with Polymorphic and Polyvariant Flow Types 15

calculus that model more programming language features (such as term-level re-

cursion), the relationship between finitary and infinitary forms of polymorphism

is not known, but it is likely that the finitary forms of polymorphism type more

terms than the infinitary ones. The intuition behind this claim is that finitary

polymorphism requires proving properties for a finite list of types whereas infini-

tary polymorphism effectively requires proving properties for an infinite number of

types, and, in general, it is easier to prove a finite set of properties than an infinite

set.

As noted in Section 1, there are several disadvantages of using finitary poly-

morphism, including larger terms and types and an assumption of whole-program

compilation. It may be possible to address some of these drawbacks by combining

finitary and infinitary polymorphic types into a single type system.

It is worthwhile to compare the finitary polymorphism of λCIL’s flow types to

other approaches for exposing the concrete type information hidden by infinitary

polymorphism. A common technique for improving polymorphic functions is type

specialization, which makes monomorphic copies of a polymorphic function for the

types at which it is (or might be) used. Type specialization of polymorphic func-

tions is usually achieved either by a monomorphization pass that removes all poly-

morphism (Tolmach & Oliva, 1998; Benton et al., 1998; Cejtin et al., 2000) or by

aggressive inlining (Tarditi et al., 1996). Type specialization has also been used to

compile data parallelism (Blelloch, 1993), to resolve overloading in Haskell (Jones,

1994), to optimize method invocation in object-oriented languages (Chambers &

Ungar, 1989a; Chambers & Ungar, 1989b; Agesen, 1995; Dean et al., 1995; Cham-

bers et al., 1996; Plevyak & Chien, 1995; Plevyak, 1996). Although the copying

implied by type specialization introduces the threat of code blowup, the increase

in code size observed in practice is often quite modest due to the fact that the spe-

cialized code is more amenable to traditional optimizations (Jones, 1994; Tolmach

& Oliva, 1998; Benton et al., 1998; Cejtin et al., 2000).

The finitary polymorphism of λCIL is similar to the monomorphization approach

to type specialization except for two key differences. First, because flow types encode

flow information, they permit flow-based specializations that are more fine-grained

than the type-based specializations of traditional type systems. For instance, a

higher-order filtering function can be specialized according to the filtering predicate

in addition to the element type of the filtered list. In this case, similar specialization

can be achieved by inlining the filtering function at each call site. But the flow-based

specialization can be performed even in situations where inlining is not performed

(e.g., when multiple functions flow to the operator position of a given call site).

Second, whereas monomorphization effectively commits to duplicate copies of

code at run-time, virtual tuples and case clauses only represent the potential of run-

time duplication. If that potential is not realized, no duplicate code is created. For

example, suppose that a filtering function is applied to both a list of integers and a

list of characters. Monomorphizing this code based on source language types would

yield two run-time copies even though the machine-level representation of integers

and characters might be exactly the same. In contrast, if a virtual tuple containing

the two copies of the filtering function were not reified by the compiler, only a

16 Wells, Dimock, Muller and Turbak

single run-time copy would be generated. To reduce the number of unnecessary

copies of polymorphic functions, monomorphizing compilers typically instantiate

polymorphic functions to machine-level types rather than source language types.

Another approach to removing the overhead of polymorphism is dynamic type dis-

patch, in which a polymorphic function can dispatch to monomorphic code based

on a type argument that is passed separately from a value argument of that type.

In the TIL compiler, polymorphic functions are handled efficiently by dispatch-

ing to monomorphic code based on all possible representation types at which the

function can be used (Harper & Morrisett, 1995; Morrisett, 1995). Although the

type dispatch in general may take place at run-time, it usually can be performed

at compile-time, yielding code without a run-time overhead. Duggan’s refinement

kinds extend dynamic type dispatch to user-defined types (Duggan, 1999). The

main advantage of dynamic type dispatch over finitary polymorphism is that it is

compatible with separate compilation. However, this strength turns into a weak-

ness when it comes to customization. The range of representation types must be

fixed in advance to allow separately compiled modules to interface with each other,

and representations for values exported by a module must be chosen without any

knowledge of how those values might be used in other modules.

3.3 Explicit Syntax for Intersection and Union Types

Systems with intersection types are ordinarily implicitly typed using the following

typing rule for introducing intersection types:

A ` M : σ; A ` M : τ
(∧ intro)

A ` M : σ ∧ τ

This typing rule is incompatible with the decision to annotate variables with explicit

types. For instance, how can we show that an identity function has the type (int→

int) ∧ (bool → bool)? The derivation might look something like:

A ` λxint.x : (int → int); A ` λxbool.x : (bool → bool)

A ` λx???.x : (int → int) ∧ (bool → bool)

There are two problems with this approach:

1. The derivation does not match the (∧ intro) rule above because there is not a

singleM , but three different versions ofM that differ only in type annotations.

2. It is not clear how to annotate the bound variable(s) in a term of intersection

type (as reflected by the ??? in the example).

The first problem can be solved by a rule that uses three terms that are not the

same but the same modulo type annotations:

A Calculus with Polymorphic and Polyvariant Flow Types 17

A ` M1 : σ; A ` M2 : τ ;

M3 is the “combination” of M1 and M2;

M1, M2, and M3 are “the same modulo type annotations”

A ` M3 : σ ∧ τ

In section 4.3, we introduce a notion of type erasure that formalizes the notion of

“the same modulo type annotations”.

With regard to the second problem, there are several approaches to dealing

with the problem of annotating bound variables for terms of intersection type.

The approach used by Reynolds in the language Forsythe (Reynolds, 1996) an-

notates the binding of an abstraction (λx.M) with a list of possible types, as in

(λx: σ1| · · · |σn.M). If the body M of the abstraction is typable with the same type

τ for each possible type σi of the bound variable x, then the abstraction is assigned

the type (σ1→τ)∧· · ·∧(σn→τ). However, this method is not sufficient to represent

dependencies between the types of nested variable bindings. For instance, (λx.λy.x)

cannot be given the type (σ→ (σ→ σ)) ∧ (τ → (τ → τ)).

Pierce uses a more general term-level for construct specifying that a type variable

ranges over the types in a finite set (Pierce, 1991). For example, using this method

the term (λx.λy.x) can be annotated as (for α ∈ {σ, τ}.λx:α.λy:α.x), which has

the type (σ → (σ → σ)) ∧ (τ → (τ → τ)). However, this method is insufficient to

represent some typings, such as giving the term M̂f ≡ λx.λy.λz.(xy, xz) the type

(((α→ δ)∧ (β→ ε))→α→β→ (δ× ε))∧ ((γ→γ)→γ→γ→ (γ×γ)). By extending

Pierce’s for notation with a notion of simultaneous substitution of type variables, it

is possible to handle more complex dependencies. For example, an explicitly typed

version of M̂f can be written:

for {[θ 7→ α, κ 7→ β, η 7→ δ, ν 7→ ε], [θ 7→ γ, κ 7→ γ, η 7→ γ, ν 7→ γ]}.

λx : (θ → η) ∧ (κ→ ν) . λy : θ . λz : κ . (xy, xz)

There are two problems with both the original and extended for notations. First,

they depend on intersection types being associative, commutative, and idempotent

(ACI). But recent research suggests that non-ACI intersection and union types are

needed to faithfully encode flow analyses (Amtoft & Turbak, 2000). Second, the

type information does not satisfy the convenient accessibility goal; it is not locally

obvious but is determined by enclosing type variable bindings. Although the types

can be instantiated by a tree-walking process, this is not a convenient representation

for flow-based compiler transformations, which need to reference terms at arbitrary

locations in the program by their source and sink program points.

In λCIL, we solve the two problems with a new approach for giving explicit type

annotations to terms of intersection type. Since every implicitly typed term of

intersection type must have a type derivation tree, we can encode the structure of

the type derivation tree in the term itself. That is, we treat each term of intersection

type as a combination of component terms (which must be the same modulo type

annotations) whose types are combined to form the intersection type.

18 Wells, Dimock, Muller and Turbak

A ` M1 : σ; A ` M2 : τ ;

M1 and M2 are “the same modulo type annotations”

A ` ∧(M1,M2) : σ ∧ τ

We call the term ∧(M1,M2) a virtual tuple and prefix it with the “∧” symbol to

distinguish it from an ordinary tuple. The intended meaning is that M1, M2, and

∧(M1,M2) are merely different type-annotated versions of the same untyped term.

We also introduce an explicit projection π∧
i to extract a component out of a value

of intersection type:

A ` M : ∧(τ1, . . . , τn); 1 ≤ i ≤ n
(∧ elim)

A ` π∧
i M : τi

An implication of this approach is that constructors for intersection types and

virtual tuples are not ACI.

Recording all type derivation choices in the syntax of λCIL makes it possible to

use ordinary type annotations on variable bindings within each component of a

virtual tuple. For example, below are the λCIL
ul type-annotated terms (without flow

labels) for several examples considered above. Note how type information is locally

accessible at each term.

Untyped Term λCIL
ul Type λCIL

ul Term

λx.x ∧[int → int, bool → bool]
∧

(

λxint.xint, λxbool.xbool
)

λx.λy.x
∧[σ→ (σ→ σ),
τ → (τ → τ)]

∧(λxσ.λyσ.xσ, λxτ .λyτ .xτ)

λx.

λy.

λz.×(x @ y, x @ z)

∧
[

∧[α→ δ, β → ε]
→α→ β→×[δ, ε],

(γ→ γ) →
γ→ γ→×[γ, γ]

]

∧
(

λx∧[α→δ,β→ε].λyα.λzβ .

×((π∧
1 x

∧[α→δ,β→ε]) @ yα,

(π∧
2 x

∧[α→δ,β→ε]) @ zβ),
λxγ→γ .λyγ .λzγ .

×(xγ→γ @ yγ , xγ→γ @ zγ)
)

We emphasize that virtual tuple constructors and projections are purely compile-

time notions introduced for typing purposes. At run-time, computation is essentially

performed on the single untyped term that is the type erasure of all the type-

annotated components of a virtual tuple.

In λCIL, terms of union type are handled in a manner dual to terms of intersection

type. An explicit injection in∨
i is used to create a virtual variant. If M0 denotes

a virtual variant (i.e., is a term of union type) then it is discriminated on via the

construct

case∨M0 bind x in τ1 ⇒M1, . . . , τn ⇒Mn

A Calculus with Polymorphic and Polyvariant Flow Types 19

where x is bound to the “untagged” portion of the variant at type τi within term

Mi. The purpose of case∨ is to encode the type derivation tree for unions within the

term structure of λCIL. Since the terms M1, . . . ,Mn represent the same run-time

term, they must be be the same modulo type annotations.

An advantage of recording type derivation choices in the syntax of λCIL is that it

simplifies the expression of representation transformations that use flow information

to transform the sources and sinks of values to be consistent with a changes in the

representations of those values. For example, even though a polymorphic function

used at two different types is a single value, it is possible that a type-directed

transformation will transform the function in incompatible ways for each type, in

which case it must be represented as a pair of function values. With λCIL, this

sort of transformation can easily be expressed by transforming a virtual tuple to a

real tuple — i.e., changing the appropriate occurrences of ∧ and π∧
i to × and π×

i ,

respectively as shown in Figure 2. Similarly, λCIL faciliates transforming virtual

variants to real variants as shown in Figure 3.

