
Rewriting in the
Design of Type Systems

Joe Wells

ULTRA Group

School of Mathematical and Computer Sciences

Heriot-Watt University

http://www.macs.hw.ac.uk/˜jbw/

Rewriting in theDesign of Type Systems – p.1/33

http://www.macs.hw.ac.uk/~jbw/


Overview
Goals for this talk

Type inference as rewriting via an example with simple
types

Intersection types and why you might want them

Type inference as rewriting via an example with
intersection types

Various concluding remarks

Rewriting in theDesign of Type Systems – p.2/33



Some Goals for this Talk
Possibly enlarge some audience members’ conception
of what types can be.

Show examples where it is reasonable to use similar
syntax for types and terms.

Show how the definition of a type system might be
based on rewriting on the terms of the system.

Give what may be a clearer explanation of type
inference in System I [Kfoury and Wells, 1999].

Rewriting in theDesign of Type Systems – p.3/33



Some Goals for this Talk
Possibly enlarge some audience members’ conception
of what types can be.

Show examples where it is reasonable to use similar
syntax for types and terms.

Show how the definition of a type system might be
based on rewriting on the terms of the system.

Give what may be a clearer explanation of type
inference in System I [Kfoury and Wells, 1999].

Rewriting in theDesign of Type Systems – p.3/33



Some Goals for this Talk
Possibly enlarge some audience members’ conception
of what types can be.

Show examples where it is reasonable to use similar
syntax for types and terms.

Show how the definition of a type system might be
based on rewriting on the terms of the system.

Give what may be a clearer explanation of type
inference in System I [Kfoury and Wells, 1999].

Rewriting in theDesign of Type Systems – p.3/33



Some Goals for this Talk
Possibly enlarge some audience members’ conception
of what types can be.

Show examples where it is reasonable to use similar
syntax for types and terms.

Show how the definition of a type system might be
based on rewriting on the terms of the system.

Give what may be a clearer explanation of type
inference in System I [Kfoury and Wells, 1999].

Rewriting in theDesign of Type Systems – p.3/33



Some Important Points
Non-definitional aspects of types:

Types may be used for description or prescription.

Types may be intended for reading by humans or
computers.

Types may be easy or hard to determine.

It is not immoral/wrong if types are not formulas of well
known independently interesting logics.

Reasoning about a software system is compositional if
the pieces are reasoned about independently and the
results are composed without reinspecting the pieces.

Rewriting in theDesign of Type Systems – p.4/33



Some Important Points
Non-definitional aspects of types:

Types may be used for description or prescription.

Types may be intended for reading by humans or
computers.

Types may be easy or hard to determine.

It is not immoral/wrong if types are not formulas of well
known independently interesting logics.

Reasoning about a software system is compositional if
the pieces are reasoned about independently and the
results are composed without reinspecting the pieces.

Rewriting in theDesign of Type Systems – p.4/33



Some Important Points
Non-definitional aspects of types:

Types may be used for description or prescription.

Types may be intended for reading by humans or
computers.

Types may be easy or hard to determine.

It is not immoral/wrong if types are not formulas of well
known independently interesting logics.

Reasoning about a software system is compositional if
the pieces are reasoned about independently and the
results are composed without reinspecting the pieces.

Rewriting in theDesign of Type Systems – p.4/33



Some Important Points
Non-definitional aspects of types:

Types may be used for description or prescription.

Types may be intended for reading by humans or
computers.

Types may be easy or hard to determine.

It is not immoral/wrong if types are not formulas of well
known independently interesting logics.

Reasoning about a software system is compositional if
the pieces are reasoned about independently and the
results are composed without reinspecting the pieces.

Rewriting in theDesign of Type Systems – p.4/33



Some Important Points
Non-definitional aspects of types:

Types may be used for description or prescription.

Types may be intended for reading by humans or
computers.

Types may be easy or hard to determine.

It is not immoral/wrong if types are not formulas of well
known independently interesting logics.

Reasoning about a software system is compositional if
the pieces are reasoned about independently and the
results are composed without reinspecting the pieces.

Rewriting in theDesign of Type Systems – p.4/33



Some Important Points
Non-definitional aspects of types:

Types may be used for description or prescription.

Types may be intended for reading by humans or
computers.

Types may be easy or hard to determine.

It is not immoral/wrong if types are not formulas of well
known independently interesting logics.

Reasoning about a software system is compositional if
the pieces are reasoned about independently and the
results are composed without reinspecting the pieces.

