
Branching Types?

J. B. Wells1 and Christian Haack1

Heriot-Watt University
http://www.cee.hw.ac.uk/ultra/

Abstract. Although systems with intersection types have many unique
capabilities, there has never been a fully satisfactory explicitly typed
system with intersection types. We introduce λB with branching types

and types which are quantified over type selectors to provide an explicitly
typed system with the same expressiveness as a system with intersection
types. Typing derivations in λB effectively squash together what would
be separate parallel derivations in earlier systems with intersection types.

1 Introduction

1.1 Background and Motivation

Intersection Types. Intersection types were independently invented near the
end of the 1970s by Coppo and Dezani [3] and Pottinger [15]. Intersection types
provide type polymorphism by listing type instances, differing from the more
widely used ∀-quantified types [8, 16], which provide type polymorphism by
giving a type scheme that can be instantiated into various type instances. The
original motivation was for analyzing and/or synthesizing λ-models as well as in
analyzing normalization properties, but over the last twenty years the scope of
research on intersection types has broadened.

Intersection types have many unique advantages over ∀-quantified types.
They can characterize the behavior of λ-terms more precisely, and can be used
to express exactly the results of many program analyses [13, 1, 25, 26]. Type
polymorphism with intersection types is also more flexible. For example, Urzy-
czyn [20] proved the λ-term

(λx.z(x(λfu.fu))(x(λvg.gv)))(λy.yyy)

to be untypable in the system Fω , considered to be the most powerful type
system with ∀-quantifiers measured by the set of pure λ-terms it can type. In
contrast, this λ-term is typable with intersection types satisfying the rank-3

restriction [12]. Better results for automated type inference (ATI) have also been
obtained for intersection types. ATI for type systems with ∀-quantifiers that are
more powerful than the very-restricted Hindley/Milner system is a murky area,

? This work was partly supported by NSF grants CCR 9113196, 9417382, 9988529,
and EIA 9806745, EPSRC grants GR/L 36963 and GR/R 41545/01, and Sun Mi-
crosystems equipment grant EDUD-7826-990410-US.

and it has been proven for many such type systems that ATI algorithms can not
be both complete and terminating [11, 23, 24, 20]. In contrast, ATI algorithms
have been proven complete and terminating for the rank-k restriction for every
finite k for several systems with intersection types [12, 10].

We use intersection types in typed intermediate languages (TILs) used in
compilers. Using a TIL increases reliability of compilation and can support use-
ful type-directed program transformations. We use intersection types because
they support both more accurate analyses (as mentioned above) and interesting
type/flow-directed transformations [5, 19, 7, 6] that would be very difficult using
∀-quantified types. When using a TIL, it is important to regularly check that
the intermediate program representation is in fact well typed. Provided this is
done, the correctness of any analyses encoded in the types is maintained across
transformations. Thus, it is important for a TIL to be explicitly typed, i.e., to
have type information attached to internal nodes of the program representation.
This is necessary both for efficiency and because program transformations can
yield results outside the domain of ATI algorithms. Unfortunately, intersection
types raise troublesome issues for having an explicitly typed representation. This
is the main motivation for this paper.

The Trouble with the Intersection-Introduction Rule. The important
feature of a system with intersection types is this rule:

E ` M : σ; E ` M : τ
(∧-intro)

E ` M : σ ∧ τ

The proof terms are the same for both premises and the conclusion! No syntax is
introduced. A system with this rule does not fit into the proofs-as-terms (PAT,
a.k.a. propositions-as-types and Curry/Howard) correspondence, because it has
proof terms that do not encode deductions. Unfortunately, this is inadequate
for many needs, and there is an immediate dilemma in how to make a type-
annotated variant of the system. The usual strategy fails immediately, e.g.:

E ` (λx:σ. x) : (σ → σ); E ` (λx:τ. x) : (τ → τ)

E ` (λx: ??? . x) : (σ → σ) ∧ (τ → τ)

Where ??? appears, what should be written? This trouble is related to the fact
that the ∧ type constructor is not a truth-functional propositional connective.

Earlier Approaches. In the language Forsythe [17], Reynolds annotates the
binding of (λx.M) with a list of types, e.g., (λx:σ1| · · · |σn. M). If the abstraction
body M is typable with a fixed type τ for each type σi for x, then the abstraction
gets the type (σ1 → τ) ∧ · · · ∧ (σn → τ). However, this approach can not handle
dependencies between types of nested variable bindings, e.g., this approach can
not give K = (λx.λy.x) the type τK = (σ → (σ → σ)) ∧ (τ → (τ → τ)).