One drawback of our approach to handling terms of intersection and union type is

that reduction of typed terms must essentially work on typing derivations, a notion

that is non-trivial to formulate. Since all the components of a virtual tuple stand

for the same run-time term, any computation step in one component of a virtual

tuple must be taken in parallel by all components of the virtual tuple. A similar

constraint holds for the clauses of a case∨. Section 4.3 introduces parallel contexts

to formalize this notion of parallel computation step.

3.4 Explicit Coercions

Explicit subtyping coercions are another example of how aspects of type derivations

are recorded in the term syntax of λCIL. The usual rule for subtyping is

A ` M : σ; σ ≤ τ
(subsumption)

A ` M : τ

In λCIL, all uses of subtyping are indicated by an explicit coerce:

A ` M : σ; σ ≤ τ
(coerce)

A ` coerce (σ, τ)M : τ

Explicit coercions can facilitate the expression of representation transformations.

Given a source term in which σ ≤ τ , a type-directed transformation T may produce

a target term in which T [σ] � T [τ]. In such a target term, the subtyping coercion of

the source term may be represented by manipulations of run-time data structures.

Even though it implies no run-time overhead, an explicit subtyping coercion in the

source term records the position at which a transformation may insert code that

performs coercions between different data representations. This position would not

be apparent if subtyping were implicit.

20 Wells, Dimock, Muller and Turbak

3.5 Shallow Subtyping

The only subtyping rule in λCIL is on arrow types:

(arrow-≤)
φ ⊆ φ′; ψ′ ⊆ ψ

σ −φ−ψ→ τ ≤ σ −φ
′

−ψ′→ τ

Because this rule is invariant in the argument and result types, it is said to be a

shallow subtyping rule. In contrast, a deep subtyping rule would be contravariant

in the argument type and covariant in the result type.

We avoid deep subtyping in λCIL because we do not know how to formulate it

in such a way that it is compatible with our goal of using flow types to guide rep-

resentation transformations in a strongly typed framework. For example, consider

the following types:

σ′ ≡ int −{1}−−
{3}
→ int ≤ int −{1,2}−−−

{3}
→ int ≡ σ

τ ≡ bool −{4}−−−
{5,6}

→ bool ≤ bool −{4}−−
{5}
→ bool ≡ τ ′

In a language with deep subtyping, the following term would be well typed:

coerce
(

σ −φ−
ψ
→ τ , σ′ −φ−

ψ
→ τ ′

)

gσ−
φ−ψ→τ

In many type systems that support subtyping, when a term M has a type σ that

is a subtype of τ , we expect that we can transform M to a term M ′ that can be

shown to have type τ without using a subtyping rule as the last step of the proof

showing that M ′ has type τ . In this example, we expect that we can “lower the

depth” of the subtyping represented by the coerce by making a new abstraction

that performs coercions on its argument and result:

λ7
ψf

σ′

.coerce (τ, τ ′) (gσ−
φ−−{8}→τ @φ

8 (coerce (σ′, σ) fσ
′

))

However, this transformation introduces a new abstraction, labelled 7, and a new

application site, labelled 8. The new application site consumes all sources in φ but

does not pass them on to the sinks in ψ. Instead, the set {7} takes the place of φ. This

is problematic because representation decisions made for σ−φ−
ψ
→τ in the untransformed

term may not be valid for either σ−φ−−
{8}
→ τ or σ′ −{7}−−

ψ
→ τ ′ in the transformed term. For

example, if all the abstractions in φ were closed (i.e., had no free variables), and

these were the only values flowing to the application sites in ψ, it might be assumed

that those sites could use a customized calling convention more efficient than the

standard closure invocation (Wand & Steckler, 1994; Dimock et al., 1997). But in

the above translation, abstraction 7 is open (it contains the free variable g); this

thwarts the attempted customization.

A Calculus with Polymorphic and Polyvariant Flow Types 21

3.6 Parallel Reduction

The fact that typed terms in λCIL are isomorphic to typing derivations makes it

impossible to use the ordinary definition of reduction. For example, consider the

following untyped terms:

M̂e ≡ let g = λy.(λz.y) @ 1 in ×(g @ 6.001, g @ true)

N̂e ≡ let g = λy.y in ×(g @ 6.001, g @ true)

In one call-by-value β-reduction step, M̂e reduces to N̂e in λCIL
ut . Now consider a

typed term Me whose type erasure is M̂e:

Me ≡ let g∧[real→real,bool→bool] =
∧

(

λyreal.(λzint.y) @ 1, λybool.(λzint.y) @ 1
)

in ×((π∧
1 g) @ 6.001, (π∧

1 g) @ true)

It takes two call-by-value β-reduction steps to transform Me into the typed term

which corresponds to N̂e:

Ne ≡ let g∧[real→real,bool→bool] =
∧

(

λyreal.y, λybool.y
)

in ×((π∧
1 g) @ 6.001, (π∧

1 g) @ true)

Furthermore, if these steps are performed sequentially, the intermediate result is ill-

typed and corresponds to no λCIL
ut term (because the type erasure of all components

of a virtual tuple must be identical).

To solve this problem, λCIL uses a notion of parallel context to force each reduc-

tion step at the typed level to correspond to a single reduction step at the untyped

level (Kfoury & Wells, 1995). A parallel context is a typed context, possibly con-

taining multiple holes, whose type erasure contains a single hole. All typed terms

M1, . . . ,Mk filling the holes of a parallel context type erase to the same untyped

term M̂ . If M̂ is a redex, then a typed reduction step can take place in which each

of M1, . . . ,Mk simultaneously takes a computation step corresponding to the one

taken by M̂ . This notion of reduction allowsMe to reduce to Ne in one call-by-value

β step, thereby avoiding the undefined intermediate state noted above.

3.7 Subject Reduction for Union Types and Call-by-Value Reduction

It is difficult to formulate an implicitly typed calculus with union types that has the

subject reduction property. For an explicitly typed calculus, this problem manifests

itself as a difficulty in guaranteeing the property that any computation that can

be performed on an untyped program can be duplicated on a typed version of the

same program. For a language with union types, this property does not hold in the

presence of general β reduction, but can hold for a call-by-value version of the β

rule, where variables are not considered values.

Here we motivate the call-by-value restriction of λCIL in the context of an exam-

ple. Consider the following λCIL
ut term:

M̂1 ≡ (λf.(π×
1 f) @ (π×

2 f)) @ (if b then ×((λe.e+ 1), 5) else ×((λe.2),×()))

22 Wells, Dimock, Muller and Turbak

If λCIL
ut did not have the value restriction on the β rule, then M̂1 could reduce to

M̂2 ≡ (π×
1 (if b then ×((λe.e+ 1), 5) else ×((λe.2),×())))

@ (π×
2 (if b then ×((λe.e+ 1), 5) else ×((λe.2),×())))

and, assuming b is true, this in turn could reduce to

M̂3 ≡ (π×
1 ×((λe.e+ 1), 5)) @ (π×

2 (if b then ×((λe.e+ 1), 5) else ×((λe.2),×())))

However, we shall see that this term is not typable.

We now consider two formulations of a ∨-elimination typing rule that we shall

compare in the context of the above example. In an implicitly typed calculus, the

∨-elimination rule is usually formulated as (Barbanera et al., 1995):

A, x:σ ` M̂ : ρ; A, x:τ ` M̂ : ρ; A ` N̂ : σ ∨ τ
(∨ elim a)

A ` M̂ [x:=N̂] : ρ

This rule is unlike typical typing rules in that the M̂ and N̂ mentioned in the

premises are not immediate subterms of the term mentioned in the conclusion.

This implies the need to search for a way to decompose the conclusion term into

an appropriate M̂ and N̂ . The term M̂1 can be typed by instantiating (∨ elim a)

with

M̂ ≡ (π×
1 x) @ (π×

2 x)

N̂ ≡ f

σ ≡ ×[int → int, int]

τ ≡ ×[×[] → int,×[]]

ρ ≡ int

and M̂2 can be typed using the same except

N̂ ≡ (if b then ×((λe.e+ 1), 5) else ×((λe.2),×())).

However, it is impossible to construct a type derivation for M̂3 that uses (∨ elim a).

The union type introduced by the if subterm cannot be eliminated no matter how

the term is decomposed. This type can be eliminated in M̂2 because both copies of

the if subterm are effectively shared via the substitution for x. But the reduction

step from M̂2 to M̂3 reduces only one of these copies, thereby destroying the sharing.

An alternative formulation of the ∨-elimination rule is:

A, x:σ ` M̂ : ρ; A, x:τ ` M̂ : ρ; A ` N̂ : σ ∨ τ
(∨ elim b)

A ` (λx.M̂) @ N̂ : ρ

This formulation has the advantage that the M̂ and N̂ appearing in the premises

are immediate subterms of the conclusion term. M̂1 can be typed via (∨ elim b),

but this rule cannot be used to type either M̂2 or M̂3 because neither contains the

β redex required by the conclusion. Essentially, (∨ elim b) requires the sharing of a

term of union type to be explicit in the syntax of the language, and is not applicable

to terms like M̂2 where such sharing is implicit.

In λCIL, we avoid the decomposition problem associated with the (∨ elim a) rule

A Calculus with Polymorphic and Polyvariant Flow Types 23

by adopting the (∨ elim b) rule and address the sharing problem by stipulating call-

by-value reduction. The rule (∨ elim b) is the ∨-elimination rule for the implicitly

typed language λCIL
i . The corresponding ∨-elimination rule for the explicitly typed

language λCIL involves the case∨ construct. We address this in sections 4.3 and 4.4.

