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What are types?
Types are used as predicates or specifications
connected with some semantics.

Types are usually syntactic names of some of the
conceivable predicates/specifications.

Usually, rules of a type system associate types with
terms that satisfy or refine them.

Non-characterizers of types:

Types can be used for description or prescription.

Types may be intended for reading by humans or
computers.

Types may be easy or hard to determine.
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Why find types automatically?
Without type inference, explicit types might be needed
at any program point. In the case of higher-order
programming, they would get big, and it would be too
tedious to type them.

For programming flexibility, it is best to automatically
calculate optimal types, because programmers might
write type information that is not “most general”,
preventing typable programs from being accepted
and/or making modules reusable in fewer combinations.

Programming language type systems are getting more
and more complex (e.g., Cyclone, a “safe C”) and it is
getting harder for programmers to supply the types.
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An example program.
This Standard ML (SML) program:

fun twice f x = f (f x);
fun id z = z;
twice (twice id);

is the same as this λ-term:
@

λt.

@

λi.

@

t @

t i

λy.

y

λf.

λx.

@

f @

f x

= (λt.(λi.t (t i)) (λy.y))(λf.λx.f (f x))
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Example: Types.
Our example analyzed using the simply typed λ-calculus:

@ o → o

λt ((o → o) → (o → o)) → (o → o)

@ o → o

λi (o → o) → (o → o)

@ o → o

t (o → o) → (o → o) @ o → o

t (o → o) → (o → o) i o → o

λz o → o

z o

λf (o → o) → (o → o)

λx o → o

@ o

f o → o @ o

f o → o x o
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Example: Flow.
Our example analyzed using 0CFA [Shivers, 1991]:

@

λt

@

λi

@

t @

t i

λz

z

λf

λx

@

f @

f x
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Type analysisis flow analysis.
Illustrating how the type and flow analyses are intertwined:

@ o→o

λt ((o→o)→(o→o))→(o→o)

@ o→o

λi (o→o)→(o→o)

@ o→o

t (o→o)→(o→o) @ o→o

t (o→o)→(o→o) i o→o

λz o→o

z o

λf (o→o)→(o→o)

λx o→o

@ o

f o→o @ o

f o→o x o
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What is type polymorphism?
An important feature mitigating type system inflexibility is
type polymorphism, which:

Allows a program fragment to be viewed in different
ways, depending on where its output is used or where
its inputs come from.

Is essential for code reuse [Reynolds, 1974] and
abstract data types [Mitchell and Plotkin, 1988].

Is traditionally treated formally using “for all” (∀)
quantifiers [Girard, 1972] or “there exists” (∃) quantifiers
and/or by a notion of subtyping (T1 ≤ T2).
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Example: “for all” quantifiers.

val swap∀a,b.(a×b)→(b×a) = (fn (xa, yb) ⇒ (yb, xa));

val pair1int×bool = (1, true);

val pair2real×real = (2.7, 9.9);

(swap(int×bool)→(bool×int) pair1,

swap(real×real)→(real×real) pair2);

An algorithm discovers the types automatically [Damas
and Milner, 1982] (at least for the above example).

In body of polymorphic function, the usage types are
hidden behind type variables.
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Example: “there exists” quantifiers.

val closure1int×(int→bool) = (5, (fn x ⇒ x > 1));

val closure2bool×(bool→bool) = (true, (fn x ⇒ not x));

val closure = if b then closure1∃a.a×(a→bool)

else closure2∃a.a×(a→bool);

val resultbool = (#2 closure)a→bool(#1 closure)a;

Dual of universal quantifier.

Usage site does not know source types.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.12/46



Polymorphism via intersection types.
Type polymorphism by listing usage types [Coppo,
Dezani-Ciancaglini, and Venneri, 1980].

Example comparing ∀-quantified and intersection types:

∀-quantified types: (fn x ⇒ x)∀a.(a→a)

intersection types: (fn x ⇒ x)(int→int)∩(real→real)

Example is semantically like ∀a ∈ {int, real}.a→ a, but
the typing rules have significant practical differences.

Named “intersection types” because in traditional model
theory, semantic denotations [T1℄ and [T2℄ are program
fragment sets and [T1 ∩ T2℄ = [T1℄ ∩ [T2℄ (usually).
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Example: Intersection types.

val swap

„

∩
(int× bool) → (bool× int)
(real× real) → (real× real)

«

= (fn (x

int

real, y

bool

real) ⇒ (y

bool

real, x

int

real));

val pair1int×bool = (1, true);

val pair2real×real = (2.7, 9.9);

(swap(int×bool)→(bool×int) pair1,

swap(real×real)→(real×real) pair2);

All types can be discovered automatically [van Bakel,
1993; Jim, 1996; Kfoury and Wells, 1999]. (Also Ronchi
Della Rocca [1988].)

