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The Church Project
Investigates foundations, design principles, and
implementation techniques for programming languages.
Named in memory of Alonzo Church.
Members most relevant to this research:
Boston Coll. Bob Muller
Boston Univ. Assaf Kfoury, Gang Chen,

Geoff Washburn, Ian Westmacott
Harvard Univ. Allyn Dimock, Glenn Holloway
Heriot-Watt Univ. Joe Wells, Torben Amtoft,

Christian Haack
Kansas State Univ. Anindya Banerjee
Wellesley Coll. Lyn Turbak
Web address: http://www.church-project.org/
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The Church Project: Related Work
λCIL: explicitly typed calculus, intersection/union
types [Wells et al., 1997, 2002].

A polyvariant/polymorphic type/flow analysis algorithm
using rank-2 intersection types [Banerjee, 1997].

Strongly typed representation transformation in an SML
compiler supporting standard, selective, and lightweight
(limited forms) closure conversion and flow-directed
inlining [Dimock, Muller, Turbak, and Wells, 1997;
Dimock, Westmacott, Muller, Turbak, Wells, and Considine,
2001b; Dimock, Westmacott, Muller, Turbak, and Wells,
2001a].

Principal typing algorithm for intersection
types [Kfoury and Wells, 1999].

Exact complexity of rank-k ACI intersection type
inference [Kfoury, Mairson, Turbak, and Wells, 1999].
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Intersection Types
Type polymorphism by listing usage types [Coppo et al.,
1980; Barbanera et al., 1995].

Why “intersection”? If

�

σ

�

and

�

τ

�

are program fragment
sets, then

�

σ ∩ τ

�

=

�

σ

�

∩

�

τ

�

.

Example comparing intersection and ∀-quantified types:

intersection types: (fn x ⇒ x)(int→int)∩(bool→bool)

∀-quantified types: (fn x ⇒ x)∀α.(α→α)

Example is semantically like ∀α ∈ {int, bool}.α → α, but
has significant practical differences.

Benefits of intersection types:

Type information closer to actual behavior.

More programs are typable.
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Polymorphism with Intersection Types

val swap

(

∩
(int×bool)→(bool×int)

(real×real)→(real×real)

)

= (fn (x
int

real, y
bool

real) ⇒ (y
bool

real, x
int

real));

val pair1int×bool = (1, true);

val pair2real×real = (2.7, 9.9);

(swap(int×bool)→(bool×int) pair1,

swap(real×real)→(real×real) pair2);

All types discovered automatically [van Bakel, 1993;
Jim, 1996; Kfoury and Wells, 1999;
Ronchi Della Rocca, 1988].

Exposes usage types throughout.

Structuring of independent type analyses is the
problem.
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Typability for Various Systems

F: System F.
Λk: rank-k System F.
⋂

: intersection types.
⋂

k: rank-k of
⋂

.
Decidable.
Undecidable.

ML

Λ2

⋂

2

Λ3

⋂

3

...
F

· · ·
⋂

(Asymptotic complexity now
known [Kfoury, Mairson, Turbak, and Wells, 1999].)
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Flexibility of Intersection Types

fun self_apply2 z ⇒ (z z) z;

fun apply f x ⇒ f x;

fun reverse_apply y g ⇒ g y;

fun id w ⇒ w;

(self_apply2 apply not true,

self_apply2 reverse_apply id false not);

The example safely computes (false, true).

Urzyczyn [1997] proved this example is not typable in
Fω, considered the most powerful type system with
universal quantifiers.