Values in λCIL
ut are constants and abstractions and the set of values is closed under

tuple and variant formation. Values in λCIL are similar but also include virtual

tuples and variants. Requiring the operand of a β redex to be a value guarantees

that in the explicitly typed language λCIL a term of union type cannot be copied via

substitution unless it is a union introduction form (i.e.,
(

in∨
i V

)∨[τ1,...,τn]
). In the

implicitly typed language λCIL
i (see section 4.4) this implies that when (∨ elim b)

is used to type a β-value redex, it occurs in the following pattern:

A, x:σ ` M̂ : ρ; A, x:τ ` M̂ : ρ;

A ` N̂ : σ
(∨ intro)

A ` N̂ : σ ∨ τ
(∨ elim b)

A ` (λx.M̂) @ N̂ : ρ

(1)

But any typing derivation pattern of this form can be replaced by the following

pattern, for which subject reduction is straightforward to prove:

A, x:σ ` M̂ : ρ
(→ intro)

A ` (λx.M̂) : σ→ ρ ; A ` N̂ : σ
(→ elim)

A ` (λx.M̂) @ N̂ : ρ

(2)

So in λCIL
i , the reduction from M̂1 to M̂2 is illegal. Instead, again assuming b is

true, the only legal reduction from M̂1 is to

M̂ ′
2 ≡ (λf.(π×

1 f) @ (π×
2 f)) @ ×((λe.e+ 1), 5)

and thence to

M̂ ′
3 ≡ (π×

1 ×((λe.e+ 1), 5)) @ (π×
2 ×((λe.e+ 1), 5))

Note that in the explicitly typed language λCIL, the statement that values of

union type must be union introduction forms is only true if variables are not con-

sidered to be values. While variables are typically considered values in other call-

by-value calculi (e.g., (Plotkin, 1975)), they cause trouble in λCIL because they can

invalidate the equivalence between the two typing derivation patterns (1) and (2)

shown above. As a concrete example of this trouble, consider the following terms:

M̂if ≡ (if b then ×((λe.e+ 1), 5) else ×((λe.2),×()))

M̂4 ≡ (λz.z @ M̂if) @ (λy.(λf.(π×
1 f) @ (π×

2 f)) @ y)

M̂5 ≡ (λz.z @ M̂if) @ (λy.(π×
1 y) @ (π×

2 y))

If variables were considered values, then M̂4 could reduce to M̂5. But whereas M̂4

can be typed using (∨ elim b), M̂5 cannot, because it does not contain the β redex

required by the conclusion.

Subject reduction is achieved in both the explicitly and implicitly typed versions

of λCIL by requiring call-by-value reduction and not treating variables as values.

This ensures that every reduction at the untyped level will have a corresponding

24 Wells, Dimock, Muller and Turbak

reduction at the typed level. In this way, the implicitly typed language λCIL
i inherits

subject reduction from the explicitly typed language λCIL.

λCIL
i appears to be the first implicitly typed calculus with union types that

has the subject reduction property for a single call-by-value β-reduction step.

The loss of subject reduction in the presence of union types and unrestricted

reduction has been noted before. Barbanera, Dezani-Ciancaglini, and de’Liguoro

(Barbanera et al., 1995) report the following example (due to Pierce): the term

(λx.λy.λz.x((λt.t)yz)((λt.t)yz)) can be given the type ((σ → σ → τ) ∧ (ρ→ ρ→

τ))→ (π→ (σ∨ρ))→π→τ , but the term (λx.λy.λz.x(yz)((λt.t)yz)) to which it re-

duces cannot. To regain subject reduction, they adopt a notion of parallel reduction

based on complete developments, but this needs to perform multiple β-reduction

steps simultaneously at the untyped level.

Inspired in part by an earlier version of the work reported here, Palsberg and

Pavlopoulou (Palsberg & Pavlopoulou, 2001) developed a language with union and

intersection types that uses the call-by-value restriction to achieve a property that is

similar to subject reduction, but weaker. In particular, they show the preservation of

types across an evaluation relation rather than the more general reduction relation

considered here.

The fact that λCIL uses call-by-value reduction and does not treat variables as

values means that some common local transformations cannot be proven correct

within the calculus. For example, consider the following transformations:

(λzτ .×(z, z)) @ M is transformed to ×(M,M) (3)

λyτ .((λzτ .×(z, z)) @ y) is transformed to λyτ .×(y, y) (4)

Although transformation (3) preserves meaning for any M in the purely functional

calculus λCIL, this can only be proven via the calculus when M is a value. Similarly,

transformation (4) is always safe, but it cannot be justified by λCIL because vari-

ables are not values. Proving meaning preservation in these cases requires reasoning

outside of the calculus. The sort of limitation illustrated by transformation (3) is

exhibited by any call-by-value calculus, but the limitation illustrated by transfor-

mation (4) is specific to λCIL. In the typed calculus, the restriction that no variables

are values could be loosened to say that no variables of union type are values; vari-

ables of all other types would be considered values. In this case, transformation (4)

would be provable in the calculus if τ were not a union type. We have not taken this

approach in this paper because it complicates the relationship between the typed

and untyped calculi.

4 Formal Language Definition

The formal definition of the language λCIL proceeds in several steps:

• Section 4.1 introduces notation and terminology for the formal development.

• Section 4.2 defines the untyped calculus λCIL
ut , which is later used to define

reduction and evaluation on the typed calculus. λCIL
ut is a call-by-value version

A Calculus with Polymorphic and Polyvariant Flow Types 25

of the pure λ-calculus extended with tuples, variants, and recursion. We show

that λCIL
ut is confluent. Work we have reported elsewhere shows standardiza-

tion for λCIL
ut . These imply that λCIL

ut is computationally sound: any calculus

step is meaning-preserving relative to the operational semantics.

• Section 4.3 defines the explicitly typed language λCIL using product, inter-

section, sum, and union types and flow-annotated function types. First, type-

annotated and flow-annotated contexts and terms of λCIL are defined along

with a notion of type erasure mapping the annotated terms back into λCIL
ut .

Then, reduction and evaluation rules are defined that provide the expected

correspondence between λCIL and λCIL
ut . We also show that λCIL satisfies a

subject reduction property, and use this property to prove type soundness.

• Section 4.4 observes that an implicitly typed language λCIL
i is automatically

obtained by taking typing derivations of an unlabelled version of λCIL
ut and

erasing types from the terms in these derivations.

4.1 General Notation and Terminology

A context is a term containing holes, where each hole is denoted by 2. However,

in this paper, it is simpler to view terms as contexts without holes. The expression

C[M1, . . . ,Mn] denotes the result of placing terms M1, . . . , Mn in the n holes

of the context C from left to right, possibly capturing free variables. For terms,

M ≡ N denotes that M and N are the same term after renaming bound variables.

We identify terms up to such renaming. For contexts, C1 ≡ C2 is similar but

only allows renaming bound variables whose scopes do not include a hole. The

statement X C Y means that the syntactic entity X occurs properly within the

syntactic entity Y ; X E Y has the same meaning except X and Y may be the same.

The expression M [x:=N] denotes the result of replacing all free occurrences of x

in M by N after first renaming the bound variables of M to be distinct from the

free variables of N . For types, τ [α:=σ] has an analogous meaning. The expression

FV(X) denotes the set of free (unbound) variables of the syntactic entity X , where

X is a term or type.

Our presentation generalizes notions of reduction (n.o.r.) (Barendregt, 1984).

A simple n.o.r. R is a pair (,C) of a redex/contractum relation and a set

of reduction contexts C.7 Given R = (,C), the statement M N means

that M is an R-redex and N is the R-contractum of M . Given R = (,C),

the statement M −→R N means that M is transformed into N by contracting R-

redexes in positions in M specified by an R-reduction context , i.e., there is a context

C ∈ C with k holes and there are terms Mi and Ni for i ∈ {1, . . . , k} such that

M ≡ C[M1, . . . ,Mk] and N ≡ C[N1, . . . , Nk] and Mi Ni for i ∈ {1, . . . , k}. A

composite n.o.r. R is a rule composing reduction steps of simple n.o.r.’s; in this case

M −→R N means M and N are related by the rule (see figure 9 for an example of

7 Barendregt’s definition sec. 3.1.1 is a special case of our definition for simple n.o.r.s which is
equivalent to requiring for any n.o.r. R = (,C) that C is the set of all single-hole contexts.
In this case, Barendregt’s formulation yields −→R as the compatible closure of .

26 Wells, Dimock, Muller and Turbak

a composite n.o.r.). The symbol −�R denotes the transitive and reflexive closure of

−→R. A term M is in normal form with respect to R, written R-nf(M), when there

is no term N such that M −→R N . The statement M −nf−→R N means M −�R N

and R-nf(N).

4.2 Untyped Language λCIL
ut

4.2.1 Syntax and Semantics of λCIL
ut

Figure 4 shows the syntax and semantics of the untyped language λCIL
ut . The syn-

tactic categories UntContext, UntTerm, UntValue and UntEvalContext are

respectively the untyped contexts, terms, values and evaluation contexts.

λCIL
ut includes constants, but no primitive operators on constants. The reason

for this is that values at ground type are necessary for some formal statements

(including some statements in other papers relying on this one), but the presentation

is simpler without primitive operators on these values.

4.2.2 Confluence of λCIL
ut

We will prove confluence of λCIL
ut by translating it into a regular combinatory re-

duction system (CRS). The notion of a CRS and what it means for a CRS to be

regular is defined in appendix A. We define a CRS Σut using the following set of

function symbols.8

F = {λ(1),@(2), µ(1),val(1),notval(1)} ∪ Constant

∪ {×
(i)
i , π×

i

(1)
, in+

i

(1)
, case+

i

(i+1)
| i ∈ N }

We define the function Cut : UntTerm → Ter(F) together with an auxiliary func-

tion But : UntTerm → Ter(F) to translate untyped terms into CRS terms:

Cut(M̂) =

{

val(But(M̂)) if M̂ ∈ UntValue,

notval(But(M̂)) if M̂ /∈ UntValue.

But(c) = c

But(x) = x

But(rec x.M̂) = µ([x]Cut(M̂))

But(λx.M̂) = λ([x]Cut(M̂))

But(M̂ @ N̂) = @(Cut(M̂), Cut(N̂))

But(×
(

M̂1, . . . , M̂n

)

) = ×n(Cut(M̂1), . . . , Cut(M̂n))

But(π
×
i M̂) = π×

i (Cut(M̂))

But(in
+
i M̂) = in+

i (Cut(M̂))

But(case
+ M̂ bind x in M̂1, . . . , M̂n) = case+

n (Cut(M̂), [x]Cut(M̂1), . . . , [x]Cut(M̂n))

Now we give reduction rules for the CRS to simulate reduction in λCIL
ut . The key

technical challenge here is to specify the value restriction of the application, pro-

jection, and case analysis reduction rules using only non-ambiguous CRS reduction

8 All members of Constant are assumed to have arity 0.

A Calculus with Polymorphic and Polyvariant Flow Types 27

Untyped Syntax

x, y, z ∈ Variable c ∈ Constant

Ĉ ∈ UntContext ::= 2 | c | x | rec x.Ĉ | λx.Ĉ | Ĉ1 @ Ĉ2

| ×
(

Ĉ1, . . . , Ĉn

)

| π×
i Ĉ

| in+
i Ĉ | case+ Ĉ bind x in Ĉ1, . . . , Ĉn

M̂ , N̂ ∈ UntTerm = { Ĉ | 2 5 Ĉ }

V̂ ∈ UntValue ::= c | λx.M̂ | ×
(

V̂1, . . . , V̂n

)

| in+
i V̂

Untyped Redex/Contractum Relation

(λx.M̂) @ V̂ ut M̂ [x:=V̂]

π×
i ×

(

V̂1, . . . , V̂n

)

 ut V̂i if 1 ≤ i ≤ n

case+ (in+
i V̂) bind x in M̂1, . . . , M̂n ut (λx.M̂i) @ V̂ if 1 ≤ i ≤ n

rec x.M̂ ut M̂ [x:=(rec x.M̂)]

Untyped Reduction Contexts

UntRedContext = { Ĉ | Ĉ ∈ UntContext and Ĉ has exactly one hole }

Untyped Evaluation Contexts

Ê ∈ UntEvalContext ::= F̂ | ×
(

V̂1, . . . , V̂n, Ê, M̂1, . . . , M̂m

)

| in+
j Ê

F̂ ::= 2 | F̂ @ M̂ | (λx.M̂) @ Ê

| π×
i F̂ | π×

i ×
(

V̂1, . . . , V̂n, Ê, M̂1, . . . , M̂m

)

| case+ F̂ bind x in M̂1, . . . , M̂n

| case+ (in+
j Ê) bind x in M̂1, . . . , M̂n

Notions of Reduction

Untyped Reduction ut = (ut,UntRedContext)
Evaluation ê = (ut,UntEvalContext)

Fig. 4. Untyped language λCIL
ut .

rules. We also desire to use simple rule schemas rather than rule schemas with one

rule for each possible shape of a value. We will define the set of rules Rv to prop-

agate the value status of a term and the set of rules Rut to simulate the reduction

rules of λCIL
ut . Let n ∈ N.