Rewriting in theDesign of Type Systems – p.4/33



Overview
Goals for this talk

Type inference as rewriting via an example with
simple types

Intersection types and why you might want them

Type inference as rewriting via an example with
intersection types

Various concluding remarks

Rewriting in theDesign of Type Systems – p.5/33



An Example Program

This ML program: fun twice f x = f (f x);

fun id z = z;

twice (twice id);

can be seen as this λ-term:
(λt.(λi.t(ti))(λz.z))(λf.λx.f(fx))

which can be drawn as this tree: @
λt

@
λi

@
t @

t i

λz

z

λf

λx

@
f @

f x

Rewriting in theDesign of Type Systems – p.6/33



An Example Program

This ML program: fun twice f x = f (f x);

fun id z = z;

twice (twice id);

can be seen as this λ-term:
(λt.(λi.t(ti))(λz.z))(λf.λx.f(fx))

which can be drawn as this tree: @
λt

@
λi

@
t @

t i

λz

z

λf

λx

@
f @

f x

Rewriting in theDesign of Type Systems – p.6/33



An Example Program

This ML program: fun twice f x = f (f x);

fun id z = z;

twice (twice id);

can be seen as this λ-term:
(λt.(λi.t(ti))(λz.z))(λf.λx.f(fx))

which can be drawn as this tree: @
λt

@
λi

@
t @

t i

λz

z

λf

λx

@
f @

f x

Rewriting in theDesign of Type Systems – p.6/33



Simple Types for the Example
Our example analyzed using the simply typed λ-calculus:

@ o → o

λt ((o → o) → (o → o)) → (o → o)

@ o → o

λi (o → o) → (o → o)

@ o → o

t (o → o) → (o → o) @ o → o

t (o → o) → (o → o) i o → o

λz o → o

z o

λf (o → o) → (o → o)

λx o → o

@ o

f o → o @ o

f o → o x o

Rewriting in theDesign of Type Systems – p.7/33



Type Inference for Simple Types
There is a well known analysis algorithm using
Robinson’s unification algorithm as a subprocedure
(see Hindley [1997] for details).

Pretty much everything is known about type inference
for simple types, including the complexity (O(n) under
standard assumptions).

However, I think it will be helpful to view the process
from a different angle. Probably someone else has
done something like this before, perhaps not quite the
way I will do it.

It is not essential that the following diagrams are DAGs,
but any implementation would do so and it makes the
examples fit.

Rewriting in theDesign of Type Systems – p.8/33



Type Inference for Simple Types
There is a well known analysis algorithm using
Robinson’s unification algorithm as a subprocedure
(see Hindley [1997] for details).

Pretty much everything is known about type inference
for simple types, including the complexity (O(n) under
standard assumptions).

However, I think it will be helpful to view the process
from a different angle. Probably someone else has
done something like this before, perhaps not quite the
way I will do it.

It is not essential that the following diagrams are DAGs,
but any implementation would do so and it makes the
examples fit.

Rewriting in theDesign of Type Systems – p.8/33



Type Inference for Simple Types
There is a well known analysis algorithm using
Robinson’s unification algorithm as a subprocedure
(see Hindley [1997] for details).

Pretty much everything is known about type inference
for simple types, including the complexity (O(n) under
standard assumptions).

However, I think it will be helpful to view the process
from a different angle. Probably someone else has
done something like this before, perhaps not quite the
way I will do it.

It is not essential that the following diagrams are DAGs,
but any implementation would do so and it makes the
examples fit.

Rewriting in theDesign of Type Systems – p.8/33



Type Inference for Simple Types
There is a well known analysis algorithm using
Robinson’s unification algorithm as a subprocedure
(see Hindley [1997] for details).

Pretty much everything is known about type inference
for simple types, including the complexity (O(n) under
standard assumptions).

However, I think it will be helpful to view the process
from a different angle. Probably someone else has
done something like this before, perhaps not quite the
way I will do it.

It is not essential that the following diagrams are DAGs,
but any implementation would do so and it makes the
examples fit.

Rewriting in theDesign of Type Systems – p.8/33



Another Look at the Lambda Term

?

@

λ

@

λ

@

@

λ

λ

λ

@

@

This is just another view of the same term. However, I will
also say it is the term’s type, just not yet normalized.

Rewriting in theDesign of Type Systems – p.9/33



Another Look at the Lambda Term

?