Exposes usage types throughout.
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Example: Union types.

val closure1int×(int→bool) = (5, (fn x ⇒ x > 1));

val closure2bool×(bool→bool) = (true, (fn x ⇒ not x));

val closure = if b then closure1

“

∪
int× (int→ bool)
bool× (bool→ bool)

”

else closure2

“

∪
int× (int→ bool)
bool× (bool→ bool)

”

;

val resultbool = (#2 closure)
int→ bool

bool → bool(#1 closure)
int

bool;

Dual of intersection types.

Exposes usage types throughout.
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What is the rank of polymorphism?
Rank is generally relative to some polymorphic type
constructor C, e.g., ∩ or ∀. Rank counts the number of
“→” occurrences an occurrence of C is inside the left
argument of [Leivant, 1983].

Examples:

Type
→
a b

∩
→
a b

→
c b

→
→
d ∀a

→
a a

e
→

→
∩

a b

d

e

Rank 0 1 2 3

Rank-k bounds how far into the future evaluation a type
system can look in making distinctions when predicting
behavior. The rank-k restrictions of intersection types
are decidable.
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Terms typed by type systems.

F: System F.
Λk: rank-k System F.
⋂

: intersection types.
⋂

k: rank-k of
⋂

.
Decidable.
Undecidable.

ML

Λ2

⋂

2

Λ3

⋂

3

...
F

· · ·
⋂

(Decision procedure complexity now known [Kfoury,
Mairson, Turbak, and Wells, 1999].)
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Example untypable with ∀-quantifiers.

M =













fun self_apply2 z ⇒ (z z) z;

fun apply f x ⇒ f x;

fun reverse_apply y g ⇒ g y;

fun id w ⇒ w;

(self_apply2 apply not true,

self_apply2 reverse_apply id false not);













Program fragment M safely computes (false, true).

Urzyczyn [1997] proved that M is not typable in Fω.

Fω types as many pure λ-terms as the Calculus of
Constructions [Giannini, Honsell, and Ronchi
Della Rocca, 1993].

M needs only rank-3 intersection types.
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Program analysis with intersection types.
Intersection type systems have been developed for many
kinds of program analysis aimed at justifying compiler
optimizations to produce better machine code.

Flow [Banerjee, 1997].

Dead code [Damiani and Giannini, 2000; Damiani,
2003].

Strictness [Solberg et al., 1994; Jensen, 1998].

Totality [Solberg et al., 1994; Coppo et al., 2002].

Intersection types seem to have the potential to be a
general, flexible framework for many program analyses.
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What is compositional analysis?
An analysis is compositional when the parts are
analyzed independently (with zero knowledge of their
neighbors and surrounding context) and the analysis
results are combined without reinspecting the parts.

Compositional analysis results are always the best
information for any possible usage context. If a part is
unchanged and its analysis result is available,
reanalyzing it can not help. Only new combinations
need to be checked.

Compositional analysis is better for dynamic,
incremental, and modular software assembly. (More on
next page.)

Many type systems do not support compositional
analysis, because they lack principal typings. (More
later.) Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.21/46



Why compositional analysis?
For efficiency, minimal analysis/compilation work
needed on incremental changes. Old results for
portions can be reliably reused.

Reliability of incrementally modified systems. The
analysis obtained by incremental changes (such as
modifying one file and recompiling) should be identical
to reanalyzing the entire system.

Modern systems like Java and C♯ have broken the link
needed by separate compilation between the
compile-time and link-time environments, so it is better
not to use any compile-time environment.

A network node without global knowledge can gradually
learn more about other entities and predict possible
failures as soon as sufficient information is available.
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What is a typing?
A type system has typing judgements that assign
interesting properties to program fragments.

Conventional typing judgements often look like this:

A ⊢ M : T

To encourage better thinking, we write this instead:

M : 〈A ⊢ T 〉

typing
︷ ︸︸ ︷

untyped term type environment result type

A type system can thus be seen as a set of pairs of the
form (M : Θ) where Θ is usually of the form 〈A ⊢ T 〉.
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What is a principal typing?
Let S be some type system.

The statement Θ1 ≤S Θ2 (“Θ1 is at least as strong as Θ2

in system S”) means M : Θ1 implies M : Θ2 for every M .

A typing Θ for term M is principal exactly when Θ is at
least as strong as all typings for M [Wells, 2002].