The example is typable in the rank-3 restriction of
intersection types.
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Trouble with Intersection Introduction
The intersection-introduction rule:

E ` M : σ; E ` M : τ
(∧-intro)

E ` M : σ ∧ τ

Notice: same proof term for premises and conclusion, no
syntax is introduced. The usual type annotation approach
fails immediately, e.g.:

E ` (λx:σ. x) : (σ → σ); E ` (λx:τ. x) : (τ → τ)

E ` (λx: ??? . x) : (σ → σ) ∧ (τ → τ)

Where ??? appears, what should be written?
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Earlier Approaches
Reynold’s Forsythe [Reynolds, 1996]:

(λx:σ1| · · · |σn.M) : (σ1 → τ) ∧ · · · ∧ (σn → τ)

However, it can not make typed version of K have type τK :

K = (λx.λy.x)

τK = (σ → (σ → σ)) ∧ (τ → (τ → τ))

Pierce [1991] gives a typed version of K the right type:

(for α ∈ {σ, τ}.λx:α. λy:α. x) : τK

However, it can not give the term Mf the type τf :

Mf = λx.λy.λz.(xy, xz)

τf =

(

(((α → δ) ∧ (β → ε)) → α → β → (δ × ε))

∧ ((γ → γ) → γ → γ → (γ × γ))

)
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Extending An Earlier Approach
We could go beyond Pierce’s approach to make a typed
version of Mf with the right type:

for {[θ 7→ α, κ 7→ β, η 7→ δ, ν 7→ ε],

[θ 7→ γ, κ 7→ γ, η 7→ γ, ν 7→ γ] }.

λx : (θ → η) ∧ (κ → ν) . λy : θ . λz : κ . (xy, xz)

This is still unsatisfactory:

Type information for a subterm is not stored at that
location.

In general, well-typedness of a subterm can not be
determined independently of the larger term it is in.

No Curry/Howard correspondence (where terms are
proofs).
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Our Earlier λCIL Approach
A typed version of Mf with type τf in λCIL [Wells et al.,
1997]:

∧

(λx : (α → δ) ∧ (β → ε) . λy : α . λz : β . ((π∧
1 x)y, (π∧

2 x)z)

λx : γ → γ . λy : γ . λz : γ . (xy, xz))

The tree structures of the λCIL term and the usual
typing derivation with intersection types are the same!

We have worked out the rules for correctly carrying out
the usual λ-calculus manipulations, but these rules are
very tedious to implement.
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The System λB

Our system λB will be presented mainly by examples.

First, an example typing will be worked in both λCIL and
λB style. Don’t worry if you don’t understand parts.

Then, examples will cover the topics of kinds, type
selection and its parameters and arguments, branching
types, and type equivalence.

Then, the syntax and typing rules will be given, mainly
to point out how most of the rules are the usual ones.

Unfortunately, I will skip the concepts of expansion,
inner and outer kinds of type selection parameters, and
the precise definitions of type erasure and trivial type
selection parameters and arguments.

Finally, some theorems will be stated.
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Example: An Untyped Term

(λx.x x) (λy.y)

@

λx

@

x x

λy

y
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Example: A Corresponding λCIL-term

(λx.x x) (λy.y)

@

λxσ∧τ

@

π∧
1

xσ∧τ

π∧
2

xσ∧τ

∧

λyτ

yτ

λyα

yα

where τ = α → α and σ = τ → τ
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Example: A Corresponding λB-term

(λx.x x) (λy.y)

@

λx

τx

@

[i, ∗]

x

τx

[j, ∗]

x

τx

ΛP

λyτy

yτy

τ = α → α

σ = τ → τ

τy = {i = τ, j = α}

λyτy .yτy : τy → τy

' {i = τ → τ, j = α → α}

P = join{i = ∗, j = ∗}

ΛP.λyτy .τy : ∀P.(τy → τy)

τx = ∀P.(τy → τy)
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Nested Branching Types

Consider λCIL-term
of this shape:

∧

∧

λxτ1

xτ1

λxτ2

xτ2

λxτ3

xτ3

In λB, the variable x

is annotated by this
branching type:

{i = {k = τ1, l = τ2}, j = τ3}

This type may be
viewed as a tree:

·

·
i

τ1

k
τ2

l
τ3

j
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Kinds

Consider λCIL-term
of this shape:

∧

∧

λxτ1

xτ1

λxτ2

xτ2

λxτ3

xτ3

Typing judgments and
kinds (branching shapes):

E ` M : τ at κ

κ ∈ Kind ::= ∗ | {i = κi}
I

Kind κ structures indepen-
dent typings of term M .