@

λ

@

λ

@

@

λ

λ

λ

@

@

This is just another view of the same term. However, I will
also say it is the term’s type, just not yet normalized.

Rewriting in theDesign of Type Systems – p.9/33



Some of the Type Rewriting Rules

@

A
⇒

@

λ A

@

λ

A B

C
⇒

let

λ

A B

C

let

A B

⇒

A B

λ λ

A B

⇒ λ

A B

Some rules omitted. There are rules for garbage collection.
Formalism unverified, for discussion only.

Rewriting in theDesign of Type Systems – p.10/33



Some of the Type Rewriting Rules

@

A
⇒

@

λ A

@

λ

A B

C
⇒

let

λ

A B

C

let

A B

⇒

A B

λ λ

A B

⇒ λ

A B

Some rules omitted. There are rules for garbage collection.
Formalism unverified, for discussion only.

Rewriting in theDesign of Type Systems – p.10/33



Normalizing the Term’s Type (1)

?

@

λ

@

λ

@

@

λ

λ

λ

@

@

Rewriting in theDesign of Type Systems – p.11/33



Normalizing the Term’s Type (2)

?

@

λ

@

λ

@

@

λ

λ

λ

λ

@

@

Rewriting in theDesign of Type Systems – p.12/33



Normalizing the Term’s Type (3)

?

@

λ

@

λ

@

@

λ

λ

λ

λ

@

let

Rewriting in theDesign of Type Systems – p.13/33



Normalizing the Term’s Type (4)

?

@

λ

@

λ

@

@

λ

λ

λ

λ

@

Rewriting in theDesign of Type Systems – p.14/33



Normalizing the Term’s Type (5)

?

@

λ

@

λ

@

@

λ

λ

λ

λ

let

Rewriting in theDesign of Type Systems – p.15/33



Normalizing the Term’s Type (6)

?

@

λ

@

λ

@

@

λ

λ

λ

λ

Rewriting in theDesign of Type Systems – p.16/33



Normalizing the Term’s Type (7)

?

@

λ

@

λ

@

@

λ

λ

λ

Read the “λ” as “→” to see a traditional principal typing for
the right subterm.

Rewriting in theDesign of Type Systems – p.17/33



Normalizing the Term’s Type (7)

?

@

λ

@

λ

@

@

λ

λ

λ

Read the “λ” as “→” to see a traditional principal typing for
the right subterm.

Rewriting in theDesign of Type Systems – p.17/33



Normalizing the Term’s Type (8)

?

@

λ

λ

λ

λ

λ

In a number of additional steps, the left subterm’s principal
typing is found.

Rewriting in theDesign of Type Systems – p.18/33



Normalizing the Term’s Type (9)
In a number of additional steps, the principal typing of
the entire term is reached:

?

λ

So type inference for simple types can be viewed as
simply applying an unusual set of rewrite rules to the λ

term.

What about for more complex type systems? Now I will
consider intersection types.

Rewriting in theDesign of Type Systems – p.19/33



Normalizing the Term’s Type (9)
In a number of additional steps, the principal typing of
the entire term is reached:

?

λ

So type inference for simple types can be viewed as
simply applying an unusual set of rewrite rules to the λ

term.

What about for more complex type systems? Now I will
consider intersection types.

Rewriting in theDesign of Type Systems – p.19/33



Normalizing the Term’s Type (9)
In a number of additional steps, the principal typing of
the entire term is reached:

?

λ

So type inference for simple types can be viewed as
simply applying an unusual set of rewrite rules to the λ

term.

What about for more complex type systems? Now I will
consider intersection types.

Rewriting in theDesign of Type Systems – p.19/33



Overview
Goals for this talk

Type inference as rewriting via an example with simple
types

Intersection types and why you might want them

Type inference as rewriting via an example with
intersection types

Various concluding remarks

Rewriting in theDesign of Type Systems – p.20/33



Intersection Types
Type polymorphism by listing usage
types [Coppo, Dezani-Ciancaglini, and Venneri, 1980].

Why “intersection”? If semantic denotations σ and τ

are program fragment sets, then σ ∩ τ = σ ∩ τ .

Example comparing intersection and ∀-quantified types:

intersection types: (fn x ⇒ x)(int→int)∩(bool→bool)

∀-quantified types: (fn x ⇒ x)∀α.(α→α)

Example is semantically like ∀α ∈ {int, bool}.α → α, but
has significant practical differences.

Rewriting in theDesign of Type Systems – p.21/33



Intersection Types
Type polymorphism by listing usage
types [Coppo, Dezani-Ciancaglini, and Venneri, 1980].