Rv =

notval(λ(Z)) → val(λ(Z))

notval(c) → val(c)

notval(×n(val(Z1), . . . ,val(Zn))) → val(×n(val(Z1), . . . ,val(Zn)))

notval(in+
i (val(Z))) → val(in+

i (val(Z))) where i ∈ N

Rut =

notval(@(val(λ([x]Z(x))),val(Z ′))) → Z(Z ′)

notval(π×
i (val(×n(Z1, . . . , Zn)))) → Zi where 1 ≤ i ≤ n

notval(case+
n (val(in+

i (val(Z))), [x]Z1(x), . . . , [x]Zn(x)))

→ notval(@(val(λ([x]Zi(x))),val(Z))) where 1 ≤ i ≤ n

notval(µ([x]Z(x))) → Z(µ([x]Z(x)))

28 Wells, Dimock, Muller and Turbak

Let Σut be the CRS with function symbols Fun(Σut) = F and the reduction rules

Red(Σut) = Rv ∪Rut.

Remark 4.1. The CRS Σut meets the structure-preserving criteria of (Bloo &

Rose, 1996), since every argument of a RHS metavariable occurs as a subterm of

the corresponding LHS. Thus, the techniques of (Bloo & Rose, 1996) can easily give

an explicit-substitution version of Σut. In turn, from this it is possible to derive an

abstract machine implementation.

Now we prove confluence of Σut and use this result to prove confluence of λCIL
ut .

Lemma 4.2. The CRS Σut is regular, i.e., its rules are left-linear and unambigu-

ous. (See the appendix for a definition of these terms.)

Proof. Simple checking reveals that the rules are left-linear. To see that the rules are

unambiguous, first observe that the root symbol of the LHS of every rule is notval

and none of the LHS’s contain notval anywhere else. Thus, if two distinct redexes

overlap, the overlap must occur at the root of both redexes. Simple inspection of

each rule pair reveals that no such overlaps are possible.

Corollary 4.3. Reduction in Σut is confluent.

Now we need to show a correspondence between reduction in λCIL
ut and the CRS

Σut. First, we define a function E : Ter(F) → Ter(F) which erases val and notval

from terms:

E(F (u)) =

{

F (E(u)) if F /∈ {val,notval},

E(u) otherwise.

E(F (u1, . . . , un)) = F (E(u1), . . . , E(un)) where n = 0 or n > 1

E([x]u) = [x]E(u)

E(x) = x

Lemma 4.4. If E(Cut(M̂1)) = E(Cut(M̂2)) then M̂1 = M̂2.

Next we define a partial function C−1
ut : Ter(F) → UntTerm which contains the

inverse of Cut:

C−1
ut (u) =

{

M̂ if M̂ is the unique term s.t. E(Cut(M̂)) = E(u),

undefined if no such M̂ exists.

Lemma 4.5. If Cut(M̂) −�Σut
u, then C−1

ut (u) is defined.

Lemma 4.6. Both of the following statements hold:

1. If M̂ −�ut N̂ , then Cut(M̂) −�Σut
Cut(N̂).

2. If Cut(M̂) −�Σut
u, then M̂ −�ut C

−1
ut (u).

Theorem 4.7 (Confluence of Untyped Reduction). If M̂ −�ut N̂1 and M̂ −�ut

N̂2, then there exists M̂ ′ such that N̂1 −�ut M̂
′ and N̂2 −�ut M̂

′.

A Calculus with Polymorphic and Polyvariant Flow Types 29

Proof. By constructing this diagram:

N̂1 Cut(N̂1)

M̂ Cut(M̂) C−1
ut (v) v

N̂2 Cut(N̂2)

ut

ut

Σut

Σut

Σut

Σut

ut

ut

4.2.3 Standardization for λCIL
ut

The λCIL
ut calculus has the property that if a term M̂ reduces to a value V̂ , then

there exists a value V̂0 and a reduction sequence from M̂ to V̂0 in which the re-

duced redexes occur in the restricted contexts UntEvalContext. The proof of this

theorem is presented elsewhere.

Theorem 4.8 (Standardization for λCIL
ut). If M̂ −�ut V̂ , then there exists V̂0 ∈

UntValue such that M̂ −�ê V̂0 −�ut V̂ .

Proof. See (Muller & Wells, 2000).

4.3 Explicitly Typed Language λCIL

4.3.1 Type/Flow-Annotated Term Syntax

Figure 5 shows the syntax of the explicitly typed language λCIL. The syntactic cat-

egories Context, Term, and Value are respectively the type and flow-annotated

versions of UntContext, UntTerm, and UntValue.

In this presentation, only abstractions, applications, and function types are given

flow labels. We could have similarly annotated product, sum, intersection, union,

and base types along with the introduction and elimination terms for these types.9

However, we avoid these additional annotations in order to simplify the presenta-

tion. The absence of these additional annotations in no way effects the class of flow

analyses that can be encoded in λCIL.

All sets of flow labels are assumed to be non-empty and finite. The require-

ment of non-empty label sets is imposed by certain representation transformations

in the compiler framework based on λCIL(Dimock et al., 1997). Even under the

whole-program assumption, it is possible to have terms and types without sources

or without sinks (due to dead code). To represent this, we use distinguished “no

source” and “no sink” labels.

9 In fact, our implementation of λCIL includes annotations on all of these types.

30 Wells, Dimock, Muller and Turbak

Syntax Shared between Types and Terms

Q ::= P | S S ::= ∨ | + P ::= ∧ | × l, k ∈ Label = N ∅ 6= φ, ψ ⊂ Label

Types

o ∈ BaseType
α ∈ TypeVariable

ξ ∈ OpenType ::= o | υ1 −
φ−ψ→ υ2 | Q[υ1, . . . , υn] | µα.ξ

υ ::= α | ξ
ρ, σ, τ ∈ Type = {ξ | FV(ξ) = ∅}

Type Equality

σ = τ iff the infinite unfoldings of σ and τ are identical

Type-Annotated Contexts

C ∈ Context ::= 2 | c | xτ | rec xτ .C | λlψx
τ .C | C1 @φ

k C2

| P (C1, . . . , Cn) | πPi C | coerce (σ, τ)C | let xτ = C1 in C2

|
(

inSi C
)τ

| caseS C bind x in τ1 ⇒ C1, . . . , τn ⇒ Cn

Type Erasure (a partial function from Context to UntContext)

|2| ≡ 2 |c| ≡ c

|xτ | ≡ x |rec xτ .C| ≡ rec x.|C|
∣

∣λlψx
τ .C

∣

∣ ≡ λx.|C|
∣

∣

∣
C1 @φ

k C2

∣

∣

∣
≡ |C1| @ |C2|

|×(C1, . . . , Cn)| ≡ ×(|C1| , . . . , |Cn|) |coerce (σ, τ)C| ≡ |C|
∣

∣π×
i C

∣

∣ ≡ π×
i |C| |π∧

i C| ≡ |C|
∣

∣

(

in+
i C

)τ ∣
∣ ≡ in+

i |C|
∣

∣(in∨
i C)

τ
∣

∣ ≡ |C|

|let xτ = C1 in C2| ≡ (λx.|C2|) @ |C1|
∣

∣case+ C bind x in τ1 ⇒ C1, . . . , τn ⇒ Cn
∣

∣ ≡ case+ |C| bind x in |C1| , . . . , |Cn|

|case∨C bind x in τ1 ⇒ C1, . . . , τn ⇒ Cn| ≡

(λx.|C1|) @ |C| if |C1| ≡ · · · ≡ |Cn|,

undefined otherwise.

|∧(C1, . . . , Cn)| ≡

|C1| if |C1| ≡ · · · ≡ |Cn|,

undefined otherwise.

Type-Annotated Terms, Values, Parallel Contexts

M,N ∈ Term = {C | the type erasure |C| ∈ UntTerm}

V ∈ Value = {C | the type erasure |C| ∈ UntValue}

Cp ∈ ParallelContext = {C | the type erasure |C| has exactly one hole }

Syntactic Sugar for Examples

bool = +[×[],×[]] true ≡
(

in+
1 ×()

)bool
false ≡

(

in+
2 ×()

)bool

(if M1 then M2 else M3) ≡ case+M1 bind x in ×[] ⇒M2,×[] ⇒ M3 x fresh

Fig. 5. Syntax of explicitly typed language λCIL.

A Calculus with Polymorphic and Polyvariant Flow Types 31

The recursive binding construct “µ” is used to build recursive types. We use

a standard definition of type equality (Amadio & Cardelli, 1993), in which two

types are considered equal only if the regular trees that result from unfolding all

recursive types (potentially an infinite number of times) within the two types are

equal. While it is possible to axiomatize this notion of type equality (Amadio &

Cardelli, 1993), there is no benefit to doing so in our calculus; we do not care which

particular finite representation is used to represent a given infinite regular tree.

Since we do not distinguish between equal recursive types in any context, we do

not include any rules for folding or unfolding recursive types. All type variables

appearing in a type must be µ-bound; the syntax forbids free type variables from

occurring in typing derivations and terms.

The syntax (coerce (σ, τ)M) explicitly records at the term level the use of the

subtyping rule in figure 6 to coerce the type of M from σ to τ . As explained in

section 3.5, there is only a single “shallow” subtyping rule that can add labels to

the set of source labels and remove labels from the set of sink labels of a “→”-type.

If flow annotations were added to other types (e.g., products, sums, etc.), shallow

subtyping would be extended accordingly.

Although let could be defined as syntactic sugar for the application of an abstrac-

tion, the desugaring would have to invent unnecessary flow labels. Furthermore, an

explicit let construct makes it easier for a transformation to handle this pattern

differently from how it would handle an abstraction within an application (e.g.,

there is no need to closure convert an applied abstraction).

