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Some Goalsfor this Talk

Possibly enlarge some audience members’ conception
of what types can be.

Show examples where it Is reasonable to use similar
syntax for types and terms.

Show how the definition of a type system might be
based on rewriting on the terms of the system.

Give what may be a clearer explanation of type
Inference in System | [Kfoury and Wells, 1999].
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Some | mportant Points

# Non-definitional aspects of types:
s Types may be used for description or prescription.

» Types may be intended for reading by humans or
computers.

» Types may be easy or hard to determine.

# Itis not immoral/wrong if types are not formulas of well
known independently interesting logics.

# Reasoning about a software system is compositional If
the pieces are reasoned about independently and the
results are composed without reinspecting the pieces.

Rewriting in theDesign of Type Systems — p.4/33



Overview

Goals for this talk

#» Typeinference as rewriting via an example with

simple types

# |[ntersection types and why you might want them

# Type inference as rewriting via an example with

Intersection types

Various concluding remarks

Rewriting in theDesign of Type Systems — p.5/33



An Example Program

This ML program: fun twice f x = f (f x);
fun 1d z = z;

twice (twice id);

can be seen as this \-term:

(At.(Ait(t2))(Az.2))(Af Az f(fx))

which can be drawn as this tree: Q@
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Simple Typesfor the Example

Our example analyzed using the simply typed \-calculus:

/@

(0 —0) — (00— o) (0 — o) f (0 —0)— (0— o)
| Q— o0 )\a: 0— o0
A (0—0) — (0—0) Z 0—0
/QA Q— 0 zZ 0 f 0—>0>@
t (0—0)— (00— o) Q— 0 f o—o



Type Inferencefor Simple Types

# There is a well known analysis algorithm using
Robinson’s unification algorithm as a subprocedure
(see Hindley [1997] for detalls).

# Pretty much everything is known about type inference
for simple types, including the complexity (O(n) under
standard assumptions).

# However, | think it will be helpful to view the process
from a different angle. Probably someone else has
done something like this before, perhaps not quite the
way | will do It.

# |t is not essential that the following diagrams are DAGS,
but any implementation would do so and it makes the
examples fit.
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Another Look at theLambda Term

This Is just another view of the same term. However, | will
also say It Is the term’s type, just not yet normalized.
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Some of the Type Rewriting Rules

@ Q @ let
/ \ = /7 \ / N\ =
0/ \o A B A B
let = \ = A
RN | > /7N
. A B ‘A B B A B

Some rules omitted. There are rules for garbage collection.
Formalism unverified, for discussion only.
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Normalizing the Term’s Type (1)




Normalizing the Term’s Type (2)




Normalizing the Term’s Type (3)




Nor malizing the Term’s Type (4)




Normalizing the Term’s Type (5)



Normalizing the Term’s Type (6)
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Normalizing the Term’s Type (7)
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Read the “\” as “—” to see a traditional principal typing for
the right subterm.



Normalizing the Term’s Type (8)

Q@
7\
A A
/ ()
A A
S

()

In a number of additional steps, the left subterm’s principal
typing Is found.



Normalizing the Term’s Type (9)

# |n a number of additional steps, the principal typing of
the entire term Is reached:

!
()

#® So type inference for simple types can be viewed as
simply applying an unusual set of rewrite rules to the A

term.

# What about for more complex type systems? Now | will
consider intersection types.
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| nter section Types
# Type polymorphism by Iisting usage

types [Coppo, Dezani-Ciancaglini, and Venneri, 1980]
o Why “intersection”? If semantic denotations |o| and |7]
are program fragment sets, then o N 7| = [o] N [7].

# Example comparing intersection and V-quantified types:

intersection types: (fn x = x)(int—int)N(bool—bool)
v-quantified types: (fn x = x)"*(@—a)

Example is semantically like Vo € {int,bool}.ac — «, but
has significant practical differences.
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Typability for Various Systems

o,

F: System F. e IR
. //W/ \\\\\ \\
Ak..rank-k System F (ML ﬂ;\\\ \
N: intersection types.  //| n AR N \
/| 2 | 13 \
. |\ |
) rank-% of (. r\ Ji) \‘
| \ N a | . o ﬂ
: | \\ - £\§ 7 // ,
Undecidable. v N !
\ : 1 /
\ . // /
\\ F /7 //
§\ // 7
\\\—/ //
(Asymptotic complexity now
known [Kfoury, Mairson, Turbak, and Wells, 1999].)
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Flexibility of Intersection Types

fun self apply2z = (zz) z;
fun apply f x = £ x;
fun reverse applyyg=gy;
fun id w = w;
(self apply2 apply not true,
self apply2 reverse apply id false not);

# The example safely computes (false, true).

EWaYeYw/

#® Urzyczyn [1997] proved this example is not typable in
F., considered the most powerful type system with
universal quantifiers.

#® The example is typable in the rank-3 restriction of
Intersection types.
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Another Example

Consider this A-term:
(Az.zx)(Ay.2)

The DAG is formed a bit differently from before because
Intersection types are more flexible:

* Z

|
Q The colored bound-

)\/ aries correspond to
expansion variables
In System |.

/ N\
=
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Normalizing the Typing (1)

. Tc

I Q

@ d
o @;\X@

0



Normalizing the Typing (2)

. @/)

The principal typing of (Ax.xzz) now appears on the left. The
typing on the right is already the principal typing of (A\y.z).
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Normalizing the Typing (3)

In 2 more steps, the boundaries (expansion variables) play

Jo g

Only the contents of a boundary may be duplicated and
then all iIncoming edges must be split with a A node
connected to the corresponding nodes in the split copies.

Rewriting in theDesign of Type Systems — p.28/33



Normalizing the Typing (4)

# The typing’s normal form indicates that the result is
obtained from the variable z and that a copy of z Is
discarded in the process.

# Thus, a complex type inference problem is just applying
a set of rewrite rules to the \ term.
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Future Work

Formalize these ideas.
Extend with many other real language features.
Extend with conditional types.

Implement in a compiler.
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Related Work in the Church Project

o Kfoury [1996, 2000]: “A linearization of the lambda
calculus”.

1 N\NN

Kfoury [1999]: “Beta-reduction as unification”.

Kfoury and Wells [1999]: “Principality and Decidable
Type Inference for Finite-Rank Intersection Types”, the
paper which introduced System | and its principal typing
algorithm.

o Updated work on System |: Carlier [2002] and

Kfoury, Washburn, and Wells [2002].

L I

# Ongoing work extending expansion variables to work for
more programming language features: tagged variants
(usually handled with sum types), mutually recursive
definitions, etc.
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Conclusions

For some type systems, typings can be viewed as just
the result of normalizing the term using a particular set
of rewrite rules.

These rules may yield results more abstract than those
yielded by the usual evaluation rules.

This may be able to give a clearer explanation of how
some type systems work.

The close connection between rewriting and types Is
made more apparent.
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