Pierce [14] improves on Reynolds’s approach by using a for construct which
gives a type variable a finite set of types to range over, e.g., K can be annotated

as (for α ∈ {σ, τ}.λx:α. λy:α. x) with the type τK . However, this approach can
not represent some typings, e.g., it can not give the term Mf = λx.λy.λz.(xy, xz)
the type (((α→ δ)∧ (β→ ε))→α→ β→ (δ× ε))∧ ((γ→ γ)→ γ→ γ→ (γ× γ)).
Pierce’s approach could be extended to handle more complex dependencies if
simultaneous type variable bindings were added, e.g., Mf could be annotated
as:

for {[θ 7→ α, κ 7→ β, η 7→ δ, ν 7→ ε], [θ 7→ γ, κ 7→ γ, η 7→ γ, ν 7→ γ]}.
λx : (θ → η) ∧ (κ → ν) . λy : θ . λz : κ . (xy, xz)

Even this extension of Pierce’s approach would still not meet our needs. First,
this approach needs intersection types to be associative, commutative, and idem-
potent (ACI). Recent research suggests that non-ACI intersection types are
needed to faithfully encode flow analyses [1]. Second, this approach arranges the
type information inconveniently because it must be found from enclosing type
variable bindings by a tree-walking process. This is bad for flow-based trans-
formations, which reference arbitrary subterms from distant locations. Third,
reasoning about typed terms in this approach is not compositional. It is not
possible to look at an arbitrary subterm independently and determine its type.

The approach of λCIL [25, 26] is essentially to write the typing derivations as
terms, e.g., K can be “annotated” as

∧

((λx:σ. λy:σ. x), (λx:τ. λy:τ. x)) in order
to have the type τK . Here

∧

(M, N) is a virtual tuple where the type erasure of M

and N must be the same. In λCIL, subterms of an untyped term can have many
disjoint representatives in a corresponding typed term. This makes it tedious
and time-consuming to implement common program transformations, because
parallel contexts must be used whenever subterms are transformed.

Venneri succeeded in completely removing the (∧-intro) rule from a type
system with intersection types, but this was for combinatory logic rather than
the λ-calculus [21, 4], and the approach seems unlikely to be transferable to the
λ-calculus.

1.2 Contributions of this Paper

Our Approach: Branching Types. In this paper, we define and prove the
basic properties of λB, a system with branching types which represent the effect
of simultaneous derivations in the old style. Consider this untyped λ-term:

Ma = λa.λb.λc. c (λd. d a b)

∧

λa : i → b

λb : i

λc : τ c

app

c λd : τd

app

app

d a

b

λa : r

λb : (r → r) ∧ (b → b)

λc : σc → b

app

c ∧

λd : σd
1

app

app

d a

π∧

1

b

λd : σd
2

app

app

d a

π∧

2

b

Fig. 1. A syntax tree in a λCIL-style system

Λ(join{f = ∗, g = ∗})

λa : {f = i → b, g = r}

λb : {f = i, g = σbg}

λc : {f = τ c, g = σcg → b}

app

c Λ{f = ∗, g = join{h = ∗, l = ∗}}

λd : {f = τd, g = {h = σd
1 , l = σd

2}}

app

app

d a

[{f = ∗, g = {h = (j, ∗), l = (k, ∗)}}]

b

Fig. 2. A syntax tree in our system λB

In an intersection type system, Ma can have type (τ ∧ σ), where τ and σ are:

τ = (i → b) → i → τ c → b

τ c = (τd → b) → b

τd = (i → b) → i → b

σ = r → ((r → r) ∧ (b → b)) → (σc → b) → b

σc = ((σd
1 → b) ∧ (σd

2 → b))

σd
1 = r → (r → r) → b

σd
2 = r → (b → b) → b

In λB, correspondingly the term Ma can be annotated to have the type ρ where:

ρ = ∀(join{f = ∗, g = ∗}). {f = τ, g = σg}, where τ is as above

σg = r → σbg → (σcg → b)→ b

σbg = ∀(join{j = ∗, k = ∗}). {j = r → r, k = b→ b}

σcg = ∀(join{h = ∗, l = ∗}). {h = σd
1 → b, l = σd

2 → b}

Figure 1 shows the syntax tree of the corresponding explicitly typed term in a
λCIL-style system and figure 2 shows the corresponding syntax tree in λB.

The λCIL tree can be seen to have 2 uses of (∧-intro), one at the root, and one
inside the right child of the root. In the λB tree, the left branch of the λCIL tree
is effectively named f , the right branch g, and the left and right subbranches
of the inner (∧-intro) rule are named g.h and g.l. Every type τ has a kind κ

which indicates its branching shape. For example, the result type of the sole leaf
occurrence of b has the kind {f = ∗, g = {h = ∗, l = ∗}}. This corresponds to the
fact that in the λCIL derivation the leaf b is duplicated 3 times and occurs in the
branches f , g.h, and g.l.

Each intersection type ρ1 ∧ ρ2 in this particular λCIL derivation has a corre-
sponding type of the shape ∀(join{f1 = ∗, f2 = ∗}).{f1 = ρ′1, f2 = ρ′2} in the λB

derivation. A type of the shape ∀P.ρ′ has a type selector parameter P which is
a pattern indicating what possible type selector arguments are valid to supply.
Each parameter P has 2 kinds, its inner kind bP c and its outer kind dP e. The
kind of a type ∀P.ρ′ is bP c and the kind of ρ′ must be dP e.