Why “intersection”? If semantic denotations
�

σ
�

and

�

τ

�

are program fragment sets, then

�

σ ∩ τ

�

=
�

σ

�

∩

�

τ

�

.

Example comparing intersection and ∀-quantified types:

intersection types: (fn x ⇒ x)(int→int)∩(bool→bool)

∀-quantified types: (fn x ⇒ x)∀α.(α→α)

Example is semantically like ∀α ∈ {int, bool}.α → α, but
has significant practical differences.

Rewriting in theDesign of Type Systems – p.21/33



Intersection Types
Type polymorphism by listing usage
types [Coppo, Dezani-Ciancaglini, and Venneri, 1980].

Why “intersection”? If semantic denotations
�

σ
�

and

�

τ

�

are program fragment sets, then

�

σ ∩ τ

�

=
�

σ

�

∩

�

τ

�

.

Example comparing intersection and ∀-quantified types:

intersection types: (fn x ⇒ x)(int→int)∩(bool→bool)

∀-quantified types: (fn x ⇒ x)∀α.(α→α)

Example is semantically like ∀α ∈ {int, bool}.α → α, but
has significant practical differences.

Rewriting in theDesign of Type Systems – p.21/33



Typability for Various Systems

F: System F.
Λk: rank-k System F.
⋂

: intersection types.
⋂

k: rank-k of
⋂

.
Decidable.
Undecidable.

ML

Λ2

⋂
2

Λ3

⋂
3

...
F

· · ·
⋂

(Asymptotic complexity now
known [Kfoury, Mairson, Turbak, and Wells, 1999].)

Rewriting in theDesign of Type Systems – p.22/33



Flexibility of Intersection Types

fun self_apply2 z ⇒ (z z) z;

fun apply f x ⇒ f x;

fun reverse_apply y g ⇒ g y;

fun id w ⇒ w;

(self_apply2 apply not true,

self_apply2 reverse_apply id false not);

The example safely computes (false, true).

Urzyczyn [1997] proved this example is not typable in
Fω, considered the most powerful type system with
universal quantifiers.

The example is typable in the rank-3 restriction of
intersection types.

Rewriting in theDesign of Type Systems – p.23/33



Overview
Goals for this talk

Type inference as rewriting via an example with simple
types

Intersection types and why you might want them

Type inference as rewriting via an example with
intersection types

Various concluding remarks

Rewriting in theDesign of Type Systems – p.24/33



Another Example
Consider this λ-term:

(λx.xx)(λy.z)

The DAG is formed a bit differently from before because
intersection types are more flexible:

? z

@

λ

∧ @

λ

The colored bound-
aries correspond to
expansion variables
in System I.

Rewriting in theDesign of Type Systems – p.25/33



Another Example
Consider this λ-term:

(λx.xx)(λy.z)

The DAG is formed a bit differently from before because
intersection types are more flexible:

? z

@

λ

∧ @

λ

The colored bound-
aries correspond to
expansion variables
in System I.

Rewriting in theDesign of Type Systems – p.25/33



Normalizing the Typing (1)

? z

@

λ

∧ @

λ ⇒

? z

@

λ

∧

λ

@

λ

Rewriting in theDesign of Type Systems – p.26/33



Normalizing the Typing (2)

? z

@

λ

∧

λ

@

λ
⇒∗

? z

@

λ

∧

λ

λ

The principal typing of (λx.xx) now appears on the left. The
typing on the right is already the principal typing of (λy.z).

Rewriting in theDesign of Type Systems – p.27/33



Normalizing the Typing (2)

? z

@

λ

∧

λ

@

λ
⇒∗

? z

@

λ

∧

λ

λ

The principal typing of (λx.xx) now appears on the left. The
typing on the right is already the principal typing of (λy.z).

Rewriting in theDesign of Type Systems – p.27/33



Normalizing the Typing (3)
In 2 more steps, the boundaries (expansion variables) play
a role:

? z

@

λ

∧

λ

λ
⇒∗

? z

let

∧

λ

∧

λ λ

∧

Only the contents of a boundary may be duplicated and
then all incoming edges must be split with a ∧ node
connected to the corresponding nodes in the split copies.

Rewriting in theDesign of Type Systems – p.28/33



Normalizing the Typing (4)
? z

let

∧

λ

∧

λ λ

∧

⇒∗

z?

