
Diagrams for Meaning Preservation?

J. B. Wells1, Detlef Plump2, and Fairouz Kamareddine1

1 Heriot-Watt University
http://www.cee.hw.ac.uk/ultra/

2 University of York
http://www.cs.york.ac.uk/~det/

Abstract. This paper presents an abstract framework and multiple
diagram-based methods for proving meaning preservation, i.e., that all
rewrite steps of a rewriting system preserve the meaning given by an
operational semantics based on a rewriting strategy. While previous
rewriting-based methods have generally needed the treated rewriting
system as a whole to have such properties as, e.g., confluence, standard-
ization, and/or termination or boundedness of developments, our meth-
ods can work when all of these conditions fail, and thus can handle
more rewriting systems. We isolate the new lift/project with termina-
tion diagram as the key proof idea and show that previous rewriting-
based methods (Plotkin’s method based on confluence and standardiza-
tion and Machkasova and Turbak’s method based on distinct lift and
project properties) implicitly use this diagram. Furthermore, our frame-
work and proof methods help reduce the proof burden substantially by,
e.g., supporting separate treatment of partitions of the rewrite steps,
needing only elementary diagrams for rewrite step interactions, exclud-
ing many rewrite step interactions from consideration, needing weaker
termination properties, and providing generic support for using develop-
ments in combination with any method.

1 Discussion

1.1 Background and Motivation

A programming language is defined as a set of programs and a way to evaluate
(or “execute”) the programs. It is increasingly popular to define evaluation via
program rewriting [25, 9, 10, 11, 3, 19, 12, 26]. In this approach, evaluation
rewrite rules are repeatedly applied at particular program positions which are
typically specified using evaluation contexts [9].

Other kinds of program rewriting than evaluation are also desirable. Potential
uses of rewriting-based program transformations include optimizing compilers,
partial evaluators, and program simplifiers. These transformations may use the
already existing evaluation rules in arbitrary contexts or use additional rewrite

? This work was partly supported by NSF grants CCR 9417382, CCR 9988529, and
EIA 9806745, EPSRC grants GR/L 36963 and GR/R 41545/01, and Sun Microsys-
tems equipment grant EDUD-7826-990410-US.

rules. Some transformations may involve global reasoning about the entire pro-
gram, but many are local and a good match for rewriting-based techniques.

It is important to know when program transformations preserve a program’s
meaning as given by evaluation. There are many non-rewriting based approaches,
such as denotational semantics (models), logical relations, applicative bisimula-
tion and coinduction, etc., but they will not be discussed here because this paper
focuses on rewriting-based techniques. Plotkin [25] first devised a rewriting-based
method to prove meaning preservation for the call-by-name and call-by-value λ-
calculus using confluence and standardization. At the same time, Plotkin proved
that evaluation via rewriting was equivalent to evaluation via abstract machine.
Subsequently, this approach has been applied to many systems, including sys-
tems with imperative features such as assignments and continuations (examples
include [10, 11, 21, 3, 19, 12, 26, 17]).

Warning 1.1 (Not Quite Same as Observational Equivalence) What we
call meaning preservation is related to observational equivalence (sometimes
called observational soundness [18], operational equivalence, consistency [25],
etc.), but is only the same for contextually closed rewriting systems. In this pa-
per, terms have the same meaning iff evaluating them yields the same result
(divergence or the same halted state). Terms t1 and t2 are observationally equiv-
alent, written t1 ' t2, iff C[t1] and C[t2] have the same meaning for every context
C where C[t] places t in the hole of the context C. Proving a rewriting relation R

to be meaning preserving implies that R ⊆ ' only when R is contextually closed;
see corollary 7.3 for an example. This paper presents an abstract (syntax-free)
framework which does not have any features to represent notions like contexts,
so we do not discuss observational equivalence except for specific examples.

1.2 Summary of Contributions

The existing rewriting-based tools for proving meaning preservation are difficult
to use and sometimes completely inapplicable. To address this problem, this
paper presents an abstract framework and multiple diagram-based methods for
proving meaning preservation. The new knowledge presented here improves on
what is already known as follows.

1. Our methods can be used for rewriting systems that as a whole fail to have
confluence, standardization, and/or termination or boundedness of develop-
ments. While some of our methods ask for confluence or standardization-like
properties, they do so only for subsets of all rewrite steps.

2. We isolate the new lift/project with termination diagram (LPT in defini-
tion 4.1) and show that it is the key proof idea for previous methods for
proving meaning preservation (Plotkin’s method based on confluence and
standardization and Machkasova and Turbak’s method based on lift and
project [17]). We show that the confluence & standardization method is in-
comparable in proving power with the lift & project method. We present new
LPT-based methods that can handle systems that previous methods can not
such as systems without standardization.

2

3. All of the proof methods dealt with in this paper (including the earlier meth-
ods of Plotkin and Machkasova & Turbak) are presented abstractly (free
of syntax). Because our methods are abstract, there are no restrictions on
the kinds of rewrite rules used. Rewrite rules may be non-left-linear, non-
orthogonal (overlapping), non-first-order, etc. Also, our approach does not
need a notion of closed programs as a subset of terms.

4. All our methods support partitioning the rewrite steps into subsets treated
separately with different methods. These subsets need only be closed under
(an informal and only intuitive notion of) “residuals with respect to evaluation
steps”. This partitioning also makes proving termination properties easier.

5. Our framework provides generic support for using developments (i.e., con-
tracting only preexisting marked redexes) together with any method, so each
method only needs to work for marked rewrite steps. This makes proving ter-
mination properties easier. No notion of residuals is needed, which is helpful
for systems with highly overlapping rules where defining residuals is hard.

6. In addition to a number of high-level diagram-based methods for proving
meaning preservation, we also present low-level methods that are easier to use
for people who are not researchers in rewriting. We give as many as possible of
the details needed for the non-specialist to use and adapt the proof methods.
These low-level methods use simple termination properties and diagrams.

(a) Termination properties are only needed for ordinary rewriting, not for
rewriting of rewrite step sequences (perhaps this should be called meta-
rewriting?) as in some abstract standardization methods [20]. The differ-
ent termination properties that each method requires are simple and easy
for the non-specialist to understand, ranging over boundedness (Bnd) and
(weak) normalization (Nrm) and a bound on the number of evaluation steps
in any rewrite sequence (BE in definition 5.1).

(b) For analyzing rewrite step interactions, each method needs only the com-
pletion of elementary diagrams, i.e., diagrams where the only given edges
are two adjacent single rewrite steps. In contrast, some abstract standard-
ization methods require completing cubes [13, 20]. The method choice can
depend on which elementary diagrams are completable. All of our methods
exclude many rewrite step interactions from consideration.

7. To help rewriting researchers, as much as possible we identify intermediate
diagrams to make it easier for new diagrams to be added as needed.

8. Our methods use only the simplest notion of standardization, that a rewrite
sequence t1 −−� t2 can be rearranged into a sequence t1 −

�
−� t3 −

�
−� t2 where�

and � indicate respectively evaluation and non-evaluation steps. Standard-
ization in the literature is a rich and interesting notion [20], but other stan-
dardization definitions always imply our definition and the extra details are
not useful here, so they are omitted.

1.3 Acknowledgements

An early informal presentation by Elena Machkasova on the lift and project di-
agrams gave significant inspiration, although this work then proceeded indepen-

3

dently. Stefan Blom, Elena Machkasova, Vincent van Oostrom, and Lyn Turbak
carefully read drafts of this paper and pointed out confusing terminology and
errors. Zena Ariola is partly responsible for this work by convincing us to use
rewrite rules for letrec that are difficult to prove correct.

2 Mathematical Definitions

Let S] S′ denote S ∪ S′ if S ∩ S′ = ∅ and otherwise be undefined. In a proof,
“IH” means “by the induction hypothesis” and “w/o.l.o.g.” means “without loss
of generality”.

Let R range over binary relations. Let −R−→ and −−R→ be alternate notations for

R which are usable infix, i.e., both a −R−→ b and a −−R→ b stand for R(a, b) which in
turn stands for (a, b) ∈ R.