One of the most important features of λB is its equivalences among types.
The first two type equivalence rules are:

∀∗.τ ' τ ∀{fi = Pi}
i∈I .{fi = τi}

i∈I ' {fi = ∀Pi.τi}
i∈I

To illustrate their use, we explain why the application of b to its type selector
argument is well-typed in the example given above. The type of b at its binding
site is written as {f = i, g = σbg} and has kind {f = ∗, g = ∗}. Because the leaf
occurrence of b must have kind {f = ∗, g = {h = ∗, l = ∗}}, the type at that
location is expanded by the typing rules to be {f = i, g = {h = σbg , l = σbg}}.
Then, using the additional names

Pjk = join{j = ∗, k = ∗}

σ
bg
2 = {j = r → r, k = b→ b}

so that σbg = ∀Pjk .σ
bg
2 , the equivalences are applied to the type as follows to lift

the occurrences of ∀P to outermost position:

{f = i, g = {h = σbg , l = σbg}}

' {f = (∀ ∗ .i), g = ∀{h = Pjk , l = Pjk}.{h = σ
bg
2 , l = σ

bg
2 }}

' ∀{f = ∗, g = {h = Pjk , l = Pjk}}.{f = i, g = {h = σ
bg
2 , l = σ

bg
2 }}

The final type is the type actually used in figure 2. The type selector param-
eter of the final type effectively says, “in the f branch, no type selector ar-
gument can be supplied and in the g.h and g.l branches, a choice between
j and k can be supplied”. This is in fact what the type selector argument
{f = ∗, g = {h = (j, ∗), l = (k, ∗)}} does; it supplies no choice in the f branch, a
choice of j in the g.h branch, and a choice of k in the g.l branch. The ∗ in (j, ∗)
means that after the choice of j is supplied, no further choices are supplied. The
use of type selector parameters and arguments in terms takes the place of the
∧-introduction and ∧-elimination rules of a system with intersection types.

The example just preceding of the type of b illustrated 2 of the 3 type equiv-
alence rules. The third rule, which is particularly important because it allows
using the usual typing rules for λ-calculus abstraction and application, is this:

{fi = σi}
i∈I → {fi = τi}

i∈I ' {fi = σi → τi}
i∈I

We now give an example of where this rule was used in the earlier typing example.
The binding type of c is a branching type, but the type of the leaf occurrence of
c needs to be a function type in order to be applied to its argument. Fortunately,
the type equivalence gives the following, providing exactly the type needed:

{f = (τd → b)→ b, g = σcg → b} ' {f = τd → b, g = σcg}→ {f = b, g = b}

Another important feature of λB is its reduction rules which manipulate and
simplify the type annotations as needed. As an example, consider the λB term
M = (ΛP1.ΛP2.λxτ .x)[A], where:

P1 = {f = join{j = ∗, k = ∗}, g = ∗}, P2 = {f = ∗, g = join{h = ∗, l = ∗}}
τ = {f = {j = α1, k = α2}, g = {h = β1, l = β2}}, A = {f = ∗, g = (h, ∗)}

The term M first reduces to ΛP1.(ΛP2.λxτ .x)[A], by a (βΛ)-step where P1 and
A pass through each other without interacting. By another (βΛ)-step, it reduces
to ΛP1.ΛP ′

2.(λxσ .x)[A′], where:

P ′
2 = {f = ∗, g = ∗}, σ = {f = {j = α1, k = α2}, g = β1}, and A′ = {f = ∗, g = ∗}

Finally, it reduces to ΛP1.λxσ .x, removing the trivial P ′
2 and A′ by a (∗Λ)-step

and a (∗A)-step.

Recent Related Work. Ronchi Della Rocca and Roversi have a system called
Intersection Logic (IL) [18] which is similar to λB, but has nothing corresponding

to our explicitly typed terms. IL has a meta-level operation corresponding to our
equivalence for function types. IL has nothing corresponding to our other type
equivalences, because IL does not group parallel occurrences of its equivalent
of type selector parameters and arguments, but instead works with equivalence
classes of derivations modulo permutations of what we call individual type se-
lector parameters and arguments. We expect that the use of these equivalence
classes will cause great difficulty with the proofs. Much of the proof burden
for the IL system (corresponding to a large portion of this paper) is inside the
1-line proof of their lemma 4 in the calculation of S(Π, Π ′) where S is not con-
structively specified. A proof-term-labelled version of IL is presented, but the
proof terms are pure λ-terms and thus the proof terms do not represent entire
derivations.

Capitani, Loreti, and Venneri have designed a similar system called HL (Hy-
performulae Logic) [2]. HL is quite similar to IL, although it seems overall to have
a less complicated presentation. HL has nothing corresponding to our equiva-
lences on types. The set of properties proved for HL in [2] is not exactly the same
as the set of properties proved for IL in [18], e.g., there is no attempt to directly
prove any result related to reduction of HL proofs as there is for IL, although
this could be obtained indirectly via their proofs of equivalence with traditional
systems with intersection types. HL is reported in [18] to have a typed version of
an untyped calculus like that in [9], but in fact there is no significant connection
between [2] and [9] and there is no explicitly typed calculus associated with HL.

For both IL and HL, there are proofs of equivalence with earlier systems with
intersection types. These proofs show that the proof-term-annotated versions of
IL and HL can type the same sets of pure untyped λ-terms as a traditional
system with intersection types. We expect that this could also be done for our
system λB, but we have not yet bothered to complete such a proof because it is
a theoretical point which does not directly affect our ability to use λB as a basis
for representing analysis information in implementations.