∧

The typing’s normal form indicates that the result is
obtained from the variable z and that a copy of z is
discarded in the process.

Thus, a complex type inference problem is just applying
a set of rewrite rules to the λ term.

Rewriting in theDesign of Type Systems – p.29/33



Normalizing the Typing (4)
? z

let

∧

λ

∧

λ λ

∧

⇒∗

z?

∧

The typing’s normal form indicates that the result is
obtained from the variable z and that a copy of z is
discarded in the process.

Thus, a complex type inference problem is just applying
a set of rewrite rules to the λ term.

Rewriting in theDesign of Type Systems – p.29/33



Normalizing the Typing (4)
? z

let

∧

λ

∧

λ λ

∧

⇒∗

z?

∧

The typing’s normal form indicates that the result is
obtained from the variable z and that a copy of z is
discarded in the process.

Thus, a complex type inference problem is just applying
a set of rewrite rules to the λ term.

Rewriting in theDesign of Type Systems – p.29/33



Overview
Goals for this talk

Type inference as rewriting via an example with simple
types

Intersection types and why you might want them

Type inference as rewriting via an example with
intersection types

Various concluding remarks

Rewriting in theDesign of Type Systems – p.30/33



Future Work
Formalize these ideas.

Extend with many other real language features.

Extend with conditional types.

Implement in a compiler.

Rewriting in theDesign of Type Systems – p.31/33



Future Work
Formalize these ideas.

Extend with many other real language features.

Extend with conditional types.

Implement in a compiler.

Rewriting in theDesign of Type Systems – p.31/33



Future Work
Formalize these ideas.

Extend with many other real language features.

Extend with conditional types.

Implement in a compiler.

Rewriting in theDesign of Type Systems – p.31/33



Future Work
Formalize these ideas.

Extend with many other real language features.

Extend with conditional types.

Implement in a compiler.

Rewriting in theDesign of Type Systems – p.31/33



Related Work in the Church Project
Kfoury [1996, 2000]: “A linearization of the lambda
calculus”.

Kfoury [1999]: “Beta-reduction as unification”.

Kfoury and Wells [1999]: “Principality and Decidable
Type Inference for Finite-Rank Intersection Types”, the
paper which introduced System I and its principal typing
algorithm.

Updated work on System I: Carlier [2002] and
Kfoury, Washburn, and Wells [2002].

Ongoing work extending expansion variables to work for
more programming language features: tagged variants
(usually handled with sum types), mutually recursive
definitions, etc.

Rewriting in theDesign of Type Systems – p.32/33



Conclusions
For some type systems, typings can be viewed as just
the result of normalizing the term using a particular set
of rewrite rules.

These rules may yield results more abstract than those
yielded by the usual evaluation rules.

This may be able to give a clearer explanation of how
some type systems work.

The close connection between rewriting and types is
made more apparent.

Rewriting in theDesign of Type Systems – p.33/33



Conclusions
For some type systems, typings can be viewed as just
the result of normalizing the term using a particular set
of rewrite rules.

These rules may yield results more abstract than those
yielded by the usual evaluation rules.

This may be able to give a clearer explanation of how
some type systems work.

The close connection between rewriting and types is
made more apparent.

Rewriting in theDesign of Type Systems – p.33/33



Conclusions
For some type systems, typings can be viewed as just
the result of normalizing the term using a particular set
of rewrite rules.

These rules may yield results more abstract than those
yielded by the usual evaluation rules.

This may be able to give a clearer explanation of how
some type systems work.

The close connection between rewriting and types is
made more apparent.

Rewriting in theDesign of Type Systems – p.33/33



Conclusions
For some type systems, typings can be viewed as just
the result of normalizing the term using a particular set
of rewrite rules.

These rules may yield results more abstract than those
yielded by the usual evaluation rules.

This may be able to give a clearer explanation of how
some type systems work.

The close connection between rewriting and types is
made more apparent.

Rewriting in theDesign of Type Systems – p.33/33



References

Franco Barbanera, Mariangiola Dezani-Ciancaglini, and

Ugo de’Liguoro. Intersection and union types: Syntax and

semantics. Inform. & Comput., 119:202–230, 1995.

Sébastien Carlier. Polar type inference with intersection types

and ω. In ITRS ’02 ITRS ’02. To appear as a volume of

ENTCS.