Define the following operators on binary relations. Let R; R′ be the com-

position of R with R′ (i.e., { (a, b) ∃c. R(a, c) and R′(c, b) }). Let −R,0−−→ = R0 be

equality at the type intended for R. Let −R,i+1−−−→ = Ri+1 = (Ri; R) when 0 ≤ i. Let

−R,≥k−−−→ = R≥k =
⋃

i≥k Ri. Let −R,≤k−−−→ = R≤k =
⋃

i≤k Ri. Let −R,j,≤k−−−−→ = Rj ∩ R≤k

(useful in diagrams when j is existentially quantified). Let −R−� = R∗ = R≥0

(the transitive, reflexive closure). Let ←R−− = R−1 be the inverse of R (i.e.,

{ (a, b) R(b, a) }). Let �
R−− = (R−1)≥0. Let ←R−→ = (R ∪ R−1) (the symmetric

closure). When R = R−1 (i.e., R is symmetric), let −R−− = R. Let ←R,k−−→ = (←R−→)k.

Let �
R−� = (←R−→)≥0.

Let an entity a be a R-normal form, written is-nf(R, a), iff there does not

exist some entity b such that a −R−→ b. Let an entity a have a R-normal form,
written has-nf(R, a), iff there exists some b such that a −R−� b and is-nf(R, b). Let

−R,nf−−� be the relation such that a −R,nf−−� b iff a −R−� b and is-nf(R, b). A relation R is
bounded, written Bnd(R), iff for every entity a there is some k ≥ 0 such that there
does not exist an entity b such that Rk(a, b). A relation R is terminating (a.k.a.
strongly normalizing), written Trm(R), iff there does not exist any total function
f with as domain the natural numbers such that R(f(i), f(i + 1)) for all i ≥ 0.
A relation R is (weakly) normalizing, written Nrm(R), iff for every entity a there

is some entity b such that a −R,nf−−� b. Note that Bnd(R)⇒ Trm(R)⇒ Nrm(R).
Diagrams make statements about relations where solid and dotted edges

indicate quantification. Metavariables already mentioned outside the diagram
are unquantified. Other metavariables (e.g., for node names or used in edge
labels) are universally quantified if attached to a solid edge and existentially
quantified if attached only to dotted edges. As an example, in a context where
R1 and R2 have already been given, the following equivalence holds:

a b

c d

R1,k

R2

R1,≤k
R1 ⇐⇒ ∀a, b, c, k. (a −R1,k−−→ b ∧ a −R2−→ c)⇒ ∃d. c −R1,≤k−−−→ d ∧ b −R1−� d

In proofs, the reason for each diagram polygon will usually be written inside it.

4

3 Abstract Evaluation Systems

An abstract evaluation system (AES) is a tuple

(� , � , � , endpoints,
�
, result)

satisfying the conditions given below by axioms 3.3 and 3.4 and the immediately
following conditions. The carriers of an AES are the sets � , � , and � . The
function endpoints maps � to � × � . The set

�
is a subset of � . The function

result maps � to � . Let t range over � , let s range over � , let r range over � ,
and let S range over subsets of � .

The intended meaning is as follows. � should be a set of terms. � should be a
set of rewrite steps. � should be a set of evaluation results which by axiom 3.4(1)
will most likely contain the symbol diverges and one or more other members,
typically symbols such as halt, error, etc. The halt case might be subdivided into
possible constant values of final results. If endpoints(s) = (t1, t2), this should
mean that step s rewrites term t1 to term t2. The members of

�
are the rewrite

steps used for evaluation. Let � = � \ �
(where “ � ” stands for “non-evaluation”).

If result(t) = r, this should mean that r is the observable result of evaluating
term t, where diverges is reserved by axiom 3.4(1) for non-halting evaluations.

Convention 3.1 In this paper, wherever no specific AES is being considered,
statements are about every possible AES.

Let rewriting notation be defined as follows. Given a rewrite step set S, let

S be the binary relation { (t, t′) ∃s ∈ S. endpoints(s) = (t, t′) }. Thus, t −S−→ t′ iff
there exists s ∈ S such that endpoints(s) = (t, t′). When a rewrite step set S is
used in a context requiring a binary relation on � , then let S implicitly stand

for S . Thus, as examples, t −S−→ t′ stands for t −S−→ t′ and an S-normal form is
simply a S -normal form. When used in a position requiring a subset of � or a
binary relation on � , let s stand for {s} and let S,S ′ stand for S ∩ S ′. Thus,

as an example, t −S,s−−→ t′ stands for t −
S∩{s}
−−−−→ t′. When a binary relation on �

is required and none is supplied, then let the relation � be implicitly supplied.

Thus, as examples, t −−→ t′ stands for t −
�
−→ t′ and t −k−→ t′ stands for t −

�
,k−−→ t′.

Definition 3.2 (Rewrite Step Set Properties). Define the following rewrite
step sets and properties of rewrite step sets:

Standardization: Confluence:

Std(S,S ′) ⇐⇒
t1 t2

t3

S
�
,S′

�
,S′

Conf(S) ⇐⇒
t1 t2

t3

S

S S

Local Confluence: Meaning Preservation:

LConf(S) ⇐⇒
t1 t4

t2 t3

S
S

S
S s ∈ MP ⇐⇒

t1
r

t2

s

result

result

Subcommutativity:

SubComm(S, i, j) ⇐⇒
t1 t3

t2 t4

S,i
S,j

S,≤j
S,≤i

5

Let Std(S) abbreviate Std(S, �). Let SubComm(S) abbreviate SubComm(S, 1, 1).
Traditionally, only Std(�) = Std(� , �) is considered. The simple definition of MP

is reasonable because axiom 3.4(1) (given below) means MP implies preservation
of the existence of

�
-normal forms. See also warning 1.1 and convention 3.1 and

do not confuse MP with observational equivalence.

Axiom 3.3 (Subcommutativity of Evaluation) SubComm(
�
).

Non-deterministic evaluation is useful for rewriting systems with non-deterministic
syntax, e.g., the system of [17] where the top syntax level is a set with unordered
components. Often, it will be simpler to make evaluation deterministic so that

t2 ←
�
,s1−−− t1 −

�
,s2−−→ t3 implies that t2 = t3 or even that s1 = s2.

Axiom 3.3 does not ensure that any strategy for −
�
−→ will find

�
-normal forms

when they exist. Strengthening axiom 3.3 so that the bottom and right diagram
edges have the same length would ensure this, but is not needed otherwise.

Axiom 3.4 (Evaluation Sanity)

1. “diverges” Means Evaluation Diverges:
result(t) = diverges⇔ ¬has-nf(

�
, t).

2. Evaluation Steps Preserve Meaning:�
⊆ MP.

3. Non-Evaluation Steps Preserve Evaluation Steps:

t1 t3

t2 t4

� �
�

Consequently, if t1 −
�
−→ t2, then is-nf(

�
, t1)⇔ is-nf(

�
, t2).

4. Non-Evaluation Steps on
�
-Normal Forms Preserve Meaning:

If t −
�
−→ t′ and is-nf(

�
, t), then result(t) = result(t′).

When defining an AES for a rewriting system, it is trivial to satisfy ax-
ioms 3.4(1) and 3.4(2) by using an auxiliary function result′ which maps { t is-nf(

�
, t) }

to � \ {diverges} and defining result as follows:

result(t) =

{

diverges if ¬has-nf(
�
, t),

result′(t′) if t −
�
,nf−−� t′.

Indeed, the model of how evaluation should be computed expects to work this
way. When ¬is-nf(

�
, t), it is expected that computing result(t) involves first find-

ing t′ such that t −
�
,nf−−� t′, then computing result(t′), and otherwise diverging

if no such t′ exists. Thus, the value of result(t) is unimportant if ¬has-nf(
�
, t).