Summary of Contributions (i.e., the Conclusion). In this paper, we
present λB, the first typed calculus with the power of intersection types which
is Church-style, i.e., typed terms do not have multiple disjoint subterms corre-
sponding to single subterms in the corresponding untyped term. We prove for
λB subject reduction, and soundness and completeness of typed reduction w.r.t.
β-reduction on the corresponding untyped λ-terms. The main benefit of λB will
be to make it easier to use technology (both theories and software) already de-
veloped for the λ-calculus on typed terms in a type system having the power
and flexibility of intersection types. Due to the experimental performance mea-
surements reported in [7], we do not expect a substantial size benefit in practice
from λB over λCIL. In the area of logic, λB terms may be useful as typed real-
izers of the so-called strong conjunction, but we are not currently planning on
investigating this ourselves.

2 Some Notational Conventions

We use expressions of the form {fi = Ei}
I , where I is a finite index set, the fi’s

are drawn from a fixed set of labels and the Ei are expressions that may depend
on i. Such an expression stands for the set { (fi, Ei) | i ∈ I }.

Let an expression E be called partially defined whenever E is built using par-
tial functions. Such an expression E defines an object iff all of its subexpressions
are also defined; this will depend on the valuation for E’s free variables. Given a
binary relation R and partially defined expressions E1 and E2, let (E1 R

⊥ E2)
hold iff either both E1 and E2 are undefined or E1 denotes an object x1 and E2

an object x2 such that (x1 R x2).

3 Types and Kinds

3.1 Kinds

Let Label be a countably infinite set of labels. Let f and g range over Label. The
set Kind of kinds is defined by the following pseudo-grammar:

κ ∈ Kind ::= ∗ | {fi = κi}
I

We define a partial order on kinds, inductively by the following rules:

∗ ≤ κ

(κi ≤ κ′i) for all i in I

{fi = κi}I ≤ {fi = κ′i}
I

Lemma 1. The relation ≤ is a partial order on the set of kinds.

3.2 Types

The sets Parameter of type selector parameters and IndParameter of individual

type selector parameters are defined by the following pseudo-grammar:

P ∈ Parameter ::= P̄ | {fi = Pi}
I

P̄ ∈ IndParameter ::= ∗ | join{fi = P̄i}
I

Given a parameter P , let P ’s inner kind bP c and outer kind dP e be defined
as follows:

b∗c = ∗, bjoin{fi = P̄i}
Ic = ∗, b{fi = Pi}

Ic = {fi = bPic}
I

d∗e = ∗, djoin{fi = P̄i}
Ie = {fi = dP̄ie}

I , d{fi = Pi}
Ie = {fi = dPie}

I

Let TypeVar be a countably infinite set of type variables. Let α and β range
over TypeVar. Let the set of types Type be given by the following pseudo-
grammar:

σ, τ ∈ Type ::= α | σ → τ | {fi = τi}
I | ∀P.τ

The relation assigning kinds to types is given by these rules:

α : ∗

σ : κ; τ : κ

σ → τ : κ

τi : κi for every i in I

{fi = τi}I : {fi = κi}I

τ : dP e

∀P.τ : bP c

Note that every type has at most one kind. A type τ is called well-formed if there
is a kind κ such that (τ : κ). A well-formed type is called individual if its kind
is ∗. A well-formed type is called branching if its kind is not ∗. Individual types
correspond to single types in the world of intersection types, whereas branching
types correspond to collections of types where each type in the collection would
occur in a separate derivation.

3.3 Type Equivalences

In order to be able to treat certain types as having essentially the same meaning,
we define an equivalence relation on the set of types as follows. A binary relation
R ⊆ Type× Type is called compatible if it satisfies the following rules:

(σ R σ′) ⇒ ((σ → τ) R (σ′ → τ))
(τ R τ ′) ⇒ ((σ → τ) R (σ → τ ′))
((τj R τ ′j) ∧ (j 6∈ I)) ⇒ ({fi = τi}

I ∪ {fj = τj} R {fi = τi}
I ∪ {fj = τ ′j})

(τ R σ) ⇒ ((∀P.τ) R (∀P.σ))

Let � be the least compatible relation that contains all instances of the rules
(1) through (3), below. Let � denote the reflexive and transitive closure of �,
and ' the least compatible equivalence relation that contains all instances of (1)
through (3).

∀∗.τ R τ (1)

∀{fi = Pi}
I .{fi = τi}

I R {fi = ∀Pi.τi}
I (2)

{fi = σi}
I → {fi = τi}

I R {fi = σi → τi}
I (3)

Lemma 2. If (τ ' σ) and (τ : κ) then (σ : κ).

Lemma 3 (Confluence).

1. If τ1 � τ2 and τ1 � τ3, then there is a type τ4 such that τ2 � τ4 and τ3 � τ4.

2. If τ1 � τ2 and τ1 � τ3, then there is a type τ4 such that τ2 � τ4 and τ3 � τ4.

Proof Sketch. An inspection of the reduction rules shows the following: When-
ever a redex τ contains another redex σ, then σ still occurs in the contractum of
τ . Moreover, σ doesn’t get duplicated in the contraction step. For this reason,
statement (1) holds. Statement (2) follows from (1) by a standard argument.