The kind used for typing
λx.x:

·

·
i

∗
k

∗
l
∗
j

Branching Types – p.21/38



Kinds

Consider λCIL-term
of this shape:

∧

∧

λxτ1

xτ1

λxτ2

xτ2

λxτ3

xτ3

Typing judgments and
kinds (branching shapes):

E ` M : τ at κ

κ ∈ Kind ::= ∗ | {i = κi}
I

Kind κ structures indepen-
dent typings of term M .

The kind used for typing
λx.x:

·

·
i

∗
k

∗
l
∗
j

Branching Types – p.21/38



Kinds

Consider λCIL-term
of this shape:

∧

∧

λxτ1

xτ1

λxτ2

xτ2

λxτ3

xτ3

Typing judgments and
kinds (branching shapes):

E ` M : τ at κ

κ ∈ Kind ::= ∗ | {i = κi}
I

Kind κ structures indepen-
dent typings of term M .

The kind used for typing
λx.x:

·

·
i

∗
k

∗
l
∗
j

Branching Types – p.21/38



Type Selection Parameters

P̄ ∈ IndParameter ::= ∗ | join{i = P̄i}
I

P ∈ Parameter ::= P̄ | {i = Pi}
I

Example:

{l = join{j = join{k = ∗, j = ∗}, i = ∗}, i = {j = ∗, k = ∗}}

Its tree representation:

·

join

l

join
j

∗
k

∗
j

∗
i

·

i

∗
j

∗
k

Branching Types – p.22/38



Branching Types

σ, τ ∈ Ty ::= α | σ → τ | {i = τi}
I | ∀P.τ

Example:

P = {l = join{j = join{k = ∗, j = ∗}, i = ∗}, i = {j = ∗, k = ∗}}

τ = {l = {j = {k = τ1, j = τ2}, i = τ3}, i = {j = τ4, k = τ5}}

σ = ∀P.τ = ∀

·

join

l

join
j

∗
k

∗
j

∗
i

·

i

∗
j

∗
k

·

·

l

·
j

τ1

k
τ2

j
τ3

i
·

i

τ4

j
τ5

k
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Type Equivalence
The type reduction rules:

{i = σi}
I → {i = τi}

I � {i = σi → τi}
I

∀{i = Pi}
I .{i = τi}

I � {i = ∀Pi.τi}
I

∀∗.τ � τ

� is the reflexive and transitive closure of �.
' is the reflexive, transitive, and symmetric closure of �.

The type reduction rules “bring a type’s branching shape to
the surface”.
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Example of Equivalent Types

∀

·

join

l

join
j

∗
k

∗
j

∗
i

·

i

∗
j

∗
k

·

·

l

·
j

τ1

k
τ2

j
τ3

i
·

i

τ4

j
τ5

k

·

∀

l

join

∗
j

∗
i

·

∀
j

join

∗
k

∗
j

·

τ1

k
τ2

j

τ3

i

·

i

τ4

j
τ5

k
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Type Selection Arguments

Ā ∈ IndArgument ::= ∗ | i, Ā

A ∈ Argument ::= Ā | {i = Ai}
I

Example:

·

(j, k, ∗)
l

·
i

∗
j

∗
k

Branching Types – p.26/38



Type Selection

selecti : Ty × Argument → Ty (partial function)

Example:

σ =

∀

·

join

l

join

j

∗

k

∗

j

∗

i

·

i

∗

j

∗

k

·

·

l

·

j

τ1

k

τ2

j

τ3

i

·

i

τ4

j

τ5

k

A =

·

(j, k, ∗)

l

·

i

∗

j

∗

k

selecti(τ, A) =

·

τ1

l

·

i

τ4

j

τ5

k

Branching Types – p.27/38



Terms and Typing Rules

M,N ∈ Term ::= ΛP.M | M [A] | λxτ .M | M N | xτ

Conversion rule:

(')
E ` M : τ at κ

E ` M : τ ′ at κ
if (τ ' τ ′)

Standard rules:

(ax)
E ` xτ : τ at κ

if (E : κ) and (τ ' E(x))

(→i)
E[x 7→ σ] ` M : τ at κ

E ` λxσ.M : σ → τ at κ

(→e)
E ` M : σ → τ at κ; E ` N : σ at κ

E ` M N : τ at κ

Branching Types – p.28/38



Terms and Typing Rules

M,N ∈ Term ::= ΛP.M | M [A] | λxτ .M | M N | xτ

Conversion rule:

(')
E ` M : τ at κ

E ` M : τ ′ at κ
if (τ ' τ ′)

Standard rules:

(ax)
E ` xτ : τ at κ

if (E : κ) and (τ ' E(x))

(→i)
E[x 7→ σ] ` M : τ at κ

E ` λxσ.M : σ → τ at κ

(→e)
E ` M : σ → τ at κ; E ` N : σ at κ

E ` M N : τ at κ

Branching Types – p.28/38



Terms and Typing Rules

M,N ∈ Term ::= ΛP.M | M [A] | λxτ .M | M N | xτ

Conversion rule:

(')
E ` M : τ at κ

E ` M : τ ′ at κ
if (τ ' τ ′)

Standard rules:

(ax)
E ` xτ : τ at κ

if (E : κ) and (τ ' E(x))

(→i)
E[x 7→ σ] ` M : τ at κ

E ` λxσ.M : σ → τ at κ

(→e)
E ` M : σ → τ at κ; E ` N : σ at κ

E ` M N : τ at κ

Branching Types – p.28/38



Terms and Typing Rules

M,N ∈ Term ::= ΛP.M | M [A] | λxτ .M | M N | xτ

Conversion rule:

(')
E ` M : τ at κ

E ` M : τ ′ at κ
if (τ ' τ ′)

Standard rules:

(ax)
E ` xτ : τ at κ

if (E : κ) and (τ ' E(x))

(→i)
E[x 7→ σ] ` M : τ at κ

E ` λxσ.M : σ → τ at κ

(→e)
E ` M : σ → τ at κ; E ` N : σ at κ

E ` M N : τ at κ
Branching Types – p.28/38



Terms and Typing Rules (cont.)
∀-rules:

(∀e)
E ` M : τ at κ

E ` M [A] : τ ′ at κ
if (selecti(τ, A) = τ ′)

(∀i)
expand(E,P ) ` M : τ at dP e

E ` ΛP.M : ∀P.τ at bP c
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Term Reduction
Substitution:

. . .

(ΛP.M)[x := N ] = ΛP. (M [x := expand(N,P )])

. . .

Reduction rules:

(βλ) ((λxτ .M)N) → (M [x := N ])

(βΛ) (ΛP.M)[A] → ΛP ′.((selectb(M,As))[Aa]),

if match(P,A) = (P ′, As, Aa) and P,A not trivial
(∗Λ) (ΛP.M) → M, if P is trivial
(∗A) (M [A]) → M, if A is trivial
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Theorems
Theorem (Subject Reduction).
If (M → N) and (E ` M : τ at κ), then (E ` N : τ at κ).

Type erasure: | · | : Term → UntypedTerm

Theorem (Soundness of Reduction).
If M → N , then |M | →∗ |N |.

Theorem (Completeness of Reduction).
If M is well-typed and |M | → |N |, then (M →∗ N).
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More Theorems
Theorem (Correspondence with Intersection Types).
There exist straightforward translations from typing
derivations in λB to typing derivations in a standard system
of intersection types and vice versa.