Reserving the value diverges for this case simplifies things.
Satisfying axioms 3.4(3) and 3.4(4) requires more care in the design of the

rewriting system and the AES, but is not hard. Anyway, axiom 3.4(3) is a con-
sequence of the properties WL1 and WP1 or WLP1 from definition 5.1 which

6

typically must also be proven. At first glance, the reader might think that ax-
iom 3.4(3) is simpler than what is needed because in its diagram no relationship
is required between t3 and t4; however this issue is handled by the LPT dia-
gram from definition 4.1 and in any case a relationship between t3 and t4 is
only needed when has-nf(

�
, t1). The condition of axiom 3.4(3) appears in other

abstract frameworks as early as [13] and appears in non-abstract form in [25].
The first explicit statement of the condition of axiom 3.4(4) that we are aware
of appears in [16], although the condition is partially present in [3].

Lemma 3.5 (Non-Evaluation Steps on Eval-Normal Forms). If t1 �

�
−� t2

and is-nf(
�
, t1), then t1 �

MP−� t2.

Proof. See appendix A.

4 Lift/Project Diagrams for Meaning Preservation

This section presents properties of rewrite step sets in definition 4.1 and shows
how to use them to prove meaning preservation, the important connection be-
tween arbitrary-strategy rewriting and evaluation. When evaluation is defined
by a subset of the rewrite steps (specified in an AES by the set

�
), it is necessary

to show that arbitrary rewriting preserves the evaluation result in order to have
confidence that the non-evaluation rewrite steps are at all meaningful. Tradition-
ally, this has been done by proving confluence (Conf) and standardization (Std),
the preconditions of Plotkin’s approach [25] (presented in lemma 4.5(1,2)).

Needing confluence and standardization is a big weakness, as shown by the
non-confluent system in [17] and the λ:=,letrec calculus we mention in section 9
which has neither confluence nor standardization. In contrast, our new method
in theorem 4.3 needs only the lift/project with termination (LPT) property.
By lemma 4.2, LPT can be obtained from the lift (Lift) and project (Proj)
properties. Because lift and project do not imply confluence (lemma 4.5(4)),
theorem 4.3 does not need confluence. Furthermore, because LPT implies nei-
ther lift nor project (lemma 4.2(8,10)) and lift is equivalent to standardization
(lemma 4.4(1)), theorem 4.3 does not need standardization when lift is not used.

Theorem 4.3 differs from earlier work of Machkasova and Turbak [17] in
several important ways. First, it is abstract (syntax-free). Second, it provides
explicit support for separately proving meaning preservation for different subsets
of the non-evaluation rewrite steps. This vastly simplifies auxiliary termination
proofs (e.g., for properties Bnd or BE as used in definition 5.1) and is vital
when a single method fails to cover all � steps (e.g., section 9). Third, it needs
only the weaker LPT property rather than lift and project. This is vital because
lift is equivalent to standardization so the Machkasova/Turbak method fails for
systems without standardization (e.g., section 9).

Definition 4.1 (Lift, Project, and Related Properties). Define the fol-
lowing rewrite step sets and properties of rewrite step sets:

7

Strong Lift: Lift:

SLift(S) ⇐⇒
t1 t4

t2 t3

�
,S �

� �
,S s ∈ Lift ⇐⇒

t1 t4

t2 t3

s �
� �

Lift′:

s ∈ Lift′ ⇐⇒
t1 t4

t2 t3 t5

s � �
� �

Strong Project: Project:

SProj(S) ⇐⇒
t1 t2 t4

t3 t5

�
,S

� �
� �

,S s ∈ Proj ⇐⇒
t1 t2 t4

t3 t5

s

� �
� �

Strong Lift/Project: Lift/Project:

SLP(S) ⇐⇒
t1 t3 t5

t2 t4

�
,S

� � �
,S� s ∈ LP ⇐⇒

t1 t3 t5

t2 t4

s

� �
� �

Lift/Project when Terminating:

s ∈ LPT ⇐⇒
t1 t3

t2 t4

s

�
,nf� �

The Lift and Proj properties given here match the properties by the names
“Lift” and “Project” in [17], except that there both properties are defined on
the entire rewriting system rather than on individual rewrite steps and both
properties specify the step on the left diagram edge to be a � step (the latter
difference being inessential). Only the weaker Lift′ which is symmetrical with Proj

is actually needed together with Proj to obtain LPT (lemma 4.2(7,9)). However,
Lift′ can not replace Lift in the statement of lemma 4.4(1).

Lemma 4.2 (Relationships between Lift and Project Properties).

1.
�
⊆ Lift ∩ Proj.

2. If SLift(S), then S ⊆ Lift.
3. If SProj(S), then S ⊆ Proj.
4. If SLP(S), then S ⊆ LP.
5. Lift ⊆ Lift′.
6. Lift′ ⊆ Lift need not be true.
7. Lift′ ∩ Proj ⊆ LP.
8. None of LP ⊆ Lift′ ∩ Proj, LP ⊆ Lift′, and LP ⊆ Proj need to be true.
9. LP ⊆ LPT.

10. LPT ⊆ LP need not be true.

Proof. See appendix B.

Theorem 4.3 (Relationships between Lift, Project, and Meaning Preser-
vation).

1. LPT ⊆ MP.

8

2. MP ⊆ LPT need not be true.

Proof.

1. Suppose s ∈ LPT. Let t1 −
s−→ t2. Suppose neither has-nf(

�
, t1) nor has-nf(

�
, t2).

By axiom 3.4(1), it holds that result(t1) = diverges = result(t2), so s ∈ MP.
Suppose instead that either has-nf(

�
, t1) or has-nf(

�
, t2). Suppose has-nf(

�
, t1)

(w/o.l.o.g. because only t1 ←
s−→ t2 is used). Then t1 −

�
,nf−−� t3 for some t3. By

s ∈ LPT, it holds that t3 �

�
−� t4 �

�
−− t2 for some t4. Because is-nf(

�
, t3), by

lemma 3.5 it holds that t3 �
MP−� t4. By axiom 3.4(2) and induction on the

lengths of rewrite sequences, it holds that t1 −
MP−� t3 and t2 −

MP−� t4. Thus,

t1 �
MP−� t2. Thus, s ∈ MP.

2. Consider this 4-term 3-step AES where all results are the same:

t1 t2

t3 t4

�
,s1�

,s2 �
,s3

Then MP = � , but MP \ LPT = {s2}.

4.1 Comparison with Traditional Approach

This subsection compares the lift & project method of Machkasova and Tur-
bak and our LPT method with the traditional confluence & standardization
method. Plotkin’s traditional approach [25] was separated out and presented
abstractly by Machkasova [16] in a form similar to the combination of the proofs
of lemma 4.5(1), lemma 4.2(9), and theorem 4.3(1). We have reformulated the ar-
gument for the AES framework and modified it to work on subsets of � . Further-
more, we have factored the argument to show it goes through LP (lemma 4.5(1))
and LPT before reaching MP. Thus, it appears that the main previously known
rewriting-based methods of showing meaning preservation implicitly use the LPT

diagram. Interestingly, in lemma 4.5(3,4) it is shown that the confluence & stan-
dardization method and the lift & project method are incomparable in their
power; each can address problems that the other can not. Section 5 will develop
another method (WB\Std in definition 5.1) of proving LPT which can address
yet more problems, because it does not require standardization.

The following equivalence of Lift and standardization in lemma 4.4(1) appears
in [16], although here it has been parameterized on rewrite step sets.

Lemma 4.4 (Lift Equivalent to Standardization).

1. S ⊆ Lift iff Std(S ∪
�
). (Consequently, Lift = � iff Std(�).)

2. The above statement need not be true with Lift replaced by Lift′.

Proof.

1. Std(S ∪
�
) ⇒ S ⊆ Lift is immediate. S ⊆ Lift ⇒ Std(S ∪

�
) is proven by

induction on the length of rewrite sequences. See appendix B for full details.