Lemma 4 (Termination). There is no infinite sequence (τn)n∈N such that

τn � τn+1 for all n in N.

Proof. Define a weight function ‖ · ‖ on types by

‖τ‖ =

(

(no. of occurrences of labels in τ)
+ (no. of occurrences of ∗ in τ)

)

An inspection of the reduction rules shows that τ � σ implies ‖τ‖ > ‖σ‖.
Therefore, every reduction sequence is finite.

3.4 Normal Types

A type τ is called normal if there is no type σ such that τ � σ. We abbreviate
the statement that τ is normal by normal(τ). For any type τ , let nf(τ) be the
unique normal type σ such that τ � σ, which is proven to exist by Lemma 5
below.

Lemma 5.
For every type τ there is a unique normal type σ such that τ � σ.

Lemma 6. (τ ' σ) if and only if (nf(τ) = nf(σ)).

An important property of normal types is that their top-level structure re-
flects the top-level structure of their kinds. In particular, if a type is normal
and individual, then it is not of the form {fi = τi}

I . This is made precise in the
following lemma:

Lemma 7. If (τ : {fi = κi}
I) and τ is normal, then there is a family (τi)i∈I of

normal types such that (τ = {fi = τi}
I) and (τi : κi) for all i in I.

4 Expansion and Selection for Types

4.1 Expansion

For the typing rules, we need to define some auxiliary operations on types. First,
we define a partial function expand from Type × Parameter to Type. Applying
expand to the pair (τ, P) adjusts the type τ of branching shape bP c to the
new branching shape dP e (of which bP c is an initial segment) by duplicating
subterms of τ . The duplication is caused by the second of the defining equations
below. The expansion operation is used in the typing rule that corresponds to
the intersection introduction rule, in order to adjust the types of free variables to
a new branching shape. The additional branches in the new branching shape dP e
correspond to different type derivations for the same term in an intersection type
system.

expand(τ, ∗) = τ, if normal(τ)
expand(τ, join{fi = P̄i}

I) = {fi = expand(τ, P̄i)}
I , if normal(τ)

expand({fi = τi}
I , {fi = Pi}

I) = {fi = expand(τi, Pi)}
I , if normal({fi = τi}

I)
expand(τ, P) = expand(nf(τ), P), if ¬normal(τ)

Lemma 8.

1. If (bP c ≤ κ) and (τ : κ), then expand(τ, P) is defined.

2. (τ : bP c) if and only if expand(τ, P) : dP e.

Lemma 9.
If (σ → τ : κ), then (expand(σ → τ, P) '⊥ expand(σ, P) → expand(τ, P)).

4.2 Type Selector Arguments and Selection

The sets Argument of type selector arguments and IndArgument of individual type

selector arguments are defined by the following pseudo-grammar:

A ∈ Argument ::= Ā | {fi = Ai}
I

Ā ∈ IndArgument ::= ∗ | f, Ā

We define two relations that assign kinds to arguments:

∗ : ∗

Ā : ∗

f, Ā : ∗

Ai : κi for all i in I

{fi = Ai}I : {fi = κi}I

∗ / κ

Ā / κj

fj , Ā / {fi = κi}I
if j ∈ I

Ai / κi for all i in I

{fi = Ai}I / {fi = κi}I

Note that for every argument A there is exactly one kind κ such that (A : κ).
On the other hand, there are many kinds κ such that (A / κ).

Lemma 10. If (A / κ) and (κ ≤ κ′), then (A / κ′).

We define two partial functions selecti and selectb. Both go from Type ×
Argument to Type. The two functions are similar. The main difference is that
selecti performs selections on individual (joined) types, whereas selectb performs
selections on branching types. We define the functions in two steps, first for the
case where the function’s first argument is a normal type:

selecti(τ, ∗) = τ, if τ is individual

selecti(∀(join{fi = P̄i}
I).{fi = τi}

I , (fj , Ā)) = selecti(∀P̄j .τj , Ā), if (j ∈ I)

selecti({fi = τi}
I , {fi = Ai}

I) = {fi = selecti(τi, Ai)}
I

selectb(τ, ∗) = τ

selectb({fi = τi}
I , (fj , Ā)) = selectb(τj , Ā), if (j ∈ I)

selectb({fi = τi}
I , {fi = Ai}

I) = {fi = selectb(τi, Ai)}
I

Now, for the case where the function’s first argument is a type that isn’t normal:

selecti(τ, A) = selecti(nf(τ), A)

selectb(τ, A) = selectb(nf(τ), A)

Lemma 11.

1. If (τ : κ) and selecti(τ, A) is defined, then (A : κ).
2. If (τ : κ) and (selecti(τ, A) = τ ′), then (τ ′ : κ).
3. If (τ : κ) and selectb(τ, A) is defined, then (A / κ).

Lemma 12. If (f ∈ {selecti, selectb}) and (σ → τ : κ),
then (f(σ → τ , A) '⊥ f(σ, A) → f(τ, A)).