The type erasure |C| of a type-annotated context C (defined in figure 5) is the

corresponding untyped and unlabelled context. The fact that virtual tuples, virtual

case expressions, and coercions are erased by type erasure underscores the virtual

nature of these constructs. Type erasure does not entirely eliminate virtual case

expressions, but instead leaves behind the application of an abstraction. This is a

consequence of the formulation of the union elimination typing rule, as discussed in

section 3.7. Some contexts do not have a type erasure, i.e., those containing virtual

tuples like ∧(C1, . . . , Cn) or virtual case expressions like

case∨ C bind x in τ1 ⇒ C1, . . . , τ1 ⇒ C1

where the type erasures of C1, . . . , Cn are not identical. In the definition of |C|, it

is assumed that if any immediate subcontext of C has an undefined type erasure,

then the type erasure of C is also undefined.

Lemma 4.9 (Properties of Sub-Contexts).

1. If C1 E C2 and |C2| is defined, then |C1| is defined.

2. If C E Cp, then either C ∈ ParallelContext or C ∈ Term.

3. If C EM , then C ∈ Term.

Lemma 4.10 (Contexts Are Injective Functions). Both typed and untyped one-

holed contexts can be seen as one-to-one functions from contexts to contexts (after

identifying α-equivalence classes), i.e.,

32 Wells, Dimock, Muller and Turbak

1. Ĉ[Ĉ1] ≡ Ĉ[Ĉ2] ⇐⇒ Ĉ1 ≡ Ĉ2.

2. C[C1] ≡ C[C2] ⇐⇒ C1 ≡ C2.

Lemma 4.11 ((De)Composing Parallel Contexts).

1. Let C ≡ Cp[C1, . . . , Cn]. If |C1| ≡ · · · ≡ |Cn|, then |C | is defined if and only

if |Ci | is defined, and C is a parallel context if and only if |Ci | has exactly

one hole.

2. If |Cp[C1, . . . , Cn]| is defined, then |C1| ≡ · · · ≡ |Cn|, and |Cp[C1, . . . , Cn]| ≡

|Cp| [|C1|].

Lemma 4.12. If |C1| ≡ |C2|, then for any one-holed context C, either |C[C1]| ≡

|C[C2]| or both |C[C1]| and |C[C2]| are undefined.

4.3.2 Typing Derivations and Well Typed Terms

(const)
ConstType(c) = o

A ` c : o
(var)

A, x:τ ` x
τ : τ

(→ elim)
A ` M : σ −φ−−

{k}
→ τ ; A ` N : σ

A ` M @φ
k N : τ

(→ intro)
A, x:σ ` M : τ

A ` λ
l
ψx

σ
.M : σ −

{l}
−ψ→ τ

(× intro)
∀ni=1. A ` Mi : τi

A ` ×(M1, . . . ,Mn) : ×[τ1, . . . , τn]
(rec)

A, x:τ ` M : τ

A ` rec xτ .M : τ

(∧ intro)
∀ni=1. A ` Mi : τi; |M1|≡· · ·≡|Mn|

A ` ∧(M1, . . . ,Mn) : ∧[τ1, . . . , τn]
(coerce)

A ` M : σ; σ ≤ τ

A ` coerce (σ, τ)M : τ

(+,∨ intro)

A ` M : τi; 1 ≤ i ≤ n

A `
(

inSi M
)S[τ1,...,τn]

: S[τ1, . . . , τn]
(→≤)

φ ⊆ φ
′; ψ′ ⊆ ψ

σ −φ−ψ→ τ ≤ σ −φ
′

−
ψ′→ τ

(×,∧ elim)
A ` M : P [τ1, . . . , τn]; 1 ≤ i ≤ n

A ` π
P
i M : τi

(let)
A, x:σ ` N : τ ; A ` M : σ

A ` let xσ = M in N : τ

(+ elim)
A ` M : +[τ1, . . . , τn]; ∀ni=1. A, x:τi ` Mi : τ

A ` case+
M bind x in τ1 ⇒M1, . . . , τn ⇒Mn : τ

(∨ elim)
A ` M : ∨[τ1, . . . , τn]; ∀ni=1. A, x:τi ` Mi : τ ; |M1| ≡ · · · ≡ |Mn|

A ` case∨
M bind x in τ1 ⇒ M1, . . . , τn ⇒Mn : τ

Fig. 6. Typing rules of explicitly typed language λCIL.

Figure 6 gives the typing rules of λCIL. The function ConstType assigns a base

type to each constant. A type environment is a finite mapping from term variables

A Calculus with Polymorphic and Polyvariant Flow Types 33

to types, i.e., a set of variable/type pairs. If A is a type environment, then A, x:τ de-

notes A extended to map x to type τ . The domain of definition of A is DomDef(A).

A triple A ` M : τ is a judgement.

A derivation D in languageX is a tree in which each nodeN contains a judgement

that follows by an instantiation of a typing rule whose conclusion is the judgement

of N and whose hypotheses are the judgements of the children of N . To guarantee

uniqueness of derivations (see theorem 4.13), the children of a node must be ordered,

and their order must match the order of hypotheses in the typing rule. A derivation

is said to end with a judgement if that judgement is the root of the derivation tree.

We write “A `X M : τ via D” to mean that derivation D is valid in language X

and D ends with A ` M : τ . In this case, D is a typing for M in X and M is

well typed in X . The statement A `X M : τ means there exists some D such that

A `X M : τ via D.

The (∧ intro) rule requires the equivalence of the type erasure of all components

of the virtual tuple, while the (∨ elim) rule requires the equivalence of the type

erasures of all clause bodies of a case∨ expression. These two rules formalize the

restrictions on virtual tuples and virtual variants mentioned earlier. The (×,∧ elim)

(resp. (+,∨ intro)) rule works for both product and intersection (resp. sum and

union) types, since P (resp. S) ranges over × and ∧ (resp. + and ∨).

Addition and Subtraction of Type Environments

A⊕B =

{

A ∪B if A ∪B is a function,

undefined otherwise.

A	B =

{

A−B if A−B is a function,

undefined otherwise.

Environment Inference Function

Env : Term ↪→ TypeEnvironment

Env(c) = ∅
Env(xτ) = {x : τ}

Env(λlψx
τ .M) = Env(M) 	 {x : τ}

Env(M @φ
k N) = Env(M) ⊕ Env(N)

Env(coerce (σ, τ)M) = Env(M)
Env(rec xτ .M) = Env(M) 	 {x : τ}

Env(let xτ = M in N) = Env(M) ⊕ (Env(N) 	 {x : τ})
Env(P (M1, . . . ,Mn)) = Env(M1) ⊕ · · · ⊕ Env(Mn)

Env(πPi M) = Env(M)

Env(
(

inSi M
)τ

) = Env(M)
Env(caseSM bind x in τ1 ⇒M1, . . . , τn ⇒Mn) =

Env(M) ⊕ (Env(M1) 	 {x : τ1}) ⊕ . . .⊕ (Env(Mn) 	 {x : τn})

Fig. 7. Definition of the Env function.

We will show that typing derivations and well typed terms are isomorphic, using

the functions defined in figures 7 and 8. Env is a partial function that maps a λCIL

term to a type environment pairing each free variable of the term to its type. Env

34 Wells, Dimock, Muller and Turbak

Type Inference Function

Typ : Term ↪→ Type

Typ(c) = ConstType(c)
Typ(xτ) = τ

Typ(λlψx
τ .M) = τ −{l}−ψ→ Typ(M)

Typ(M @φ
k N) = τ if Typ(M) = Typ(N) −φ−−{k}→ τ

Typ(coerce (σ, τ)M) = τ if Typ(M) = σ = ρ1 − φ−−−
ψ∪ψ′→ ρ2

and τ = ρ1 −
φ∪φ′

−−−ψ→ ρ2

Typ(rec xτ .M) = τ if Typ(M) = τ

Typ(let xτ = M in N) = Typ(N) if Typ(M) = τ

Typ(×(M1, . . . ,Mn)) = ×[Typ(M1), . . . ,Typ(Mn)]
Typ(∧(M1, . . . ,Mn)) = ∧[Typ(M1), . . . ,Typ(Mn)]

Typ(πPi M) = τi if Typ(M) = P [τ1, . . . , τn]
and 1 ≤ i ≤ n

Typ(
(

inSi M
)τ

) = τ if τ = S[τ1, . . . , τn]
1 ≤ i ≤ n and Typ(M) = τi

Typ(case+M bind x in τ1 ⇒M1, . . . , τn ⇒Mn)
= Typ(M1) if Typ(M) = +[τ1, . . . , τn]

and Typ(M1) = · · · = Typ(Mn)
Typ(case∨M bind x in τ1 ⇒M1, . . . , τn ⇒Mn)

= Typ(M1) if Typ(M) = ∨[τ1, . . . , τn]
and Typ(M1) = · · · = Typ(Mn)

Fig. 8. Definition of the Typ function.

is undefined if there are conflicting type assignments for some free variable within

the term. The partial function Typ constructs the type of a λCIL term based on

the explicit type information in the term. In the definition of Typ, if the value of

Typ(M) is not explicitly specified, then it is undefined.

Theorem 4.13 (Uniqueness of Typings in λCIL).

1. Every typing derivation for M ends with

Env(M) ⊕A `λCIL M : Typ(M) for some A.

2. If Env(M) ⊕A and Typ(M) are defined, then there is a unique typing

derivation D such that Env(M) ⊕A `λCIL M : Typ(M) via D.

Proof. By induction on typing derivations. The important thing to observe is that

together the functions Env and Typ encode all of the restrictions of the type system,

so if M is not typable then either Env(M) or Typ(M) will be undefined.

Thus, when desired, we may recover the type of any well typed term from the

term itself. The notation M τ asserts that M is well typed and Typ(M) = τ .

4.3.3 Reduction on Explicitly Typed Terms

The call-by-value reduction rules for the typed language λCIL are in figure 9. The

main notion of reduction, r-reduction, is divided into three steps: simplifying type

A Calculus with Polymorphic and Polyvariant Flow Types 35

Main Notion of Reduction for Type-Annotated Terms

M −→r N iff ∃M ′
, N

′
. (M −nf−→t M

′ −→c N
′ −nf−→t N)

Computation Reduction (c,Cc)

let xτ = V in M c M [x:=V]
π×
i ×(V1, . . . , Vn) c Vi if 1 ≤ i ≤ n

case+
(

in+
i V

)τ
bind x in τ1 ⇒M1, . . . , τn ⇒Mn c let xτi = V in Mi if 1 ≤ i ≤ n

rec xτ .M c M [x:=(rec xτ .M)]

Reduction contexts: Cc = ParallelContext

Type-Annotation-Simplification Reduction (t,Ct)

(λlψx
τ .N) @φ

k M t let xτ = M in N

π∧
i ∧(M1, . . . ,Mn) t Mi if 1 ≤ i ≤ n

case∨ (in∨
i N)

τ
bind x in τ1 ⇒M1, . . . , τn ⇒Mn t let xτi = N in Mi if 1 ≤ i ≤ n

(coerce (σ, τ) (λlψx
ρ.M)) @φ

k N t let xρ = N in M

coerce (σ1, τ) coerce (ρ, σ2)M t coerce (ρ, τ)M

Reduction contexts: Ct = {C | C ∈ Context and C has exactly one hole }

Typed Evaluation

M −→e N iff M −→r N and |M | −→ê |N |

Fig. 9. Reduction rules of explicitly typed language λCIL.

annotations, performing a computation step, and then simplifying type annotations

again. Type annotations that might block a computation step are removed by t-

reduction. Since t-reduction is terminating (lemma 4.15), it is convenient to go to

t-normal form before and after computation steps. We assume terms are always

kept in t-normal form. The notion of c-reduction performs real computation steps.