9

2. Consider this 7-term 8-step AES where all results are the same:

t1 t2

t3 t4 t5

t6 t7

�
,s1�

,s2

�
,s3�

,s4 �
,s5�

,s6 �
,s7

�
,s8

Note that Lift′ = � , but Lift′\Lift = {s2}. The desired Std(�) is false, because

t1 −−� t6 but there is no t such that t1 −
�
−� t −

�
−� t6.

Lemma 4.5 (Relationships between Confluence + Standardization and
Lift + Project).

1. If Conf(S ∪
�
) and Std(S ∪

�
), then S ⊆ LP.

2. Consequently, Conf(S ∪
�
) and S ⊆ Lift imply S ⊆ MP.

3. If Conf(S ∪
�
) and Std(S ∪

�
), then S ⊆ Proj need not be true.

4. Conf(Lift ∩ Proj) need not be true.

Proof.

1. Suppose that Conf(S ∪
�
) and (*) Std(S ∪

�
) hold. Using the reason (*) as

indicated, the following diagram proves S ∪
�
⊆ LP and thus S ⊆ LP:

t1 t3 t5

t6

t2 t4

�

Conf(S ∪
�
)

�

S ∪
�

S ∪ �
�(*)

S ∪
�

�
�

(*)

2. By lemmas 4.2(9), 4.4, and 4.5(1) and theorem 4.3(1).

3. Consider this 3-term 5-step AES:

t1 t2

t3

�
,s1

�
,s2

�
,s3

�
,s4

�
,s5

Then Conf(� ∪
�
) and Std(� ∪

�
), but � \ Proj = {s2}.

4. Consider this 3-term 2-step AES where all results are the same:

t1 t2

t3

�
,s1�

,s2

Then Lift = Proj = � , but ¬Conf(�).

10

5 Elementary Diagrams for Strong Lift/Project

According to section 4, one can prove rewrite step sets to have the LPT property
in order to prove meaning preservation. Furthermore, LPT can be obtained via
stronger properties such as the lift and project properties. However, proving
these properties can be very difficult.

To help, this section provides abstract methods for proving strong lift, strong
project, and/or strong lift/project for particular rewrite step sets. Definition 5.1
defines that a rewrite step set is well behaved when it satisfies either the WB+Std

or WB\Std properties. In turn, each of these are conjunctions of a small number
of specific properties, one termination property and some elementary diagrams,
i.e., diagrams where the given edges are two adjacent single rewrite steps. The
WB+Std and WB\Std properties are about rewrite step sets rather than indi-
vidual steps because it is necessary to simultaneously treat all the steps in a set
that is closed under (an informal and only intuitive notion of) “residuals with
respect to evaluation steps”. This section’s main result (theorem 5.4) is that
a well behaved rewrite step set S has either the strong lift and strong project
properties or the strong lift/project property.

Each of WB+Std and WB\Std has particular advantages. The termination
property of WB+Std requires only a bound on the number of

�
steps in a rewrite

sequence (BE), not full termination. When used together with the methods of sec-
tion 6, this is significantly weaker than the finite developments property needed
by some other proof methods, because it allows infinite developments (and there
is no requirement that coinitial developments can be completed to be cofinal). In
contrast, WB\Std requires a stronger termination property, but replaces the WL1

and WP1 elementary diagrams with the weaker diagram WLP1. The big advan-
tage of WLP1 is that it does not require standardization. Although WB\Std(S)
requires local confluence for S, in fact it is sufficient to have only confluence
(lemmas 5.2(3) and 5.3(3)) and the local confluence requirement is only there so
that the preconditions of WB\Std(S) are elementary diagrams.

Definition 5.1 (Well Behaved Rewrite Step Sets). Let N∗EN∗(S) be the

relation −
�

,S−−�;−
�
,S−−→;−

�
,S−−�. Define the following rewrite step set properties:

Bounded
�
-Steps: � -Steps Do Not Create

�
-Steps:

BE(S) ⇐⇒ Bnd(N∗EN∗(S)) NE(S) ⇐⇒
t1 t4

t2 t3

�
,S �

,S

�
,S

Weak Lift 1-Step: Weak Project 1-Step:

WL1(S,S ′) ⇐⇒
t1 t4

t2 t3

�
,S �

,S′

�
,S′

S WP1(S) ⇐⇒
t1 t2

t3 t4

��
,S � S

Weak Lift/Project 1-Step: Standardization to Normal Form:

WLP1(S) ⇐⇒
t1 t4

t2 t3

�
,S

�
S� Std-nf(S) ⇐⇒

t1 t2

t3

S,nf�
,S,nf

�
,S,nf

11

Well Behaved with Standardization:

WB+Std(S) ⇐⇒ BE(S) ∧WL1(S,S) ∧WL1(S, �) ∧WP1(S)

Well Behaved without Standardization:

WB\Std(S) ⇐⇒ Trm(S) ∧ LConf(S) ∧ NE(S) ∧WLP1(S)

Lemma 5.2 (Confluence and Standardization-Like Properties).

1. If BE(S) and WL1(S,S), then Std(S,S).
2. If LConf(S) and Trm(S), then Conf(S) (Newman’s Lemma).
3. If Conf(S), Trm(S), and NE(S), then Std-nf(S).

Proof. By definition 5.1 and lemmas C.2, C.7, and C.8 in appendix C.

Lemma 5.3 (Strong Lift and Project Properties).

1. If WL1(S, �) and Std(S,S), then SLift(S).
2. If WP1(S) and Std(S,S), then SProj(S).
3. If Conf(S), Trm(S), Std-nf(S), and WLP1(S), then SLP(S).

Proof. By definition 5.1 and lemmas C.4, C.6, and C.11 in appendix C.

Theorem 5.4 (Well Behaved Rewrite Step Sets).

1. If WB+Std(S), then SLift(S) and SProj(S).
2. If WB\Std(S), then SLP(S).

Proof. By definition 5.1 and lemmas 5.2 and 5.3.

6 Marked Rewriting and Developments

Sometimes, a desired termination property (e.g., BE from definition 5.1, Bnd,
Trm, or Nrm) fails for a step set S generated by some rewrite rule(s), but holds
for S∩ � where � is a set of marked steps. The marks typically force termination
by forbidding contracting unmarked redexes and ensuring that “created” redexes
are unmarked. To use this method, the desired rewriting system is embedded
in a larger marked system with additional marked terms and rewrite steps, so
proving the larger system correct also proves the desired system correct.

This section defines conditions on marking and theorem 6.4 proves that when
these conditions hold, proving LPT for S ∩ � (i.e., the marked fragment of the
larger marked system) is sufficient to prove LPT for S (i.e., both the marked and
unmarked steps in the larger system). Thus, when any of this paper’s methods
for proving meaning preservation work for S ∩ � , the methods also work for S.
It is worth observing that the style of proof of theorem 6.4 can be repeated for
many properties other than LPT, e.g., for Lift (and therefore for standardization).

This section’s methods are related to developments. A development is a
rewrite step sequence starting from a term t where each step contracts a re-
dex which represents work that was already in t and “created” redexes are not

12

contracted. Usually, the notions of “work already present” and “created” are
defined using residuals of redexes across rewrite steps, sometimes defining resid-
uals using marks. This section’s methods do not need any notion of residual.
This is important because there do not seem to be good ways to define residuals
for many rewriting systems, e.g., those with highly overlapping rewrite rules.

A mark structure for an AES is a tuple

(Marks, markOf, noMark, rename)

satisfying axiom 6.1 below and the following conditions. The set Marks is non-
empty and does not contain ?. The function markOf maps � to Marks∪{?}. The
mark noMark is a member of Marks. The function rename is of type (Marks ×
Marks)→ � → � . Let m range over Marks. Let � = { s ∈ � markOf(s) 6= noMark}.
Let the statement markOccurs(m, t) hold iff there exist s and t′ such that t −s−→ t′

and markOf(s) = m.
The intended meaning is as follows. The set Marks should contain marks used

to track redexes. Each rewrite step s should be marked by the mark markOf(s).
The special mark noMark means “no mark at all”. The symbol ? means “can
be considered to be any mark because we do not track this kind of rewrite
step with marks”; this is a convenience for systems where only some steps have
marked versions. The operation rename(m1, m2)(t) should produce a new term
t′ resulting from renaming all occurrences of the mark m1 in t to m2.