5 Terms and Typing Rules

Let TermVar be a countably infinite set of λ-term variables. Let x range over
TermVar. Let the set Term of explicitly typed λ-terms be given by the following
pseudo-grammar:

M, N ∈ Term ::= ΛP.M | M [A] | λxτ .M | M N | xτ

The λx binds the variable x in the usual way.1 We identify terms that are equal
up to renaming of bound variables.

A type environment is defined to be a finite function from TermVar to Type.
We use the metavariable E to range over type environments. We extend the def-
initions of expansion, kind assignment and type equality to type environments:

expand(E, P)(x) = expand(E(x), P)

E : κ ⇐
def
=⇒ E(x) : κ for all x in dom(E)

E ' E′ ⇐
def
=⇒

{

dom(E) = dom(E ′) and
(E(x) ' E′(x)) for all x in dom(E)

Typing judgement are of the form:

E ` M : τ at κ

The valid typing judgement are those that can be proven using the typing rules
in Figure 3.

Lemma 13.

1. If (E ` M : τ at κ), then (τ : κ).
2. If (E ` M : τ at κ), then (E : κ).
3. If (E ` M : τ at κ) and E ' E ′, then (E′ ` M : τ at κ).

6 Expansion, Selection and Substitution for Terms

In this section, we define auxiliary operations that are needed for the statements
of the term reduction rules.
1 In this language, ΛP does not bind any variables!

(ax) E ` xE(x) : E(x) at κ
if (E : κ)

(→i)
E[x 7→ σ] ` M : τ at κ

E ` λxσ.M : σ → τ at κ

(→e)
E ` M : σ → τ at κ; E ` N : σ at κ

E ` M N : τ at κ

(∀i)
expand(E, P) ` M : τ at dP e

E ` ΛP.M : ∀P.τ at bP c

(∀e)
E ` M : τ at κ

E ` M [A] : τ ′ at κ
if (selecti(τ, A) = τ ′)

(')
E ` M : τ at κ

E ` M : τ ′ at κ
if (τ ' τ ′)

Fig. 3. Typing Rules

6.1 Expansion

In order to define substitution and β-reduction, we need to extend the expand

operation to terms. This is necessary because the branching shape of type anno-
tations changes when a term is substituted into a new context. First, expand is
extended to parameters, arguments and kinds, by the following equations where
X ranges over Parameter ∪ Argument ∪ Kind:

expand(X, ∗) = X

expand(X, join{fi = P̄i}
I) = {fi = expand(X, P̄i)}

I

expand({fi = Xi}
I , {fi = Pi}

I) = {fi = expand(Xi, Pi)}
I

Now, the expand operation is inductively extended to terms:

expand(ΛP ′.M, P) = Λ(expand(P ′, P)). expand(M, P)

expand(M [A], P) = (expand(M, P))[expand(A, P)]

expand(λxτ .M, P) = λxexpand(τ,P). expand(M, P)

expand(M N, P) = (expand(M, P)) (expand(N, P))

expand(xτ , P) = xexpand(τ,P)

Lemma 14. If (E ` M : τ at κ) and (bP c ≤ κ),
then (expand(E, P) ` expand(M, P) : expand(τ, P) at expand(κ, P)).

Corollary 1. If (E ` M : τ at bP c),
then (expand(E, P) ` expand(M, P) : expand(τ, P) at dP e).

6.2 Substitution

A substitution is a finite function from TermVar to Term. We extend the operation
expand to substitutions as follows:

expand(s, P)(x) = expand(s(x), P)

We now define the application of a substitution s to a term M . The definition is
by induction on the structure of the term:

s(ΛP.M) = ΛP. expand(s, P)(M)

s(M [A]) = (s(M))[A]

s(λxτ .M) = λxτ . s(M), if x does not occur freely in ran(s) and x 6∈ dom(s)

s(M N) = s(M) s(N)

s(xτ) = s(x), if x ∈ dom(s)

s(xτ) = xτ , if x 6∈ dom(s)

We write M [x := N] for the term that results from applying the singleton
substitution {(x, N)} to M .

We define typing judgement for substitutions as follows:

(E′ ` s : E at κ) ⇐
def
=⇒ (E′ ` s(xE(x)) : E(x) at κ) for all x in dom(E)

Lemma 15. If (E′ ` s : E at bP c),
then (expand(E ′, P) ` expand(s, P) : expand(E, P) at dP e).

Lemma 16. If (E ` M : τ at κ) and (E ′ ` s : E at κ),
then (E′ ` s(M) : τ at κ).

6.3 Selection

The preceding treatment of substitution prepares for the definition of β-reduction
of terms of the form ((λxτ .M)N). We also need to define reduction of terms of
the form (ΛP.M)[A]. To this end, we extend the selectb to parameters, argu-
ments and kinds, by the following equations where X ranges over Parameter ∪
Argument ∪ Kind:

selectb(X, ∗) = X

selectb({fi = Xi}
I , (fj , Ā)) = selectb(Xj , Ā), if j ∈ I

selectb({fi = Xi}
I , {fi = Ai}

I) = {fi = selectb(Xi, Ai)}
I

Lemma 17. (A / κ) if and only if selectb(κ, A) is defined.