In our term formulation, parallel c-redexes (i.e., different type-annotated versions

of the same program phrase) must be contracted simultaneously. This is formalized

using parallel contexts (members of ParallelContext), which require parallel c-

redexes to fill holes that map to the same hole in the type-erased program.

Remark 4.14. In the t-reduction rules in figure 9, constraints that might be ex-

pected on the type and flow annotations are not imposed by the reduction rules

but are instead a consequence of the typing rules in figure 6. For example, in the

application rule, the typing rules imply that φ must be {l} and ψ must be {k}.

Similar constraints hold for the other t-reduction rules.

Lemma 4.15. t-reduction is terminating.

Proof. t-reduction reduces the size of a term, where the size is measured as the

number of symbols appearing in the term.

Remark 4.16. We have proven that t-reduction is confluent but do not present

this fact, because it is not required for our subject reduction and confluence results

for −→r . These results only require that any term can be reduced to t-normal-

form.

36 Wells, Dimock, Muller and Turbak

Lemma 4.17.

1. If M c C, then C ∈ Term and |M | ut |C|.

2. If M t C, then C ∈ Term and |M | ≡ |C|.

Proof. By inspection of the reduction rules together with the type erasure rules.

Lemma 4.18 (Redex/Contractum Relations Are Functions). For each sim-

ple n.o.r. R ∈ {ut, c, t}, for any syntactic entity X, there is at most one Y such

that X R Y .

Proof. By inspection of the reduction rules.

Lemma 4.19. The set Term is closed under c-reduction and t-reduction. Also,

each c-reduction step corresponds to a ut-reduction step on the type erasure while

each t-reduction step preserves the type erasure. More specifically,

1. If M −→c C, then C ∈ Term and |M | −→ut |C|.

2. If M −→t C, then C ∈ Term and |M | ≡ |C|.

Proof.

1. By the definition of c-reduction, we know that M ≡ Cp[M1, . . . ,Mn] and

C ≡ Cp[C1, . . . , Cn] where Mi c Ci for 1 ≤ i ≤ n. By lemma 4.11, we know

that |M1| ≡ · · · ≡ |Mn| and |M | ≡ |Cp| [|M1|]. By lemma 4.17, we know that

C1, . . . , Cn ∈ Term and |Mi| ut |Ci| for 1 ≤ i ≤ n. By lemma 4.18 we know

that |C1| ≡ · · · ≡ |Cn|. By lemma 4.11, we know that |C| is defined, implying

C ∈ Term, and that |C| ≡ |Cp| [|C1|], implying that |M | −→ut |C|.

2. By definition of t-reduction, we know thatM ≡ C ′[M ′] and C ≡ C ′[C ′′] where

M ′ t C
′′. By lemma 4.17, we know that C ′′ ∈ Term and |M ′| ≡ |C ′′|. By

lemma 4.12, we know that |M | ≡ |C ′[M ′]| ≡ |C ′[C ′′]| ≡ |C| implying that

C ∈ Term.

Lemma 4.20. If Env(M) is defined and if x ∈ DomDef(Env(M)) implies (Env(M))(x) =

τ , then

1. Env(M [x:=N]) ⊆ (Env(M) 	 {x : τ}) ⊕ Env(N).

2. If Typ(N) = τ and Typ(M) is defined, then Typ(M [x:=N]) = Typ(M).

Proof. Both parts are by induction on the structure of M .

Lemma 4.21. If M R N for R ∈ {c, t}, then

1. If Env(M) is defined, then Env(N) ⊆ Env(M).

2. If Typ(M) is defined, then Typ(N) = Typ(M).

3. If A `λCIL M : τ , then A `λCIL N : τ .

Proof. For 1 and 2, by cases on the reduction rule, using lemma 4.20 for the reduc-

tion of let. For 3, using 1 and 2 together with theorem 4.13.

A Calculus with Polymorphic and Polyvariant Flow Types 37

Lemma 4.22 (Subject c/t-Reduction).

1. If M −→c N and A `λCIL M : τ , then A `λCIL N : τ .

2. If M −→t N and A `λCIL M : τ , then A `λCIL N : τ .

Proof.

1. We know that M ≡ Cp[M1, . . . ,Mn] and N ≡ Cp[N1, . . . , Nn] where Mi c

Ni for 1 ≤ i ≤ n. Consider the typing derivation D which proves A `λCIL

M : τ . For 1 ≤ i ≤ n the typing derivation D has subderivation Di proving

Ai `λCIL Mi : τi for some Ai and τi. By lemma 4.21, for 1 ≤ i ≤ n there is

a derivation D′
i proving Ai `λCIL Ni : τi. Consider the derivation D′ formed

from D by replacing Di by D′
i for 1 ≤ i ≤ n. The only typing rules which

inspect the internal structure of the terms in the judgements in their premises

are (∧ intro) and (∨ elim), which merely verify that the type erasure of the

term they are building is defined. Because |N | is defined (since it is a term by

lemma 4.19), we know that D′ is a valid derivation, giving the desired result.

2. Similar reasoning to the previous case, only simpler.

Theorem 4.23 (Subject r-Reduction for λCIL). If M −→r N and A `λCIL

M : τ , then A `λCIL N : τ .

Proof. The claim follows immediately from lemma 4.22 and the definition of r-

reduction as the composition of c-reduction and t-reduction.

Definition 4.24 (Erasable Form). A term M is an erasable form if it has the

form ∧(M1, . . . ,Mn), π
∧
i M

′, coerce (σ, τ)M ′, or
(

in∨
i M

′
)τ

.

Lemma 4.25. If t-nf(M) and |M | ≡ Ĉ[N̂], then M ≡ Cp[N1, . . . , Nn] where

|Cp| ≡ Ĉ, |N1| ≡ N̂ , and Ni is not an erasable form for 1 ≤ i ≤ n.

Lemma 4.26. If M is well typed, t-nf(M), M is not an erasable form, and |M | is

a ut-redex, then M is a c-redex.

Proof. By case analysis on the form of M .

Lemma 4.27. If t-nf(M), M is well typed, and |M | −→ut N̂ , then there is a term

N such that M −→c N and |N | ≡ N̂ .

Proof. Because |M | −→ut N̂ , we know that |M | ≡ Ĉ[M̂ ′] and N̂ ≡ Ĉ[N̂ ′] where

M̂ ′ ut N̂
′. By lemmas 4.25 and 4.26, we know that M ≡ Cp[M1, . . . ,Mn] where

|Cp| ≡ Ĉ , |M1| ≡ · · · ≡ |Mn| ≡ M̂ ′, and Mi c Ni for 1 ≤ i ≤ n. Thus, M −→c N

where N ≡ Cp[N1, . . . , Nn]. All that remains is to show that |N | ≡ N̂ .

By lemma 4.19, |M | −→ut |N |. By lemma 4.11 and the above reasoning we

know that Ĉ [M̂ ′] −→ut Ĉ[|N1|]. Thus, M̂ ′ ut |N1|. By lemma 4.18, we know

that N̂ ′ ≡ |N1|. Thus, |N | ≡ Ĉ[|N1|] ≡ Ĉ[N̂ ′] ≡ N̂ , which is exactly the desired

result.

Theorem 4.28 (Typed/Untyped Reduction Correspondence).

38 Wells, Dimock, Muller and Turbak

1. If M −→r N , then |M | −→ut |N |.
2. If |M | −→ut N̂ and M is well typed, then there exists a term N where M −→r

N and |N | ≡ N̂ .

Proof.

1. This claim follows immediately from lemma 4.19 and the definition of r-

reduction as the composition of c-reduction and t-reduction.

2. By lemma 4.15, M −nf−→t M
′. By lemma 4.22, M ′ is well typed. By lemma 4.19,

|M ′| ≡ |M |, implying that |M ′| −→ut N̂ . By lemma 4.27, M ′ −→c N
′ where

|N ′| ≡ N̂ . By lemmas 4.15 and 4.19, N ′ −nf−→t N where |N ′| ≡ |N | ≡ N̂ . By

definition of r-reduction, M −→r N , showing the desired result.

Theorem 4.29 (Confluence Modulo Type Erasure of Typed Reduction).

If M1 and M2 are well typed, |M1| ≡ |M2|, M1 −�r N1, and M2 −�r N2, then

there exist M ′
1 and M ′

2 such that |M ′
1| ≡ |M ′

2|, N1 −�r M
′
1 and N2 −�r M

′
2.

Proof. By theorem 4.28, |M1| −�ut |N1| and |M2| −�ut |N2|. By theorem 4.7, there

exists N̂ such that |N1| −�ut N̂ and |N2| −�ut N̂ . By theorem 4.28, there exist

terms M1 and M2 such that |M1| ≡ |M2| ≡ N̂ and N1 −�r M1 and N2 −�r M2.

Remark 4.30. Confluence modulo type erasure is not as strong a result as tradi-

tional confluence, in which M1 ≡ M2 and M ′
1 ≡ M ′

2. However, since meaning in

λCIL is entirely determined at the untyped level, confluence modulo type erasure

is sufficient for the purpose of showing that transformations preserve meaning. We

conjecture that λCIL is confluent in the traditional sense, but have not proven this

fact.

Lemma 4.31 (Value Characterization).

1. If M closed, well-typed, and an evaluation normal form, then M is a value.

2. If M is a value, then it is an evaluation normal form.

Lemma 4.32 (Progress). If ∅ `λCIL M : τ , then either M is a value or there

exists an N such that M −→e N .

Definition 4.33 (Stuck Terms). M ∈ Term is stuck iff it is an evaluation nor-

mal form that is not a value.

Theorem 4.34 (Typing Soundness). If M is a well-typed closed term in λCIL,

then evaluating it “cannot go wrong”. I.e., for all N such that M −�e N , N is not

stuck.

Proof. By assumption, there is a τ such that ∅ `λCIL M : τ . The proof is by

induction on the length n of the reduction M −�e N . If n = 0, then by lemma 4.32,

N is not stuck because it is either a value or can be evaluated. If n > 0, then there

is an N ′ such that M −→e N
′ −�e N . Since −→e is a subrelation of −→r, subject

reduction of −→r implies ∅ `λCIL N ′ : τ , which is assumed true by the induction

hypothesis.

A Calculus with Polymorphic and Polyvariant Flow Types 39

4.4 Implicitly Typed Language λCIL
i

The implicitly typed language λCIL
i is obtained from λCIL

ut and λCIL. The syntax

and semantics of implicitly typed language λCIL
i are the same as λCIL

ut as given in

figure 4. The types of λCIL
i are obtained from those of λCIL by erasing labels. We

will informally use the notation 〈X〉 to denote the label erasure of X where X is

a term, type, or type environment. The typing rules of λCIL
i are the rules of λCIL

modified by replacing every judgement A ` M : τ mentioned in a λCIL rule by

〈A〉 ` |M | : 〈τ〉.