Axiom 6.1 (Marking Sanity)

1. Marked Erasure:
For S ∈ {

�
, � },

t1 t2

t3 t4

rename(m,m′)
S

rename(m,m′)
S

2.
�

Marked Unerasure:
t1 t2

t3 t4

�
rename(m,m′) � rename(m,m′)

3. Erasing Nonexistent Mark:
If ¬markOccurs(m, t), then rename(m, m′)(t) = t.

4. Marks Not Introduced by Rewriting:
If ¬markOccurs(m, t), m 6= noMark, and t −−→ t′, then ¬markOccurs(m, t′).

5. Fresh Marks:
For any term t, there exists a mark m 6= noMark such that ¬markOccurs(m, t).

Convention 6.2 In this paper, wherever no specific mark structure is being
considered, statements are about every possible mark structure.

Definition 6.3 (Rewrite Step Set Property for Marks).

13

� Step Can Be Marked:

NM(S) ⇐⇒

(

(

m 6= noMark

∧ ¬markOccurs(m, t1)

)

⇒
t1 t2

t3

�
,S

rename(m,m′)
�

, � ,S

)

Theorem 6.4 (Lift/Project when Terminating via Marks). If S ∩ � ⊆
LPT and NM(S), then S ⊆ LPT.

Proof. Using axiom 6.1, lemma 4.2(1), and definitions 6.3 and 4.1. For full proof
details, see appendix D.

7 Example: The Call-by-Name λ-Calculus

This section gives an example of the use of our AES framework and our diagram-
based methods for proving meaning preservation. The AES and a mark structure
will be defined and then the top-level proof strategy will be presented.

We choose the call-by-name λ-calculus with left-most outermost evaluation
to weak head normal forms because it is a small system, needs the mark structure
features of section 6, will already be familiar to most readers, and is one of the two
systems treated by Plotkin’s seminal paper [25]. This system has both confluence
and standardization. To illustrate the extra power of our proof methods, we
would have preferred to present an example system which does not have these
properties, but unfortunately our smallest worked-out example takes many pages
in LNCS format to even define and does not need the features of section 6.

Define the AES for the call-by-name λ-calculus as follows. First, define the
AES carrier sets � , � , and � as well as the evaluation step subset

�
.

x, y, z ∈ Variable

t ∈ Context ::= 2 | x | (λx t) | (t1 t2) | (letnx = t2 in t1) (n ≥ 1)
t ∈ � = { t t has no hole 2 }
E ∈ EvalContext ::= 2 | (E t)
R ∈ Redex ::= (letnx = t2 in t1) | ((λx t1) t2) (n ≥ 1)
s ∈ � = { (t , R) t has 1 hole 2 }�

::= (E , R)
r ∈ � = {diverges, stuck, halt}

In the term syntax, (letnx = t2 in t1) is used to indicate a marked β-redex. Terms
and contexts are identified modulo α-conversion as usual. For contexts, α-conversion
can not rename bound variables whose scope includes a hole. Substitution of t

for x in t′, written t′[x := t], is defined as usual. Placing a term or context X in
the hole of a one-hole context t , written t [X], is defined as usual.

Now, finish defining the AES by supplying the functions.

endpoints(t , (letnx = t2 in t1)) = (t [letnx = t2 in t1], t [t1[x := t2]])
endpoints(t , (λx t1) t2) = (t [(λx t1) t2], t [t1[x := t2]])

14

result(t) =











diverges if ¬has-nf(
�
, t)

halt if t −
�
,nf−−� λx t′

stuck if t −
�
,nf−−� t′ 6= λx t′′

Define an accompanying mark structure as follows.

Marks = {0, 1, 2, . . .}
noMark = 0
markOf(t , (letnx = t2 in t1)) = n

markOf(t , (λx t1)t2) = 0
rename(m1, m2) = θ

where































θ(x) = x

θ(λx t) = λx θ(t)
θ(t1 t2) = θ(t1) θ(t2)
θ(letm1x = t2 in t1) = (letm2x = θ(t2) in θ(t1)) if m2 6= 0
θ(letm1x = t2 in t1) = (λx θ(t1)) θ(t2) if m2 = 0
θ(letmx = t2 in t1) = (letmx = θ(t2) in θ(t1)) if m 6= m1

Lemma 7.1 (The Framework User’s Proof Burden).

1. Axioms 3.3, 6.1, and 3.4 hold.
2. WB+Std(�).
3. NM(�).
4. If t1 −−→ t2, then t [t1] −−→ t [t2] for any context t.

Proof. Many standard proofs by induction which are left to the reader. The
only difficult bit is BE(�) (part of WB+Std(�)). First, Trm(�) is proven by a
known argument (e.g., see [5]) of rearranging the mark values so that rewriting
decreases the multiset of all marks in the term in the multiset extension of <.
Because the rewriting system is finitely branching, this is equivalent to Bnd(�),
which in turn implies BE(�).

Theorem 7.2 (Meaning Preservation). � ⊆ MP.

Proof. Everything implicitly relies on lemma 7.1(1). By lemma 7.1(2) and the-
orem 5.4(1), SLift(�) and SProj(�). By lemma 4.2(2,3,5,7,9), � ∩ � = � ⊆ LPT.
By lemma 7.1(3) and theorem 6.4, � ⊆ LPT. By theorem 4.3(1), � ⊆ MP.

Corollary 7.3 (Observational Equivalence). If t1 −−→ t2, then result(t [t1]) =
result(t [t2]).

Proof. Suppose t1 −−→ t2. By lemma 7.1(4), t [t1] −−→ t [t2]. By theorem 7.2 and
the definition of MP, result(t [t1]) = result(t [t2]).

8 Related Work

The most closely related work is by Machkasova and Turbak [16, 17, 18]. Their
work is discussed throughout this paper, so only a few points will be made

15

here. First, our BE property corresponds to their complicated notion of γ-
development [18, sec. 4.5]. The γ-development idea may be implicitly the same
as BE [18, p. 193], but the exact relationship is unclear due to the complexity.
Second, Machkasova’s requirement of γ-confluence on evaluation is incompara-
ble with our requirement of evaluation subcommutativity (axiom 3.3). Because
γ-confluence involves the complicated γ-development machinery, we prefer our
simpler requirement. Third, our proof diagrams for lemmas C.1, C.3, C.4, C.5,
and C.6 are similar to some in [18], but are simpler because we do not use
γ-developments and we treat marks for developments separately (section 6).

Ariola and Blom [2] define the notion ARSI (ARS (abstract rewriting system)
with information content). Using the ordering of an ARSI A, they obtain the
infinite normal form of a term t from the information content of all terms t′

such that t −−� t′. They show how to prove A preserves infinite normal forms by
finding a subset 7−−→ ⊆ −−→ satisfying a diagram roughly like this [2, cor. 4.14]:

t1 t2

t3 t4

◦

The quickest explanation of their ◦ relation is to point out that the closest
corresponding diagram in our AES framework would be this:

s ∈ GLP ⇐⇒
t1 t2

t3 t4

s

�
� �

∪(
�

−1)

Key differences between the Ariola/Blom approach and ours are as follows.
First, they provide no abstract methods for proving their diagram (corresponding
to our elementary diagrams in section 5) but instead prove it individually for
each use. Second, the GLP diagram is a stronger requirement than LPT (in
fact, LP ⊆ GLP ⊆ LPT), so our methods in section 4 are more general. Third,
their framework does not provide help in showing the correspondence (needed to
prove observational equivalence for the rewriting system) between infinite normal
forms (their notion of meaning) and the actual operational semantics, so this
burden is left to the user. Fourth, they encourage using a notion of information
content which is more complicated than needed for proving meaning preservation
(unlike our set �); in fact, their information content seems enough to build a
fully abstract model.