The selectb operation is extended to terms by induction on the structure of
the term:

selectb(ΛP ′.M, A) = Λ(selectb(P ′, A)). selectb(M, A)

selectb(M [A′], A) = (selectb(M, A))[selectb(A′, A)]

selectb(λxτ .M, A) = λxselectb(τ,A). selectb(M, A)

selectb(M N, A) = (selectb(M, A)) (selectb(N, A))

selectb(xτ , A) = xselectb(τ,A)

The selectb operation is extended to type environments as follows:

select
b(E, A)(x) = select

b(E(x), A)

Lemma 18. If (E ` M : τ at κ) and (A / κ),
then (selectb(E, A) ` selectb(M, A) : selectb(τ, A) at selectb(κ, A)).

7 Reduction Rules for Terms

We define a partial function match from Parameter × Argument to Parameter ×
Argument × Argument.2 This function is needed for the reduction rule (βΛ) for
type selection.

match(∗, Ā) = (∗, ∗, Ā) match(P̄ , ∗) = (P̄ , ∗, dP̄e)

match(P̄j , Ā) = (P̄ ′, Ās, Aa)

match(join{fi = P̄i}I , (fj , Ā)) = (P̄ ′, (fj , Ās), Aa)
if j ∈ I

match(Pi, Ai) = (P ′
i , A

s
i, A

a
i) for all i in I

match({fi = Pi}I , {fi = Ai}I) = ({fi = P ′
i}

I , {fi = As
i}

I , {fi = Aa
i}

I)

A parameter or argument is called trivial if it is also a kind.

Lemma 19.

1. If P is a trivial parameter and (∀P.τ : κ), then (∀P.τ ' τ).
2. If A is a trivial argument and (selecti(τ, A) = τ ′), then (τ ′ ' τ).

The reduction relation for terms is defined as the least compatible relation
of terms that contains the following axioms:

(βλ) ((λxτ .M)N) → (M [x := N])

(βΛ) (ΛP.M)[A] → ΛP ′.((selectb(M, As))[Aa]),
if match(P, A) = (P ′, As, Aa) and neither P nor A is trivial

(∗Λ) (ΛP.M) → M, if P is trivial
(∗A) (M [A]) → M, if A is trivial

2 In the second rule, note that dP e ∈ Argument for all parameters P .

Theorem 1 (Subject Reduction). If (M → N) and (E ` M : τ at κ), then

(E ` N : τ at κ).

Proof. For (βλ), one uses Lemma 16. For (∗A) and (∗Λ), one uses Lemma 19.
For (βΛ) one uses Lemma 18 and some other technical Lemmas, which we have
omitted because of space constraints.

8 Correspondence of Typed and Untyped Reduction

The set UntypedTerm of untyped terms is defined by the following pseudo-grammar:

M, N ∈ UntypedTerm ::= x | λx.M | M N

Substitution for untyped terms is defined as usual, and so is β-reduction:

(β) (λx.M)N → M [x := N]

Let →∗ denote the reflexive and transitive closure of →. We define a map | · |
from Term to UntypedTerm that erases type-annotations:

|ΛP.M | = |M |
|M [A]| = |M |

|λxτ .M | = λx.|M |
|MN | = |M | |N |

|xτ | = x

Lemma 20.

1. If expand(M, P) is defined, then (|expand(M, P)| = |M |).
2. If M [x := N] is defined, then |M [x := N]| = |M |[x := |N |].
3. If selectb(M, A) is defined, then (|selectb(M, A)| = |M |).

Theorem 2 (Soundness of Reduction).
If M, N ∈ Term and M → N , then |M | →∗ |N |.

Lemma 21.

1. Any sequence of (βΛ), (∗Λ) and (∗A) reductions is terminating.

2. If M reduces to N by a (βΛ), (∗Λ) or (∗A) reduction, then |M | = |N |.
3. If select

i(∀P.τ, A) is defined, then so is match(P, A).
4. A well-typed term that is free of (βΛ), (∗Λ) or (∗A) redices is of the form

ΛP1 . . . ΛPn.M [A1] . . . [Am]

where n, m ≥ 0, the Pi’s and Ai’s are not trivial, and M is either a variable,

a λ-abstraction or an application.

Theorem 3 (Completeness of Reduction).
If M is well-typed and |M | → |N |, then (M →∗ N).

Proof Sketch. The proof uses the previous lemma. To simulate a β-reduction
step of the type erasure of M , one first applies (βΛ), (∗Λ) and (∗A)-reductions
until no more such reductions are possible. Because it is well-typed, the resulting
term allows a βλ-reduction that simulates the β-reduction of the type erasure.