Do not confuse this with the weaker notion of “principal
type” with fixed free variable type assumptions often
mentioned for the Hindley/Milner (HM) type system
(Haskell, OCaml, SML, etc.).

Principal typings (PTs) allow compositional analysis.

Until Wells [2002], each system with PTs had its own
definition via syntactic operations like substitution,
subtyping, weakening, etc.

Explaining Concepts in Compositional Type-Based Program Analysis:Principality, Intersection Types, Expansion, etc. – p.24/46



Which systems have principal typings?
Many type systems with ∀-quantifiers (e.g., HM and
System F) do not have PTs [Wells, 2002].

The popular W algorithm [Damas and Milner, 1982] for
HM is not compositional and compositional analysis for
HM can not use HM typings for intermediate results.

Fortunately, a restricted rank-2 intersection type
system [Damas, 1985] types the same terms and has
PTs. My first case study uses this to analyze HM
compositionally.

Getting PTs usually needs types or type constraints that
closely follow the language semantics. For the
λ-calculus, adding intersection types can generally gain
PTs (e.g., [Margaria and Zacchi, 1995]).
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Implications of not having PTs.
For example, HM’s lack of principal typings means an HM
analysis algorithm must do one of these:

Be incomplete (failing on some typable terms).
Be noncompositional (not strictly bottom-up). For
example, the W algorithm [Damas and Milner, 1982] is
noncompositional because for (let x = M in N) it first
analyzes M and then uses the result in analyzing N .
Not use HM typings for intermediate results. E.g., the
typing of (xx) in the Chap. 1 system of Damas [1985]:

〈(x : a, x : a→ b) ⊢ b〉

This is essentially intersection types, i.e.:

〈(x : a ∩ (a→ b)) ⊢ b〉

Essentially the same was done by Shao and Appel
[1993] and Bernstein and Stark [1995].
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Case study: Type error slicing.
I now will show by examples a case study where doing an
analysis compositionally made things much easier.

The system does type error slicing [Haack and Wells,
2004], which means it analyzes a untypable term and
outputs a minimal untypable slice of the term to explain the
type error.

The system I will describe uses a type system that types
the same terms as HM, but uses intersection types instead
of “for all” quantifiers internally, so it is compositional. This
made it much easier to generate and solve constraints.
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Type error example.
val average = fn weight => fn list =>
let val iterator = fn (x,(sum,length)) =>

(sum + weight x, length + 1)
val (sum,length) = foldl iterator (0,0) list

in sum div length end

val find_best = fn weight => fn lists =>
let val average = average weight

val iterator = fn (list,(best,max)) =>
let val avg_list = average list
in if avg_list > max then

(list,avg_list)
else
(best,max)

end
val (best,_) = foldl iterator (nil,0) lists
in best end

val find_best_simple = find_best 1
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Wrong type error location.
val average = fn weight => fn list =>
let val iterator = fn (x,(sum,length)) =>

(sum + weight x, length + 1)
val (sum,length) = foldl iterator (0,0) list

in sum div length end

val find_best = fn weight => fn lists =>
let val average = average weight

val iterator = fn (list,(best,max)) =>
let val avg_list = average list
in if avg_list > max then

(list,avg_list)
else
(best,max)

end
val (best,_) = foldl iterator (nil,0) lists
in best end

val find_best_simple = find_best 1
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Another wrong type error location.
val average = fn weight => fn list =>
let val iterator = fn (x,(sum,length)) =>

(sum + weight x, length + 1)
val (sum,length) = foldl iterator (0,0) list

in sum div length end

val find_best = fn weight => fn lists =>
let val average = average weight

val iterator = fn (list,(best,max)) =>
let val avg_list = average list
in if avg_list > max then

(list,avg_list)
else
(best,max)

end
val (best,_) = foldl iterator (nil,0) lists
in best end

val find_best_simple = find_best 1
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Correct type error location.
val average = fn weight => fn list =>
let val iterator = fn (x,(sum,length)) =>

(sum + weight x, length + 1)
val (sum,length) = foldl iterator (0,0) list

in sum div length end

val find_best = fn weight => fn lists =>
let val average = average weight

val iterator = fn (list,(best,max)) =>
let val avg_list = average list
in if avg_list > max then

(list,avg_list)
else
(best,max)

end
val (best,_) = foldl iterator (nil,0) lists
in best end

val find_best_simple = find_best 1
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Type error slice.

type constructor clash,
endpoints: function vs. int

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find_best = fn weight =>
(.. average weight ..)

.. find_best 1 ..)
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A possible fix.

type constructor clash,
endpoints: function vs. int

(.. val average = fn weight =>
(.. weight * (..) ..)