Odersky [23] gives conditions proving that a proposed contextually closed
transformation ∼ is an observational equivalence. One condition is that ∼ is
locally stable [23, p. 2, diagram (2)]:

t1 t2

t3 t4

∼1 ∼1'

The relation ∼1 is parallel similarity, i.e., the use of ∼ simultaneously at many
different (presumably non-overlapping) positions. Another condition is that ∼
preserves answers, i.e., t1 ∼ t2 ⇒ (is-nf(

�
, t2)⇒ t1 −−� t2). There are additional

definitions and conditions that we do not discuss.

16

Odersky’s approach is related as follows. Where Odersky uses −−→ (normal

rewriting) and' (observational equivalence), we would use−
�
−→ and−

�
−�. Odersky’s

approach has two versions. In the version shown above, meaning preservation is
defined as convertibility in the entire rewriting system with a set of answers (

�
-

normal forms in our setting). The question is then whether more rewrite rules
can be safely added. In this case, the diagram must be proven for all rewrite
steps. The other version takes an evaluation strategy like we do. In this case,
using' on the bottom edge seems more general, but it also seems that in practice
this diagram edge would be completed with

�
steps. Where Odersky uses ∼1,

we would typically use −S, �−−� and a combination of one of the well-behavedness
conditions of section 5 and the marks of section 6. Odersky’s use of parallel
(simultaneous) rewriting corresponds to our use of a termination property.

Key differences between Odersky’s approach and ours are as follows. Much
of Odersky’s approach is tied to syntactic extensions of the λ-calculus while our
approach is abstract. Odersky does not provide elementary diagrams where each
given edge is a single use of a rewrite rule; it seems that one must work with
full parallel similarity. Odersky appears to assume standardization is already
proven while our approach proves whatever standardization is needed and can
work without it. Odersky’s approach requires a notion of “preserving evaluation
contexts” which we do not fully understand but which we are fairly sure one of
our intended applications does not satisfy. Odersky does not distinguish terms
that go wrong from those that either diverge or halt normally; thus his framework
can not verify that rewriting does not switch between non-wrong and wrong.

9 Future Work

The generalizations of our AES framework and LPT diagrams were developed to
handle λ:=,letrec, a calculus we are developing for reasoning about call-by-value
higher-order programs with mutable reference cells and mutually recursive def-
initions (i.e., letrec). Evaluation of assignment statements can introduce cycles
in the store, so evaluation results may need letrec even if the initial program
was letrec-free. A specific evaluation strategy is given for the λ:=,letrec calculus to
define the meaning of programs. Calculi for assignments have been done before
(e.g., [11]), but λ:=,letrec also includes improvements like very simple evaluation
contexts as well as rules for letrec in the style of the work of Ariola and Blom [2].
The only previously known methods for reasoning about the correctness of Ari-
ola/Blom style letrec rules seem more difficult to us.

The development of λ:=,letrec is nearing completion. Because λ:=,letrec is non-
confluent (due to using rules for letrec that Ariola and Klop [5] proved non-
confluent), we were using the lift & project method to prove meaning preser-
vation. It does not have finite developments, but has a number of rule subsets
whose associated rewrite step sets satisfy the BE property. The last barrier to
completing the proof of meaning preservation was several critical pairs of a rule
named [lift] (name unrelated to the Lift diagram from definition 4.1). One par-

17

ticularly irritating critical pair is only completable as follows:

t1 t3

t5

t2 t4

�
,[lift]

�
,[lift]

�
,[lift]

�
,[lift]

�
,[lift]

Unfortunately, this breaks standardization, so the lift & project proof method
fails. We considered changing the definition of λ:=,letrec, but felt that the changes
to “fix” this critical pair would probably break something else. Also, the rules
of λ:=,letrec are clearly meaning preserving, so we felt that rather than forcing
λ:=,letrec through awkward contortions to fit a weak proof method, it was the
proof method that should be fixed. Fortunately, the WB\Std property can be
proven for the [lift] rule steps, so we expect to complete the λ:=,letrec work soon.

After λ:=,letrec is completed, we want to apply our proof methods to equational
reasoning for assembly language and maybe also to explicit substitutions.

References

[1] Z. M. Ariola, S. Blom. Cyclic lambda calculi. In Theoretical Aspects Comput. Softw. : Int’l
Conf., Berlin, 1997. Springer.
[2] Z. M. Ariola, S. Blom. Skew confluence and the lambda calculus with letrec. Ann. Pure Appl.
Logic, 117(1–3), 2002.
[3] Z. M. Ariola, M. Felleisen. The call-by-need lambda calculus. J. Funct. Programming, 3(7),
1997.
[4] Z. M. Ariola, M. Felleisen, J. Maraist, M. Odersky, P. Wadler. The call-by-need lambda calculus.
In Conf. Rec. 22nd Ann. ACM Symp. Princ. of Prog. Langs., 1995.
[5] Z. M. Ariola, J. W. Klop. Lambda calculus with explicit recursion. Inform. & Comput., 139,
1997.
[6] F. Baader, T. Nipkow. Term Rewriting and All That. Cambridge University Press, 1998.
[7] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, revised
edition, 1984.
[8] Programming Languages & Systems, 9th European Symp. Programming, vol. 1782 of LNCS.
Springer-Verlag, 2000.
[9] M. Felleisen, D. Friedman. Control operators, the SECD-machine, and the λ-calculus. In
M. Wirsing, ed., Formal Description of Programming Concepts — III. North-Holland, 1986.
[10] M. Felleisen, D. P. Friedman. A syntactic theory of sequential state. Theoret. Comput. Sci.,
69(3), 1989.
[11] M. Felleisen, R. Hieb. The revised report on the syntactic theories of sequential control and
state. Theoret. Comput. Sci., 102, 1992.
[12] K. Fisher, J. Reppy, J. G. Riecke. A calculus for compiling and linking classes. In ESOP ’00
[8].
[13] G. Gonthier, J.-J. Lévy, P.-A. Melliès. An abstract standardisation theorem. In Proc. 7th Ann.
IEEE Symp. Logic in Comput. Sci., 1992.
[14] D. J. Howe. Equality in lazy computation systems. In Proc. 4th Ann. Symp. Logic in Comput.
Sci., Pacific Grove, CA, U.S.A., 1989. IEEE Comput. Soc. Press.
[15] D. J. Howe. Proving congruence of bisimulation in functional programming languages. Inform.
& Comput., 124(2), 1996.
[16] E. Machkasova. Techniques for proving observational equivalence. ASCII notes that later turned
into [17]. Not sure about year, 1998.
[17] E. Machkasova, F. A. Turbak. A calculus for link-time compilation. In ESOP ’00 [8].
[18] E. L. Machkasova. Computational Soundness of Non-Confluent Calculi with Applications to
Modules and Linking. PhD thesis, Boston Univ., 2002.
[19] J. Maraist, M. Odersky, P. Wadler. The call-by-need lambda calculus. J. Funct. Programming,
8(3), 1998.
[20] P.-A. Melliès. Axiomatic Rewriting Theory IV: A diagrammatic standardization theorem. Sub-
mitted, 2001.
[21] R. Muller. M-LISP: A representation-independent dialect of LISP with reduction semantics.
ACM Trans. on Prog. Langs. & Systs., 14(4), 1992.

18

[22] M. H. A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of
Math., 43(2), 1942.
[23] M. Odersky. A syntactic method for proving observational equivalences. Research Report
YALEU/DCS/RR-964, Yale Univ., Dept. of Comp. Science, 1993.
[24] A. M. Pitts. Operationally-based theories of program equivalence. In Semantics and Logics of
Computation, vol. 14 of Publications of the Newton Institute. Cambridge University Press, 1997.
[25] G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoret. Comput. Sci.,
1, 1975.
[26] W. Taha. A sound reduction semantics for untyped CBN multi-stage computation: Or, the the-
ory of MetaML is non-trivial. In Proceedings of the 2000 ACM SIGPLAN Workshop on Evaluation
and Semantics-Based Program Manipulation (PEPM-00), N.Y., 2000. ACM Press.