Mario Coppo, Mariangiola Dezani-Ciancaglini, and

Betti Venneri. Principal type schemes and λ-calculus

semantics. In J. R[oger] Hindley and J[onathan] P. Seldin,

editors, To H. B. Curry: Essays on Combinatory Logic,

Lambda Calculus, and Formalism, pages 535–560. Aca-

demic Press, 1980. ISBN 0-12-349050-2.

J. Roger Hindley. Basic Simple Type Theory, volume 42 of

Cambridge Tracts in Theoretical Computer Science. Cam-

bridge University Press, 1997.

ITRS ’02. Proceedings of the 2nd Workshop on Intersection

Types and Related Systems, 2002. To appear as a volume

of ENTCS.

Assaf J. Kfoury. A linearization of the lambda-calculus. A refer-

eed version is Kfoury [2000]. This version was presented at

the Glasgow Int’l School on Type Theory & Term Rewriting,

September 1996.

33-1

http://www.dipmat.unict.it/~barba/
http://www.di.unito.it/~dezani/
http://www.di.unito.it/~deligu/
http://www.epita.fr/~sebc/
http://www.di.unito.it/~coppo/
http://www.di.unito.it/~dezani/
http://www-dsi.ing.unifi.it/general/people.html
http://www-maths.swan.ac.uk/staff/jrh/
http://home.uleth.ca/~jonathan.seldin/
http://www-maths.swan.ac.uk/staff/jrh/
http://www.cs.bu.edu/~kfoury/


Assaf J. Kfoury. Beta-reduction as unification. In D. Niwin-

ski, editor, Logic, Algebra, and Computer Science (H. Ra-

siowa Memorial Conference, December 1996), Banach Cen-

ter Publication, Volume 46, pages 137–158. Springer-Verlag,

1999.

Assaf J. Kfoury. A linearization of the lambda-calculus. J. Logic

Comput., 10(3), 2000. Special issue on Type Theory and

Term Rewriting. Kamareddine and Klop (editors).

Assaf J. Kfoury, Harry G. Mairson, Franklyn A. Turbak, and

J. B. Wells. Relating typability and expressibility in finite-rank

intersection type systems. In Proc. 1999 Int’l Conf. Func-

tional Programming, pages 90–101. ACM Press, 1999. ISBN

1-58113-111-9.

Assaf J. Kfoury, Geoff Washburn, and J. B. Wells. Implement-

ing compositional analysis using intersection types with ex-

pansion variables. In ITRS ’02 ITRS ’02. To appear as a

volume of ENTCS.

Assaf J. Kfoury and J. B. Wells. Principality and decidable type

inference for finite-rank intersection types. In Conf. Rec.

POPL ’99: 26th ACM Symp. Princ. of Prog. Langs., pages

161–174, 1999. ISBN 1-58113-095-3.

Paweł Urzyczyn. Type reconstruction in Fω . Math. Structures

Comput. Sci., 7(4):329–358, 1997.

33-1

http://www.cs.bu.edu/~kfoury/
http://www.cs.bu.edu/~kfoury/
http://www.cee.hw.ac.uk/~fairouz/
http://www.cs.vu.nl/fb/generated/personal/Klop.html
http://www.cs.bu.edu/~kfoury/
http://cs-people.bu.edu/mairson/
http://www-swiss.ai.mit.edu/~lyn/lyn.html
http://www.cee.hw.ac.uk/~jbw/
http://www.cs.bu.edu/~kfoury/
http://types.bu.edu/~gw2/
http://www.cee.hw.ac.uk/~jbw/
http://www.cs.bu.edu/~kfoury/
http://www.cee.hw.ac.uk/~jbw/
http://zls.mimuw.edu.pl/~urzy/

	Overview
	Some Goals for this Talk
	Some Important Points
	Overview
	An Example Program
	Simple Types for the Example
	Type Inference for Simple Types
	Another Look at the Lambda Term
	Some of the Type Rewriting Rules
	Normalizing the Term's Type (1)
	Normalizing the Term's Type (2)
	Normalizing the Term's Type (3)
	Normalizing the Term's Type (4)
	Normalizing the Term's Type (5)
	Normalizing the Term's Type (6)
	Normalizing the Term's Type (7)
	Normalizing the Term's Type (8)
	Normalizing the Term's Type (9)
	Overview
	Intersection Types
	Typability for Various Systems
	Flexibility of Intersection Types
	Overview
	Another Example
	Normalizing the Typing (1)
	Normalizing the Typing (2)
	Normalizing the Typing (3)
	Normalizing the Typing (4)
	Overview
	Future Work
	Related Work in the Church Project
	Conclusions