.. val find_best = fn weight =>
(.. average weight ..)

.. find_best 1 ..)
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Another possible fix.

type constructor clash,
endpoints: function vs. int

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find_best = fn weight =>
(.. average weight ..)

.. find_best (fn x => x) ..)
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Yet another possible fix.

type constructor clash,
endpoints: function vs. int

(.. val average = fn weight =>
(.. weight (..) ..)

.. val find_best = fn weight =>
(.. average (fn x => weight * x) ..)

.. find_best 1 ..)
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Case study: Intersection type inference.
I will now present some details on how to actually do
compositional type inference for a system that has type
polymorphism.

This involves inferring types using both ordinary function
types and intersection types to provide polymorphism.

The key mechanism to understand is expansion, which is
presented here via a well chosen example.
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A problematic type inference example.
Consider typing this example λ-term:

M = (λx.x (λy.y z))
︸ ︷︷ ︸

N

(λf.λx.f (f x))
︸ ︷︷ ︸

P

In an intersection type system, the usual principal typings of
N and P are:

N : 〈(z : a) ⊢ T1 → c〉 where T1 = ((a → b) → b) → c

P : 〈() ⊢ T2〉 where T2 = ((e → f) ∩ (d → e)) → (d → f)

To type M , we must find derivable judgements such that:

N : 〈(z : T ′′) ⊢ T → T ′〉 P : 〈() ⊢ T 〉

They ought to be obtainable from the principal typings.
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Can we unify the example types? (1)
Can we unify T1 and T2 merely by substitution?

T1 = ((a→b) → b ) → c

T2 = ((e→f) ∩ (d→e)) → (d → f)

T1 = →

→

→

a b

b

c

T2 = →

∩

→

e f

→

d e

→

d f

Problem: clash between → and ∩.

Could we use T ∩ T = T to make the intersection go away?
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Can we unify the example types? (2)
If using T ∩ T = T , we now have 3 types to unify together:

→

→

→

a b

b

c

→

∩

→

e f

→

d e

→

d f

Oh, no! We cannot solve a→ b = b (without recursive types).

→

→

a b

b

→

e f

→

d e
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Solving the example with expansion.
Instead, we do expansion [Coppo, Dezani-Ciancaglini, and
Venneri, 1980] on the typing of N to solve the problem:

N : 〈 (z : a) ⊢( ((a → b) → b)
︸ ︷︷ ︸

→ c ) → c〉

↓

N : 〈(z : a1 ∩ a2) ⊢(((a1 → b1) → b1)
︷ ︸︸ ︷

∩ ((a2 → b2) → b2)
︷ ︸︸ ︷

→ c ) → c〉

P : 〈 () ⊢ ( e → f) ∩ ( d → e) → (d → f)〉

Then we apply this substitution (dotted lines above):

Sf = (e := a1 → b1, f := b1, d := a2 → a1 → b1,

b2 := a1 → b1, c := (a2 → a1 → b1) → b1 )
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Huh? What did you just do?
But how precisely did expansion go from the 1st to the 2nd
typing for N?

Expansion simulated in types a transformation on the typing
derivation for N that inserted a use of the
intersection-introduction typing rule at a deeply nested
position.

Recently this has become much easier to understand due
to a new definition using expansion variables (E-variables)
[Kfoury and Wells, 1999; Carlier et al., 2004], which I will
now show you.
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How to do expansion with E-variables.
We apply S = (e := (((a := a1), b := b1) ∩ ((a := a2), b := b2))):

λx.

@

x:T e

λy.

@

y:a→b z:a

−
[S] ·
−−−→

λx.

@

x:[S] T ∩

λy.

@

y:a1→b1 z:a1

λy.

@

y:a2→b2 z:a2

Effect on typings:

〈(z : e a) ⊢ (e ((a → b) → b) → c) → c〉

−
[S] ·
−−−→ 〈(z : a1 ∩ a2) ⊢ (((a1 → b1) → b1) ∩ ((a2 → b2) → b2) → c) → c〉
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Conclusion.
Types can be used for many program analyses and are
already equivalent to flow analysis.

Type polymorphism is vital, and can be obtained via
either “for all” quantifiers or intersection types.

Compositional analysis is more suitable for a number of
scenarios that are becoming more common, and
principal typings enable compositional analysis.

Getting compositionality is hard with “for all” quantifiers,
so there may be motivation to learn intersection types
and similar technologies.

Doing compositional analysis with intersection types
requires expansion. This is now much better
understood and can be done with E-variables.
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