19

A Proofs for Section 3

Lemma A.1 (Multi-Step Subcommutativity).
SubComm(S) ⇔ ∀i, j ≥ 0. SubComm(S, i, j).

Proof. The ⇐ direction is immediate, so SubComm(S) ⇒ SubComm(S, i, j) is

proven here for i, j ≥ 0 by induction on i× j. Suppose SubComm(S) and t2 ←
S,i−−

t1 −
S,j−→ t3 and it will be proven that there exists t4 such that t2 −

S,≤j−−−→ t4 ←
S,≤i−−− t3.

By cases on i and j.

1. Suppose i = 0 or j = 0. W/o.l.o.g., consider only the case i = 0. So t1 = t2.
Let t4 = t3. Done.

2. Suppose i = 1 and j = 1. By SubComm(S).
3. Suppose i > 1 or j > 1. W/o.l.o.g., consider only the case j > 1. By diagram:

t1 t5 t3

IH IH

t2 t6 t4

S

S,i

S,j−1

S,≤1 S,≤j−1

S,

i′,
≤i

S,≤i′

Lemma A.2 (Multi-Step Evaluation Subcommutativity).
SubComm(

�
, i, j) for all i, j ≥ 0.

Proof. By axiom 3.3 and lemma A.1.

Lemma A.3 (Confluence and Unique Normal Forms for Evaluation).

1. Conf(
�
).

2. If t1 �

�
,nf−−− t −

�
,nf−−� t1, then t1 = t2.

Proof.

1. Immediate from lemma A.2.
2. Suppose t1 �

�
,nf−−− t −

�
,nf−−� t2. By lemma A.3(1), there exists t3 such that

t1 −
�
−� t3 �

�
−− t2. Because is-nf(

�
, t1) and is-nf(

�
, t2), it holds that t1 = t3 = t2.

Done. (This is a standard result.)

Proof of Lemma 3.5 (Non-Evaluation Steps on Eval-Normal Forms).

First, it is proven that t ←
�

,s−−→ t′ and is-nf(
�
, t) imply t ←MP,s−−−→ t′ and is-nf(

�
, t′).

Suppose t ←
�

,s−−→ t′ and is-nf(
�
, t). By Axiom 3.4(3), it holds that is-nf(

�
, t′). By

Axiom 3.4(4), it holds that result(t) = result(t′). Hence, s ∈ MP and thus t←MP,s−−−→

t′. The lemma claim then follows by induction on k such that t1 ←
�

,k−−→ t2.

20

B Proofs for Section 4

Proof of Lemma 4.2 (Relationships between Lift and Project Properties).

1. Suppose s ∈
�
. It will now be proven that s ∈ Lift and s ∈ Proj.

Suppose t1 −
s−→ t2 −

�
−� t3. Then for t4 = t3 it holds that t1 −

�
−� t4 −

�
−� t3. Thus,

s ∈ Lift.
Suppose t3 ←

s−− t1 −
�
−� t2. By lemma A.2, there exists t4 such that t3 −

�
−� t4 �

�
−−

t2. Then for t5 = t4 it holds that t3 −
�
−� t4 �

�
−− t5 �

�
−− t2. Thus, s ∈ Proj.

2. Suppose SLift(S) and s ∈ S. If s ∈
�
, then s ∈ Lift by lemma 4.2(1). Suppose

s ∈ � . Suppose t1 −
s−→ t2 −

�
−� t3. By SLift(S) and s ∈ S, there exists t4 such

that t1 −
�
−� t4 −

�
,S−−� t3. This implies t1 −

�
−� t4 −

�
−� t3. Thus, s ∈ Lift.

3. Similar to the proof of lemma 4.2(2).
4. Similar to the proof of lemma 4.2(2).

5. Suppose s ∈ Lift. Suppose t1 −
s−→ t2 −

�
−� t3. Because s ∈ Lift, there exists t4

such that t1 −
�
−� t4 −

�
−� t3. Then for t5 = t3 it holds that t1 −

�
−� t4 −

�
−� t5 �

�
−− t3.

Thus, s ∈ Lift′.
6. Consider this 5-term 5-step AES where all results are the same:

t1 t2

t3 t4 t5

�
,s1�

,s2

�
,s3

�
,s4

�
,s5

Then Lift′ = � and Lift′ \ Lift = {s2}.

7. Suppose s ∈ Lift′ ∩ Proj. Suppose t2 ←
s−→ t1 −

�
−� t3. By cases on how t1 ←

s−→ t2
is true.
(a) Suppose t1 −

s−→ t2. By s ∈ Proj there exist t4 and t5 such that t2 −
�
−� t4 �

�
−−

t5 �

�
−− t3. So t4 �

�
−� t5. Thus, s ∈ LP.

(b) Suppose t1 ←
s−− t2. By s ∈ Lift′ there exist t4 and t5 such that t2 −

�
−� t4 −

�
−�

t5 �

�
−− t3. So t4 �

�
−� t5. Thus, s ∈ LP.

8. Consider this 4-term 4-step AES where all results are the same:

t1 t2

t3 t4

�
,s1�

,s2

�
,s3�

,s4

Then LP = � and LP \ Lift′ = LP \ Proj = {s2}.

9. Suppose s ∈ LP. Suppose t2 ←
s−→ t1 −

�
,nf−−� t3. By s ∈ LP there exist t4 and t5

such that t2 −
�
−� t4 �

�
−� t5 �

�
−− t3. Because is-nf(

�
, t3), it holds that t3 = t5. So

t2 −
�
−� t4 �

�
−� t3. Thus, s ∈ LPT.

10. Consider this 3-term 4-step AES:

t1

t2 t3

�
,s1 �

,s2

�
,s3

�
,s4

Then LPT = � , and LPT \ LP = {s1}.

21

Proof of Lemma 4.4 (Lift Equivalent to Standardization) part 1.

(⇒): Suppose S ⊆ Lift and Std(S ∪
�
) will be proven. Suppose t1 −

S ∪
�

−−−� t2 and

it will be proven that there exists t3 such that t1 −
�
−� t3 −

�
−� t2. By induction

on k such that t1 −
S ∪

�
,k−−−−→ t2. By cases on k.

1. Case k = 0: Let t3 = t1 = t2. Then t1 −
�
−� t3 −

�
−� t2. Done.

2. Case k ≥ 1: By lemma 4.2(1),
�
⊆ Lift, so S ∪

�
⊆ Lift. By diagram:

t1 t′ t2

t3 t′′

S ∪
�

S ∪
�
,k−1

�
�

S ∪
�
⊆Lift

� �IH

(⇐): Suppose Std(S ∪
�
). Suppose t1 −

S−→ t2 −
�
−� t3. Thus, t1 −

S ∪
�

−−−� t3. By Std(S ∪�
), there exists t4 such that t1 −

�
−� t4 −

�
−� t3. Thus, S ⊆ Lift.

22

C Proofs for Section 5

Lemma C.1 (Weak Lift Many-to-1). If WL1(S,S ′), then:

t1 t4

t2 t3

�
,S �

,S′

�
,S′

S

Proof. By induction on k such that t1 −
�

,S,k−−−→ t2. By cases on k.

– Case k = 0. Then t1 = t2. Let t4 = t3. Done.

– Case k > 0. By diagram:
t1 t4

WL1(S,S ′)

t t′

�
,S

�
,S′

�
,S′

S

IH

t2 t3

�
,S �

,S′

S

Lemma C.2 (S-Standardization). If WL1(S,S) and BE(S), then Std(S,S).

Proof. Let evalStepBound(t,S) = max{ k ∃t′. t −N
∗
EN

∗(S),k−−−−−−−→ t′ }. Note that evalStepBound(t,S)
is only defined when a bound exists. If BE(S), then evalStepBound(t,S) is defined
for every term t.

Suppose t1 −
S−� t2 and it will be proven that there exists t3 such that t1 −

�
,S−−�

t3 −
�

,S−−� t2. Let k = evalStepBound(t1,S) (this is well defined because BE(S)).