While the implicitly typed language is not as useful for a compiler intermediate

language as the explicitly typed language, it is helpful for comparing our approach

to intersection and union types with traditional approaches. As noted before, λCIL
i

appears to be the first implicitly typed lambda calculus with intersection and union

types that has the subject reduction property for a single call-by-value β-reduction

step.

Theorem 4.35 (Subject ut-Reduction for λCIL
i). If M̂ −→ut N̂ and Ã `λCIL

i

M̂ : τ̃ , then Ã `λCIL

i

N̂ : τ̃ .

Proof. Because Ã `λCIL

i

M̂ : τ̃ , we know by the definition of λCIL
i there are A,

M , and τ such that 〈A〉 ≡ Ã, |M | ≡ M̂ , 〈τ〉 ≡ τ̃ , and A `λCIL M : τ . Because

M̂ −→ut N̂ , by theorem 4.28 there is an N such that M −→r N and |N | ≡ N̂ . By

theorem 4.23, A `λCIL N : τ . By the definition of λCIL
i , this implies that Ã `λCIL

i

N̂ : τ̃ .

5 Epilog

We have implemented a whole-program compiler for core Standard ML using CIL,

a typed intermediate language that is based on λCIL. For implementing features of

core Standard ML, CIL extends the purely functional λCIL with primitive datatypes,

references, arrays, and exceptions. These extensions are described in Appendix A of

(Dimock et al., 2001b). Although CIL is based on λCIL, CIL itself is not a calculus.

We have implemented a semantics for CIL, but we have not written its formal

counterpart. While we have proven formal properties like standardization, subject

reduction, and type soundness for λCIL, we have not yet established any of these

properties for CIL.

The key novel feature of our compiler is its use of flow types to choose customized

representations for functions. To determine the effect of customizations and pollu-

tion removal on the dynamic costs of function representations, we have measured

the run-time performance (relative to a cost model) of code generated using vari-

ous function customization strategies (Dimock et al., 2001a). Our experiments show

that flow-based customization of closed functions can give significant improvements

over uniform closure representations. The efficacy of using flow types to remove

representation pollution is less clear. For the benchmarks tested and the types of

representation pollution detected by our compiler, the pollution removal strategies

we consider often cost more in overhead than they gain via enabled customizations.

40 Wells, Dimock, Muller and Turbak

However, some strategies that use defunctionalization and flow-based inlining often

achieve significant customization benefits via aggressive pollution removal.

Although CIL’s listing-based intersection and union types and its duplicating

term representations raise the specter of compile-time space explosion at both the

term and the type level, we have not observed such blowups in practice (Dimock

et al., 2001b). Our experiments show that space costs in our compiler can be made

tractable by using sufficiently fine-grained flow analyses together with standard

hash-consing techniques. A surprising result of our experiments is that they sug-

gest that non-duplicating formulations of intersection and union types would not

achieve significantly better space complexity than our duplicating term represen-

tation. However, only one of the flow analyses we have experimented with to date

expresses a non-trivial form of polyvariance, so it remains to be seen whether these

results hold up in the presence of flow analyses expressing more polyvariance.

References

Agesen, Ole. (1995). The Cartesian product algorithm. Pages 2–26 of: Proceedings
of ecoop’95, seventh european conference on object-oriented programming, vol. 952.
Springer-Verlag.

Aiken, Alexander S., & Wimmers, Edward L. (1993). Type inclusion constraints and type
inference. Pages 31–41 of: Fpca ’93, conf. funct. program. lang. comput. arch. ACM.

Aiken, Alexander S., Wimmers, Edward L., & Lakshman, T. K. (1994). Soft typing with
conditional types. In: (POPL ’94, 1994).

Amadio, Roberto, & Cardelli, Luca. (1993). Subtyping recursive types. ACM trans. on
prog. langs. & systs., 15(4), 575–631.

Amtoft, Torben, & Turbak, Franklyn. (2000). Faithful translations between polyvariant
flows and polymorphic types. In: (ESOP ’00, 2000).

Appel, Andrew W. (1992). Compiling with continuations. Cambridge University Press.

Appel, Andrew W., & Felty, Amy. (2000). A semantic model of types and machine in-
structions for proof-carrying code. Pages 243–253 of: Conf. rec. popl ’00: 27th ACM
symp. princ. of prog. langs.

Ariola, Zena M., & Felleisen, Matthias. (1997). The call-by-need lambda calculus. J. funct.
programming, 3(7).

Banerjee, Anindya. (1997). A modular, polyvariant, and type-based closure analysis. In:
(ICFP ’97, 1997).

Barbanera, Franco, Dezani-Ciancaglini, Mariangiola, & de’Liguoro, Ugo. (1995). Intersec-
tion and union types: Syntax and semantics. Inform. & comput., 119, 202–230.

Barendregt, H[endrik] P[ieter]. (1984). The lambda calculus: Its syntax and semantics.
Revised edn. North-Holland.

Benton, Nick, Kennedy, Andrew, & Russell, George. (1998). Compiling Standard ML to
Java bytecodes. In: (ICFP ’98, 1998).

Blelloch, Guy E. 1993 (Apr.). NESL: A nested data-parallel language. Tech. rept. CMU-
CS-93-129. School of Computer Science, Carnegie Mellon University.

Bloo, Roel, & Rose, Kristoffer Høgsbro. (1996). Combinatory Reduction Systems with
explicit substitution that preserve strong normalization. Proc. 7th int’l conf. rewriting
techniques and applications.

Briggs, P., Cooper, K. D., Harvey, T. J., & Simpson, L. T. (1998). Practical improvements

A Calculus with Polymorphic and Polyvariant Flow Types 41

to the construction and destruction of static single assignment form. Software practice
and experience, 28(8), 859–881.

Cejtin, Henry, Jagannathan, Suresh, & Weeks, Stephen. (2000). Flow-directed closure
conversion for typed languages. In: (ESOP ’00, 2000).

Chambers, Craig, & Ungar, David. (1989a). Customization: Optimizing compiler technol-
ogy for Self, a dynamically-typed object-oriented programming language. Pages 146–160
of: Proc. ACM SIGPLAN ’89 conf. prog. lang. design & impl.

Chambers, Craig, & Ungar, David. (1989b). Iterative type analysis and extended mes-
sage splitting: Optimizing dynamically-typed object-oriented programs. Proc. ACM
SIGPLAN ’90 conf. prog. lang. design & impl.

Chambers, Craig, Dean, Jeffrey, & Grove, David. 1996 (June). Whole-program optimiza-
tion of object-oriented languages. Tech. rept. Technical Report 96-06-02. Department of
Computer Science and Engineering, University of Washington.

Curtis, Pavel. (1990). Constrained quantification in polymorphic type analysis. Tech. rept.
CSL-90-1. XEROX PARC, CSLPubs.parc@xerox.com.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., & Zadeck, F. K. (1991). Efficiently
computing static single assignment form and the control dependence graph. ACM trans.
on prog. langs. & systs., 13(4), 451–490.

Damas, L., & Milner, Robin. (1982). Principal type schemes for functional programs.
Pages 207–212 of: Conf. rec. 9th ann. ACM symp. princ. of prog. langs.

Dean, Jeffrey, Chambers, Craig, & Grove, David. (1995). Selective specialization for
object-oriented languages. In: (PLDI ’95, 1995).

Dimock, Allyn, Muller, Robert, Turbak, Franklyn, & Wells, J. B. (1997). Strongly typed
flow-directed representation transformations. In: (ICFP ’97, 1997).

Dimock, Allyn, Westmacott, Ian, Muller, Robert, Turbak, Franklyn, & Wells, J. B.
(2001a). Functioning without closure: Type-safe customized function representations
for Standard ML. Pages 14–25 of: Proc. 2001 int’l conf. functional programming. ACM
Press.

Dimock, Allyn, Westmacott, Ian, Muller, Robert, Turbak, Franklyn, Wells, J. B., & Con-
sidine, Jeffrey. 2001b (Mar.). Program representation size in an intermediate language
with intersection and union types. Tech. rept. BUCS-TR-2001-02. Comp. Sci. Dept.,
Boston Univ. This is a version of (Dimock et al., 2001c) extended with an appendix
describing the CIL typed intermediate language.

Dimock, Allyn, Westmacott, Ian, Muller, Robert, Turbak, Franklyn, Wells, J. B., & Con-
sidine, Jeffrey. (2001c). Program representation size in an intermediate language with
intersection and union types. Pages 27–52 of: Proceedings of the third workshop on types
in compilation (tic 2000). LNCS, vol. 2071. Springer-Verlag.

Duggan, D. (1999). Dynamic typing for distributed programming in polymorphic lan-
guages. ACM trans. on prog. langs. & systs., 21(1), 11–45.

Eifrig, Jonathan, Smith, Scott, & Trifonov, Valery. (1995). Type inference for recursively
constrained types and its application to OOP. Proc. 1995 mathematical foundations of
programming semantics conf. Electronic Notes in Theoretical Computer Science, vol. 1.
Elsevier.

ESOP ’00. (2000). Programming languages & systems, 9th european symp. programming.
LNCS, vol. 1782. Springer-Verlag.

Fernandez, Mary F. (1995). Simple and effective link-time optimization of Modula-3
programs. In: (PLDI ’95, 1995).

Fitzgerald, R., Knoblock, T., Ruf, E., Steensgaard, B., & Tarditi, D. (1999). Marmot: An
optimizing compiler for Java. Technical Report 99-33. Microsoft Research.

42 Wells, Dimock, Muller and Turbak

Girard, J[ean]-Y[ves]. (1972). Interprétation fonctionnelle et elimination des coupures de
l’arithmétique d’ordre supérieur. Thèse d’Etat, Université de Paris VII.

Hannan, John, & Hicks, Patrick. (1998). Higher-order uncurrying. In: (POPL ’98, 1998).

Harper, Robert, & Morrisett, Greg. (1995). Compiling polymorphism using intensional
type analysis. Conf. rec. 22nd ann. ACM symp. princ. of prog. langs.

Heintze, Nevin. (1995). Control-flow analysis and type systems. Pages 189–206 of: Proc.
2nd int’l static analysis symp. LNCS, vol. 983.

ICFP ’97. (1997). Proc. 1997 int’l conf. functional programming. ACM Press.

ICFP ’98. (1998). Proc. 1998 int’l conf. functional programming. ACM Press.

Jagannathan, Suresh, Weeks, Stephen, & Wright, Andrew. (1997). Type-directed flow
analysis for typed intermediate languages. Proc. 4th int’l static analysis symp. LNCS,
vol. 1302. Springer-Verlag.

Jim, Trevor. (1996). What are principal typings and what are they good for? Conf. rec.
popl ’96: 23rd ACM symp. princ. of prog. langs.