References

[1] T. Amtoft, F. Turbak. Faithful translations between polyvariant flows and polymorphic types.
In Programming Languages & Systems, 9th European Symp. Programming, vol. 1782 of LNCS,
pp. 26–40. Springer-Verlag, 2000.
[2] B. Capitani, M. Loreti, B. Venneri. Hyperformulae, parallel deductions and intersection types.
Electronic Notes in Theoretical Computer Science, 50, 2001. Proceedings of ICALP 2001 workshop:
Bohm’s Theorem: Applications to Computer Science Theory (BOTH 2001), Crete, Greece, 2001-07-
13.
[3] M. Coppo, M. Dezani-Ciancaglini. An extension of the basic functionality theory for the λ-
calculus. Notre Dame J. Formal Logic, 21(4):685–693, 1980.
[4] M. Dezani-Ciancaglini, S. Ghilezan, B. Venneri. The “relevance” of intersection and union
types. Notre Dame J. Formal Logic, 38(2):246–269, Spring 1997.
[5] A. Dimock, R. Muller, F. Turbak, J. B. Wells. Strongly typed flow-directed representation
transformations. In Proc. 1997 Int’l Conf. Functional Programming, pp. 11–24. ACM Press, 1997.
[6] A. Dimock, I. Westmacott, R. Muller, F. Turbak, J. B. Wells. Functioning without closure:
Type-safe customized function representations for Standard ML. In Proc. 2001 Int’l Conf. Func-
tional Programming, pp. 14–25. ACM Press, 2001.
[7] A. Dimock, I. Westmacott, R. Muller, F. Turbak, J. B. Wells, J. Considine. Program representa-
tion size in an intermediate language with intersection and union types. In Proceedings of the Third
Workshop on Types in Compilation (TIC 2000), vol. 2071 of LNCS, pp. 27–52. Springer-Verlag,
2001.
[8] J.-Y. Girard. Interprétation Fonctionnelle et Elimination des Coupures de l’Arithmétique
d’Ordre Supérieur. Thèse d’Etat, Université de Paris VII, 1972.
[9] A. J. Kfoury. A linearization of the lambda-calculus. J. Logic Comput., 10(3), 2000. Special
issue on Type Theory and Term Rewriting. Kamareddine and Klop (editors).
[10] A. J. Kfoury, H. G. Mairson, F. A. Turbak, J. B. Wells. Relating typability and expressibility
in finite-rank intersection type systems. In Proc. 1999 Int’l Conf. Functional Programming, pp.
90–101. ACM Press, 1999.
[11] A. J. Kfoury, J. B. Wells. A direct algorithm for type inference in the rank-2 fragment of the
second-order λ-calculus. In Proc. 1994 ACM Conf. LISP Funct. Program., pp. 196–207, 1994.
[12] A. J. Kfoury, J. B. Wells. Principality and decidable type inference for finite-rank intersection
types. In Conf. Rec. POPL ’99: 26th ACM Symp. Princ. of Prog. Langs., pp. 161–174, 1999.
[13] J. Palsberg, C. Pavlopoulou. From polyvariant flow information to intersection and union types.
J. Funct. Programming, 11(3):263–317, May 2001.
[14] B. C. Pierce. Programming with intersection types, union types, and polymorphism. Technical
Report CMU-CS-91-106, Carnegie Mellon University, Feb. 1991.
[15] G. Pottinger. A type assignment for the strongly normalizable λ-terms. In J. R. Hindley, J. P.
Seldin, eds., To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism,
pp. 561–577. Academic Press, 1980.
[16] J. C. Reynolds. Towards a theory of type structure. In Colloque sur la Programmation, vol. 19
of LNCS, pp. 408–425, Paris, France, 1974. Springer-Verlag.
[17] J. C. Reynolds. Design of the programming language Forsythe. In P. O’Hearn, R. D. Tennent,
eds., Algol-like Languages. Birkhauser, 1996.
[18] S. Ronchi Della Rocca, L. Roversi. Intersection logic. In Computer Science Logic, CSL ’01.
Springer-Verlag, 2001.
[19] F. Turbak, A. Dimock, R. Muller, J. B. Wells. Compiling with polymorphic and polyvariant
flow types. In Proc. First Int’l Workshop on Types in Compilation, June 1997.
[20] P. Urzyczyn. Type reconstruction in Fω . Math. Structures Comput. Sci., 7(4):329–358, 1997.
[21] B. Venneri. Intersection types as logical formulae. J. Logic Comput., 4(2):109–124, Apr. 1994.
[22] J. B. Wells. Typability and type checking in the second-order λ-calculus are equivalent and
undecidable. In Proc. 9th Ann. IEEE Symp. Logic in Comp. Sci., pp. 176–185, 1994. Superseded
by [24].
[23] J. B. Wells. Typability is undecidable for F+eta. Tech. Rep. 96-022, Comp. Sci. Dept., Boston
Univ., Mar. 1996.
[24] J. B. Wells. Typability and type checking in System F are equivalent and undecidable. Ann.
Pure Appl. Logic, 98(1–3):111–156, 1999. Supersedes [22].
[25] J. B. Wells, A. Dimock, R. Muller, F. Turbak. A typed intermediate language for flow-directed
compilation. In Proc. 7th Int’l Joint Conf. Theory & Practice of Software Development, pp.
757–771, 1997. Superseded by [26].
[26] J. B. Wells, A. Dimock, R. Muller, F. Turbak. A calculus with polymorphic and polyvariant
flow types. J. Funct. Programming, 200X. To appear. Supersedes [25].