By induction on k. By cases on whether t1 −
�

,S−−� t2.

1. Suppose t1 −
�

,S−−� t2. Then let t3 = t1. Done.

2. Suppose t1 −
�

,S−−� t2 does not hold. The fact that t1 −
S−� t2 holds must depend

on using at least one
�

step. By diagram, observing that evalStepBound(t6,S) <

k:

t1 t6 t3

WL1(S,S),
lem. C.1

IH

t4 t5 t2

�
,S

�
,S S

�
,S

�
,S

�
,SS

Lemma C.3 (Strong Lift Many-to-1). If WL1(S, �) and Std(S,S), then

t1 t4

t2 t3

�
,S �

�
,≥1 �

,S

23

Proof. By diagram:

t1 t5

lem. C.1,
WL1(S, �)

Std(S,S) t4

t2 t3

� �
,S

�
,S S

�
,S

�

Lemma C.4 (Strong Lift). If WL1(S, �) and Std(S,S), then SLift(S).

Proof. Suppose t1 −
�

,S−−� t2 −
�
−� t3 and prove there exists t4 such that t1 −

�
−� t4 −

�
,S−−�

t3. By induction on k such that t2 −
�
,k−→ t3. By cases on k.

– Suppose k = 0. Let t4 = t1. Done.
– Suppose k ≥ 1. By diagram:

t1 t′ t4

WL1(S, �),
Std(S,S),
lem. C.3

IH

t2 t t3

�
,S

�

�

�
,S

�

�
,k−1

�
,S

Lemma C.5 (Strong Project Many-to-1). If WP1(S) and Std(S,S), then

t1 t2 t4

t3 t5

�
�

,S

�
,S �

,S�

Proof. By induction on k where t1 −
�

,S,k−−−→ t3. By cases on k.

1. Suppose k = 0. Then t1 = t3. Let t2 = t4 = t5. Done.
2. Suppose k ≥ 1. By diagram:

t1 t2

WP1(S)

t7 t6 Std(S,S) t4

IH

t3 t5

�
�

,S S�

�
,S,k−1 S�

�
,S

�
,S

Lemma C.6 (Strong Project). If WP1(S) and Std(S,S), then SProj(S).

Proof. Suppose t3 �

�
,S−−− t1 −

�
−� t2 and prove there exist t4 and t5 such that

t3 −
�
−� t5 �

�
,S−−� t4 �

�
−− t2. By induction on k where t1 −

�
,k−→ t2. By cases on k.

1. Suppose k = 0. Then t2 = t1. Let t4 = t2 and let t5 = t3. Thus, t3 −
�
−� t5 �

�
,S−−−

t4 �

�
−− t2. Done.

24

2. Suppose k ≥ 1. By diagram:

t1 • t2

lemma A.2

WP1(S),
Std(S,S),
lemma C.5

t7 t8

IH t4

t3 • t5

� �
,k−1

�
,S

�
,S

�

�
,S

�
,≤k−1

�

�

�
,S�

Lemma C.7 (Local Confluence & Boundedness Imply Confluence (New-
man [22])). If LConf(S) and Trm(S), then Conf(S).

Lemma C.8 (S-Standardization to Normal Form). If Conf(S), Trm(S),
and NE(S), then Std-nf(S).

Proof. Suppose t1 −
S,nf−−� t2. Because Trm(S), it holds that Trm(

�
∩ S) and thus

Nrm(
�
∩ S). So there exists t3 such that t1 −

�
,S,nf−−−� t3. Because t3 �

S−� t2, by

Conf(S) there exists t4 such that t3 −
S−� t4 �

S−− t2. Because is-nf(S, t2), it holds

that t4 = t2. So t3 −
S,nf−−� t2. Because is-nf(

�
∩S, t3) and is-nf(S, t2), by induction

on k such that t3 −
S,k−−� t2 and using NE(S), it holds that t3 −

�
,S,nf−−−� t2. Thus,

there exists t3 such that t1 −
�
,S,nf−−−� t3 −

�
,S,nf−−−� t2.

Lemma C.9 (Weak Lift/Project Many-to-1). If WLP1(S), then:

t1 t4

t2 t3

�
,S

�
S�

Proof. By induction using a proof resembling the proofs of lemmas C.1 and C.4.

Lemma C.10 (Strong Lift/Project Many-to-1). If Conf(S), Trm(S), Std-nf(S),
and WLP1(S), then:

t1 t3 t5

t2 t4

�
,S

� �
�

,S�

Proof. By Trm(S) it holds that Nrm(S). By the following diagram, where t7 −
S,nf−−�

t8 because Nrm(S):

t1 t3 t5

Std-nf(S)

WLP1(S),
lem. C.9

Conf(S) t7 t8

Std-nf(S)

t2 t6 t4

�
,S

�

S

�
,S,nf

� �
,S,nf

S

S

S,nf

�
,S,nf

�
,S,nf

25

Lemma C.11 (Strong Lift/Project). If Conf(S), Trm(S), Std-nf(S), and
WLP1(S), then SLP(S).

Proof. By induction using lemma C.10. The proof is nearly the same as that for
lemma C.6.

26

D Proofs for Section 6

Lemma D.1 (Marking Properties).

1. t1 t2

t3 t4

rename(m,m′)

�
rename(m,m′)�

2. t1 t2

t3 t4

rename(m,m′)

�
rename(m,m′)�

3. t1 t2

t3 t4

�
rename(m,m′) � rename(m,m′)

4. If ¬markOccurs(m, t), m 6= noMark, and t −−� t′, then ¬markOccurs(m, t′).

5. If rename(m, m′)(t1) = t2, then is-nf(
�
, t1) iff is-nf(

�
, t2).

Proof. Using axiom 6.1, by induction on the length of rewrite sequences where
needed.

Proof of Theorem 6.4 (Lift/Project when Terminating via Marks). Suppose
that S∩ � ⊆ LPT and NM(S) and S ⊆ LPT will be proven. Suppose that s ∈ S. If

s ∈
�
, then s ∈ LPT by lemma 4.2. Suppose s ∈ � . Suppose that t2 ←

s−→ t1 −
�
,nf−−� t3

and it will be proven that there exists t4 such that t2 −
�
−� t4 �

�
−� t3. By cases on

whether t1 −
s−→ t2 or t2 −

s−→ t1.

1. Case t2 −
s−→ t1. Let m 6= noMark be a mark such that ¬markOccurs(m, t2)

(this exists by axiom 6.1(5)). By diagram:

t2 t4

lem. D.1(1)

NM(S) t6 t5 lem. D.1(2)

S ∩ � ⊆ LPT

t1 t3 t7

�

�
,s

ren
a
m
e(m

,m
′

)

� ,

� ,S

�
re
na

m
e(

m
,m

′)

�

�

�
,nf rename(m,m′)

Because t2 −−� t3, ¬markOccurs(m, t2), and m 6= noMark, by lemma D.1(4)
it holds that ¬markOccurs(m, t3). Then rename(m, m′)(t3) = t7 = t3 by

axiom 6.1(3). Thus, t2 −
�
−� t4 �

�
−� t3. Thus, s ∈ LPT.

27

2. Case t1 −
s−→ t2. Let m 6= noMark be a mark such that ¬markOccurs(m, t1)

(this exists by axiom 6.1(5)). By diagram:

t1 t3

lem. D.1(3),
lem. D.1(5)

NM(S) t6 t7 lem. D.1(2)

S ∩ � ⊆ LPT

t2 t4 t7

�
,nf

�
,s

ren
a
m
e(m

,m
′
)

�
,

�
,S

�
,nf

re
na

m
e(

m
,m

′)

�

�

�
rename(m,m′)

Because t1 −−� t4, ¬markOccurs(m, t1), and m 6= noMark, by lemma D.1(4)
it holds that ¬markOccurs(m, t4). Then (rename(m, m′))(t4) = t7 = t4 by

axiom 6.1(3). Thus, t2 −
�
−� t4 �

�
−� t3. Thus, s ∈ LPT.

28