Jones, Mark P. (1994). Dictionary-free overloading by partial evaluation. Pepm ’94 —
ACM SIGPLAN workshop partial eval. & semantics-based prog. manipulation.

Kfoury, A. J., & Wells, J. B. (1995). New notions of reduction and non-semantic proofs
of β-strong normalization in typed λ-calculi. Pages 311–321 of: Proc. 10th ann. IEEE
symp. logic in computer sci.

Kfoury, Assaf J., & Wells, J. B. (1999). Principality and decidable type inference for
finite-rank intersection types. Pages 161–174 of: Conf. rec. popl ’99: 26th ACM symp.
princ. of prog. langs.

Klop, Jan Willem. (1980). Combinatory Reduction Systems. Amsterdam: Mathematisch
Centrum. Ph.D. Thesis.

Klop, Jan Willem, van Oostrom, Vincent, & van Raamsdonk, Femke. (1993). Combinatory
Reduction Systems: Introduction and survey. Theoret. comput. sci., 121(1–2), 279–308.

Leroy, Xavier. (1992). Unboxed objects and polymorphic typing. Pages 177–188 of: Conf.
rec. 19th ann. ACM symp. princ. of prog. langs.

Morrisett, G., Walker, D., Crary, K., & Glew, N. (1999). From System F to typed assembly
language. ACM trans. on prog. langs. & systs., 21(3), 528–569.

Morrisett, Greg. (1995). Compiling with types. Ph.D. thesis, Carnegie Mellon University.

Muller, Robert, & Wells, J. B. (2000). Two applications of standardization and evaluation
in Combinatory Reduction Systems. Submitted for publication.

Necula, George C., & Lee, Peter. (1998). The design and implementation of a certifying
compiler. Pages 333–344 of: Proc. ACM SIGPLAN ’98 conf. prog. lang. design & impl.

Nielson, Flemming, & Nielson, Hanne Riis. (1997). Infinitary control flow analysis: A
collecting semantics for closure analysis. Pages 332–345 of: Conf. rec. popl ’97: 24th
ACM symp. princ. of prog. langs.

Palsberg, Jens, & O’Keefe, Patrick. (1995). A type system equivalent to flow analysis.
ACM trans. on prog. langs. & systs., 17(4), 576–599.

Palsberg, Jens, & Pavlopoulou, Christina. (2001). From polyvariant flow information to
intersection and union types. J. funct. programming, 11(3), 263–317.

Palsberg, Jens, & Smith, Scott. (1996). Constrained types and their expressiveness. ACM
trans. on prog. langs. & systs., 18(5), 519–527.

Peyton Jones, Simon L. (1996). Compiling Haskell by program transformation: A report
from the trenches. Proc. european symp. on programming.

Peyton Jones, Simon L., & Meijer, Erik. 1997 (June). Henk: A typed intermediate lan-
guage. In: (TIC ’97, 1997).

A Calculus with Polymorphic and Polyvariant Flow Types 43

Pierce, Benjamin C. 1991 (Feb.). Programming with intersection types, union types, and
polymorphism. Tech. rept. CMU-CS-91-106. Carnegie Mellon University.

PLDI ’95. (1995). Proc. ACM SIGPLAN ’95 conf. prog. lang. design & impl.

Plevyak, John. (1996). Optimization of object-oriented and concurrent programs. Ph.D.
thesis, University of Illinois at Urbana-Champaign.

Plevyak, John, & Chien, Andrew. 1995 (Aug.). Type directed cloning for object-oriented
programs. Workshop for languages and compilers for parallel computers.

Plotkin, G[ordon] D. (1975). Call-by-name, call-by-value and the lambda calculus. Theoret.
comput. sci., 1, 125–159.

POPL ’94. (1994). Conf. rec. 21st ann. ACM symp. princ. of prog. langs.

POPL ’98. (1998). Conf. rec. popl ’98: 25th ACM symp. princ. of prog. langs.

Reynolds, J. C. (1974). Towards a theory of type structure. Pages 408–425 of: Colloque
sur la programmation. LNCS, vol. 19. Paris, France: Springer-Verlag.

Reynolds, John C. (1996). Design of the programming language Forsythe. O’Hearn, P.,
& Tennent, R. D. (eds), Algol-like languages. Birkhauser.

Shao, Zhong. 1997 (June). An overview of the FLINT/ML compiler. In: (TIC ’97, 1997).

Shao, Zhong, League, Christopher, & Monnier, Stefan. (1998). Implementing typed inter-
mediate languages. In: (ICFP ’98, 1998).

Siskind, Jeffrey Mark. 1999 (Dec.). Flow-directed lightweight closure conversion. Tech.
rept. 99-190R. NEC Research Institute, Inc.

Tang, Yan Mei, & Jouvelot, Pierre. (1994). Separate abstract interpretation for control-
flow analysis. Lncs, 789, 224–243.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., & Lee, P. (1996). TIL: A
type-directed optimizing compiler for ML. Proc. ACM SIGPLAN ’96 conf. prog. lang.
design & impl.

Tarditi, David. 1996 (Dec.). Design and implementation of code optimizations for a type-
directed compiler for Standard ML. Ph.D. thesis, Carnegie Mellon University.

TIC ’97. 1997 (June). Proc. first int’l workshop on types in compilation. The
printed TIC ’97 proceedings is Boston Coll. Comp. Sci. Dept. Tech. Rep. BCCS-97-
03. The individual papers are available at http://www.cs.bc.edu/˜muller/TIC97/ or
http://oak.bc.edu/˜muller/TIC97/.

Tolmach, Andrew P., & Oliva, Dino. (1998). From ML to Ada: Strongly-typed language
interoperability via source translation. J. funct. programming, 8(4), 367–412.

Urzyczyn, Pawe l. (1997). Type reconstruction in Fω. Math. structures comput. sci., 7(4),
329–358.

Wand, Mitchell, & Steckler, Paul. (1994). Selective and lightweight closure conversion.
In: (POPL ’94, 1994).

A Combinatory Reduction Systems

We use the functional presentation of CRS’s (Klop et al., 1993). An alternative

applicative presentation can be found in (Klop, 1980). Both ways of presenting

CRS’s have the same expressiveness; they only differ in the number of “garbage

terms” that must be ignored.

A CRS Σ is specified by a set of function symbols Fun(Σ) (in the applicative

presentation, a set of constants) and a set of reduction rules Red(Σ) (sometimes

called rewrite rules). Each function symbol F has a fixed arity n, which we denote by

writing F (n). We will often omit the arity from function symbols and metavariables

44 Wells, Dimock, Muller and Turbak

when writing terms since it will be obvious from the context. The function symbols

are the only part of the CRS’s alphabet which can vary from CRS to CRS. The fixed

part of the alphabet includes the set of variables Var and the set of metavariables

MVar. The set of metaterms and the set of terms are determined by the set of

function symbols F (where F = Fun(Σ) for some CRS Σ) together with the fixed

portion of the alphabet. Let u and v range over terms and let s and t range over

metaterms. The set of metaterms MTerF is the smallest set satisfying all of the

following:

1. If x ∈ Var (i.e., x is a (ordinary) variable), then x ∈ MTerF .

2. If x ∈ Var and s ∈ MTerF , then [x]s ∈ MTerF . (This construct declares a

variable x which may be used in s. The variable x is bound by this construct.)

3. If F (n) ∈ F and s1, . . . , sn ∈ MTerF , then F (n)(s1, . . . , sn) ∈ MTerF .

4. If Z(n) ∈ MVar (i.e., Z is a metavariable with fixed arity n) and s1, . . . , sn ∈

MTerF , then Z(n)(s1, . . . , sn) ∈ MTerF .

The set of terms Ter(F) is the subset of MTer(F) containing only those metaterms

which do not mention metavariables. The notion of (one-holed) context is defined

for metaterms and terms as usual.

A valuation ν : MVar → MTerF is a function mapping metavariables to metaterms

such that for any metavariable Z(n), the metaterm ν(Z(n)) mentions only metavari-

ables in the set {Z
(0)
1 , . . . , Z

(0)
n }. A valuation ν is automatically extended to a

function from MTerF to Ter(F) as follows10:

1. ν(x) = x.

2. ν([x]s) = [x]ν(s) (assuming by α-conversion that x is not mentioned in the

range of ν).

3. ν(F (n)(s1, . . . , sn)) = F (n)(ν(s1), . . . , ν(sn)).

4. ν(Z(n)(s1, . . . , sn)) = ν′(ν(Z(n))) where ν′(Z
(0)
i) = ν(si) for 1 ≤ i ≤ n.

Each reduction rule r of a CRS is a pair s→ t (where s is the left-hand side (LHS)

and t is the right-hand side (RHS)) of metaterms obeying the following conditions:

1. Neither s nor t has free (ordinary) variables, i.e., each variable x occurs in

the scope of a binder [x].

2. The LHS is of the form F (s1, . . . , sn) for some function symbol F and some

metaterms s1, . . . , sn.

3. Any metavariable which occurs in the RHS also occurs in the LHS.

4. Any metavariable Z(n) (of arity n) occurs in the LHS only in the form

Z(n)(x1, . . . , xn) where x1, . . . , xn are n distinct (ordinary) variables.

Any reduction rule r = s → t automatically determines a reduction relation −→r

(sometimes called a rewrite relation) such that C[ν(s)] −→r C[ν(t)] for every val-

uation ν and every term context C. Any set of reduction rules R determines a

reduction relation −→R =
⋃

r∈R −→r.

10 This definition of valuation differs from that of (Klop et al., 1993) and (Klop, 1980) (which
differ from each other anyway), but produces equivalent results.

A Calculus with Polymorphic and Polyvariant Flow Types 45

A reduction rule s → t is left-linear if every metavariable in s (the LHS) occurs

in s exactly once. A set of reduction rules R is left-linear if every reduction rule

r ∈ R is left-linear.

Two metaterms s and t interfere iff for some valuations ν and ν ′ and some context

C it is the case that (1) ν(s) = C[ν ′(t)] and (2) the position11 of the hole in C

is a position in s which is not occupied by a metavariable. The interference is at

the root iff C is the empty context. A pair of reduction rules s → t and s′ → t′ is

ambiguous (sometimes called overlapping) iff s and s′ interfere and either the two

rules are distinct or the interference is not at the root. A set of reduction rules R

is ambiguous iff there exists an ambiguous pair of rules r, r′ ∈ R (where r and r′

may be the same rule).

A CRS Σ is regular (also called orthogonal) if and only if the set of reduction

rules Red(Σ) are left-linear and non-ambiguous. We write −→Σ as an abbreviation

for −→Red(Σ).

Theorem A.1 (Confluence of Regular CRS’s). If Σ is a regular CRS, and

u −�Σ v1, and u −�Σ v2, then there exists u′ such that v1 −�Σ u′ and v2 −�Σ

u′.

Proof. See (Klop, 1980) or (Klop et al., 1993) for proofs that any regular (orthog-

onal) CRS is confluent.

11 We leave this notion of position unspecified. See (Klop et al., 1993) or (Klop, 1980) for a more
precise definition.