Corollary (Strong Normalization).
If M is a well typed λB-term, then M and |M | are strongly
normalizable.
If pure λ-term M is strongly normalizable, then there exists
a well typed λB-term M ′ such that |M ′| = M .
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Other Related Work
Venneri succeeded in completely removing the
intersection introduction rule, but this was for
combinatory logic [Venneri, 1994;
Dezani-Ciancaglini et al., 1997], and the approach does
not seem transferable to the λ-calculus.

Ronchi Della Rocca and Roversi [2001] have a system
called Intersection Logic (IL) which is similar to λB, but
has nothing corresponding to our explicitly typed terms
or our type equivalences.

Capitani et al. [2001] have designed a system called HL
(Hyperformulae Logic) similar to IL, although it seems
to be less complicated. HL also has nothing
corresponding to our explicitly typed terms or our type
equivalences.
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Future Work
Extend to handle subtyping.

Extend with support for an equivalent of the ω type
constant of some systems with intersection types.

Extend with union types.

Integrate with features like the expansion variables of
System I [Kfoury and Wells, 1999].

Extend with many other real language features.

Implement in a compiler.
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Conclusions
λB is the first explicitly typed calculus with the power of
intersection types which has the Curry/Howard
correspondence (the structure of typed terms
corresponds to the structure of the proofs they
annotate) and does not duplicate subterms.

Lots of nice theoretical properties have been verified for
λB: subject reduction, soundness and completeness of
typed reduction w.r.t. β-reduction on the corresponding
untyped λ-terms, correspondence to traditional
intersection types (in unpublished long version).

In logic, λB terms may be useful as typed realizers of
the so-called strong conjunction, but we do not plan to
investigate this ourselves.
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Outer Kinds of Parameters

b·c : Parameter → Kind

b∗c = ∗, bjoin{i = P̄i}
Ic = ∗, b{i = Pi}

Ic = {i = bPic}
I

Example:

·

join

l

join
j

∗
k

∗
j

∗
i

·

i

∗
j

∗
k

7→

·

∗
l

·
i

∗
j

∗
k
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Inner Kinds of Parameters

d·e : Parameter → Kind

d∗e = ∗, djoin{i = P̄i}
Ie = {i = dP̄ie

I}, d{i = Pi}
Ie = {i = dPie}

I

Example:

·

join

l

join
j

∗
k

∗
j

∗
i

·

i

∗
j

∗
k

7→

·

·

l

·
j

∗
k

∗
j
∗
i

·

i

∗
j

∗
k

Branching Types – p.38/38



References

Anindya Banerjee. A modular, polyvariant, and type-based clo-

sure analysis. In ICFP ’97 ICFP ’97. ISBN 0-89791-918-1.

Franco Barbanera, Mariangiola Dezani-Ciancaglini, and

Ugo de’Liguoro. Intersection and union types: Syntax and

semantics. Inform. & Comput., 119:202–230, 1995.

Beatrice Capitani, Michele Loreti, and Betti Venneri. Hyperfor-

mulae, parallel deductions and intersection types. Electronic

Notes in Theoretical Computer Science, 50, 2001. URL

http://www.elsevier.nl/locate/entcs/volume50.html.

Proceedings of ICALP 2001 workshop: Bohm’s Theorem:

Applications to Computer Science Theory (BOTH 2001),

Crete, Greece, 2001-07-13.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and

Betti Venneri. Principal type schemes and λ-calculus

semantics. In J. R[oger] Hindley and J[onathan] P. Seldin,

editors, To H. B. Curry: Essays on Combinatory Logic,

Lambda Calculus, and Formalism, pages 535–560. Aca-

demic Press, 1980. ISBN 0-12-349050-2.

Mariangiola Dezani-Ciancaglini, Silvia Ghilezan, and

Betti Venneri. The “relevance” of intersection and union

types. Notre Dame J. Formal Logic, 38(2):246–269, Spring

1997.

38-1

http://guinness.cs.stevens-tech.edu/~ab/
http://www.dipmat.unict.it/~barba/
http://www.di.unito.it/~dezani/
http://www.di.unito.it/~deligu/
http://www-dsi.ing.unifi.it/general/people.html
http://www.elsevier.nl/locate/entcs/volume50.html
http://www.di.unito.it/~coppo/
http://www.di.unito.it/~dezani/
http://www-dsi.ing.unifi.it/general/people.html
http://www-maths.swan.ac.uk/staff/jrh/
http://home.uleth.ca/~jonathan.seldin/
http://www.di.unito.it/~dezani/
http://www-dsi.ing.unifi.it/general/people.html


Allyn Dimock, Robert Muller, Franklyn Turbak, and J. B. Wells.

Strongly typed flow-directed representation transformations.

In ICFP ’97 ICFP ’97, pages 11–24. ISBN 0-89791-918-1.

Allyn Dimock, Ian Westmacott, Robert Muller, Franklyn Turbak,

and J. B. Wells. Functioning without closure: Type-safe cus-

tomized function representations for Standard ML. In Proc.

6th Int’l Conf. Functional Programming, pages 14–25. ACM

Press, 2001a. ISBN 1-58113-415-0.

Allyn Dimock, Ian Westmacott, Robert Muller, Franklyn Turbak,

J. B. Wells, and Jeffrey Considine. Program representation

size in an intermediate language with intersection and union

types. In Types in Compilation, Third Int’l Workshop, TIC

2000, volume 2071 of LNCS, pages 27–52. Springer-Verlag,

2001b. ISBN 3-540-42196-3.

ICFP ’97. Proc. 1997 Int’l Conf. Functional Programming, 1997.

ACM Press. ISBN 0-89791-918-1.

Trevor Jim. What are principal typings and what are they good

for? In Conf. Rec. POPL ’96: 23rd ACM Symp. Princ. of

Prog. Langs., 1996.

Assaf J. Kfoury, Harry G. Mairson, Franklyn A. Turbak, and

J. B. Wells. Relating typability and expressibility in finite-rank

intersection type systems. In Proc. 1999 Int’l Conf. Func-

tional Programming, pages 90–101. ACM Press, 1999. ISBN

1-58113-111-9.

38-2

http://www.das.harvard.edu/users/students/Allyn_Dimock/Allyn_Dimock.html
http://oak.bc.edu/~muller/
http://www-swiss.ai.mit.edu/~lyn/lyn.html
http://www.cee.hw.ac.uk/~jbw/
http://www.das.harvard.edu/users/students/Allyn_Dimock/Allyn_Dimock.html
http://cs-people.bu.edu/ianw/
http://oak.bc.edu/~muller/
http://www-swiss.ai.mit.edu/~lyn/lyn.html
http://www.cee.hw.ac.uk/~jbw/
http://www.das.harvard.edu/users/students/Allyn_Dimock/Allyn_Dimock.html
http://cs-people.bu.edu/ianw/
http://oak.bc.edu/~muller/
http://www-swiss.ai.mit.edu/~lyn/lyn.html
http://www.cee.hw.ac.uk/~jbw/
http://cs-people.bu.edu/jconsidi/
http://www.research.att.com/~trevor/
http://www.cs.bu.edu/~kfoury/
http://cs-people.bu.edu/mairson/
http://www-swiss.ai.mit.edu/~lyn/lyn.html
http://www.cee.hw.ac.uk/~jbw/


Assaf J. Kfoury and J. B. Wells. Principality and decidable type

inference for finite-rank intersection types. In Conf. Rec.

POPL ’99: 26th ACM Symp. Princ. of Prog. Langs., pages

161–174, 1999. ISBN 1-58113-095-3.

Benjamin C. Pierce. Programming with intersection types,

union types, and polymorphism. Technical Report CMU-CS-

91-106, Carnegie Mellon University, February 1991.

John C. Reynolds. Design of the programming language

Forsythe. In P. O’Hearn and R. D. Tennent, editors, Algol-

like Languages. Birkhauser, 1996.

Simona Ronchi Della Rocca. Principal type schemes and unifi-

cation for intersection type discipline. Theoret. Comput. Sci.,

59(1–2):181–209, March 1988.

Simona Ronchi Della Rocca and Luca Roversi. Intersection

logic. In Computer Science Logic, CSL ’01. Springer-Verlag,

2001.

Paweł Urzyczyn. Type reconstruction in Fω . Math. Structures

Comput. Sci., 7(4):329–358, 1997.

Steffen J. van Bakel. Intersection Type Disciplines in Lambda

Calculus and Applicative Term Rewriting Systems. PhD the-

sis, Catholic University of Nijmegen, 1993.

38-3

http://www.cs.bu.edu/~kfoury/
http://www.cee.hw.ac.uk/~jbw/
http://www.cis.upenn.edu/~bcpierce/
http://www.cs.cmu.edu/~jcr/
http://www.dcs.qmw.ac.uk/~ohearn/
http://www.di.unito.it/~ronchi/
http://www.di.unito.it/~ronchi/
http://www.di.unito.it/servlet/DipAnagrafica.ShowPerson?cognome=ROVERSI
http://zls.mimuw.edu.pl/~urzy/
http://theory.doc.ic.ac.uk/~svb/


Betti Venneri. Intersection types as logical formulae. J. Logic

Comput., 4(2):109–124, April 1994.

J. B. Wells, Allyn Dimock, Robert Muller, and Franklyn Turbak.

A typed intermediate language for flow-directed compilation.

In Proc. 7th Int’l Joint Conf. Theory & Practice of Software

Development, pages 757–771, 1997. ISBN 3-540-62781-2.

Superseded by Wells et al. [2002].

J. B. Wells, Allyn Dimock, Robert Muller, and Franklyn Turbak.

A calculus with polymorphic and polyvariant flow types.

J. Funct. Programming, 12(3):183–227, May 2002. Super-

sedes Wells et al. [1997].

38-4

http://www-dsi.ing.unifi.it/general/people.html
http://www.cee.hw.ac.uk/~jbw/
http://www.das.harvard.edu/users/students/Allyn_Dimock/Allyn_Dimock.html
http://oak.bc.edu/~muller/
http://www-swiss.ai.mit.edu/~lyn/lyn.html
http://www.cee.hw.ac.uk/~jbw/
http://www.das.harvard.edu/users/students/Allyn_Dimock/Allyn_Dimock.html
http://oak.bc.edu/~muller/
http://www-swiss.ai.mit.edu/~lyn/lyn.html

	Overview
	The Church Project
	The Church Project: Related Work
	Overview
	Intersection Types
	Polymorphism with Intersection Types
	Typability for Various Systems
	Flexibility of Intersection Types
	Overview
	Trouble with Intersection Introduction
	Earlier Approaches
	Extending An Earlier Approach
	Our Earlier $lcil $ Approach
	Overview
	The System $lb $
	Example: An Untyped Term
	Example: A Corresponding $lambda ^{mathrm {CIL}}$-term
	Example: A Corresponding $oursystem $-term
	Nested Branching Types
	Kinds
	Type Selection Parameters
	Branching Types
	Type Equivalence
	Example of Equivalent Types
	Type Selection Arguments
	Type Selection
	Terms and Typing Rules
	Terms and Typing Rules (cont.)
	Term Reduction
	Theorems
	More Theorems
	Overview
	Other Related Work
	Future Work
	Conclusions
	Outer Kinds of Parameters
	Inner Kinds of Parameters

