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Abstract

This paper compares asymptotic “average case”performance of two
closely related algorithms for finding small connected dominating sets.
The stochastic model is that instances are random unit ball graphs formed
from n random points in an `n × `n × `n cube. The first algorithm,
widely known as “Rule 1”, is proved to be ineffective asymptotically: if
`n = O( 3

√
n

log n
), then with asymptotic probability one Rule 1 selects a

dominating set that consists of all but o(n) nodes in the network. In
contrast, the expected size of Dai Li and Wu’s Rule 4 dominating set
is Θ(`3n). This latter performance is optimal insofar as the minimum
connected dominating set also has Θ(`3n) vertices ’on average’. These
conclusions are three dimensional analogues of the two dimensional results
in [18] and [19].

keywords and phrases: dominating set, localized algorithm, approxima-
tion algorithm, performance analysis, probabilistic analysis, Rule 1, Rule
k, unit ball graph,
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1 Introduction

Unit ball graphs can be used as a crude model for the links between nodes in
a wireless network. A unit ball graph G = (V,E) is an undirected graph whose
vertex set V is a set of points in <3. Given V , the edge set E of a unit ball
graph is determined as follows: an edge e = {u, v} ∈ E joins vertices u, v ∈ V if
and only if the distance between u and v in <3 is less than or equal to one.

In any graph G = (V,E), a dominating set is a subset D of the vertices such
that every v ∈ V either is either an element of D, or the neighbor of a vertex
in D. A connected dominating set is a dominating set with the additional
property that it induces a connected subgraph of G. It is clearly not possible
for G to have a connected dominating set if G itself is not connected. We write
“CDS”for a dominating set D such that the subgraph induced by D has the
same number of components as G has. In this paper we use a random unit ball
graph model, Gn, which is connected with asymptotic probability one. Hence,
with probability 1 − o(1), any CDS for Gn is also connected.

Recently there has been considerable interest in algorithms that select a
small CDS [9],[28],[31],[29]. Wu Li and Dai proposed Rule k, a family of localized
approximation algorithms. For each k, Rule k finds a CDS in the input graph,
and a measure of the algorithms performance is the size of the dominating set
that it finds. In previous work, we estimated the expected size of the Rule k
dominating set, for each k ≥ 1, in a random unit disk graph model. The purpose
of this paper is to extend these results to three dimensions. The algorithm itself
is not new; it is just a simplified version of Dai Li and Wu’s algorithm. What
is new in our work is the mathematical analysis of the algorithms’ asymptotic
performance in a random unit ball graph model.

For each k ≥ 1, the CDS that is selected by the Rule k algorithm will be
denoted Dk, and its elements will be called “gateway nodes”. For any vertex
v, let N(v) denote the set of vertices consisting of v and all the vertices that
are adjacent to v. If the the vertex set is V =

{
x1, x2, . . . , xn

}
, then the Rule

k dominating set Dk consists of all vertices xi ∈ V that are not excluded under
the following version of Rule k:

Rule k: Vertex xi is excluded from Dk iff N(xi) contains at least one set of k
vertices xi1 , xi2 , . . . xik

such that

• i1 > i2 > · · · > ik > i, and

• the subgraph induced by
{
xi1 , xi2 , · · · , xik

}
is connected, and

• N(xi) ⊆
k⋃

t=1
N(xit

).

Next we define the random unit ball graphs that the algorithm acts on. Let `n

be an increasing sequence of positive real numbers. Independently select random
vertices X1, X2, . . . , Xn from a uniform distribution on an `n×`n×`n cube Qn in
<3. Let Gn be the random unit ball graph that is formed from these vertices by
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putting an edge between two vertices iff the Euclidean distance between the two
vertices is less than or equal to one. This construction determines a probability
measure Pn on unit ball graphs formed from n vertices in Qn. Restrictions
on the growth rates of the numbers `n will be included in the statements of
theorems. To put these growth rates in context, we remark that the threshold
for connectivity is `n = Θ( 3

√
n/ log n); if `n grows faster than this, then the

network will be disconnected with high probability. This topic is treated more
extensively in Penrose[27].

For the remainder of this paper we adopt the following notation. For any
points p and q in <3, let d(p, q) denote the ordinary Euclidean distance between
p and q in <3. For any point p ∈ <3 and any subset C ⊂ <3, we define
d(p, C) = inf{d(p, z) : z ∈ C}. Finally, for any r > 0, and any p ∈ <3, let
Br(p) =

{
w ∈ <3|d(p, q) ≤ r

}
be a closed ball of radius r, centered at p. Our

notation for events such as Am are not global, but rather are defined differently
in different sections of the paper.

2 Local Coverage by One Point

In this section we define another random graph Hm, and use it to prove the
crucial Lemma 2 below. Fix z ∈ <3; without loss of generality z = (0, 0, 0).
Given m > 0 and let V (Hm) =

{
P1, P2, . . . , Pm} be a set of m points sampled

independently and uniformly from B1(z). Form a random graph Hm with vertex
set V (Hm) such that any two points in V (Hm) are adjacent iff the Euclidean
distance between them is less than or equal to one. Let L = Lm,z be the
corresponding probability measure on unit ball graphs. Note that Hm is not
the same as Gm since the vertices of Hm lie in a small ball rather than in a large
cube.

From the construction of Hm it is clear that it is possible for a single point
Pi ∈ V (Hm) to have degree m−1 in Hm and therefore be a one-point dominating
set for Hm. For example, if some Pi happens to coincide with z, the center of
the unit ball, then Pi is adjacent to Pj for all j 6= i. However this is very rare:
we prove that, with asymptotic probability one (as m → ∞), there is no one
point dominating set for Hm.

The following fact will be needed in the proof. It is well-known, but we do
not know suitable reference. In any case, it is easily verified using calculus:

Lemma 1 If p, q are points in <3 such that d(p, q) = s ≤ 2, then

VOLUME
(
B1(p) ∩ B1(q)

)
=

4π

3
− 4π

3
(
3s

4
− s3

16
).

Now let Wm be the size of the smallest dominating set in Hm, i.e. the
smallest set D ⊆ V (Hm) of vertices with the property that all m vertices are
within distance 1 of at least one of the points in D.

Lemma 2 L(Wm = 1) = O( log3 m
m2 ).
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Proof: Let γm := L(V (Hm) ⊆ B1(Pm)) be the probability that all the m − 1
points P1, P2, . . . , Pm−1 are elements of B1(Pm). By Boole’s inequality,

L(Wm = 1) ≤ mγm. (1)

Let R be the distance from Pm to z, and let V ol(R) be the volume of B1(z)
⋂

B1(Pm).
Note that R is a random variable with density fR(s) = 4πs2. It follows that

γm =

1∫
0

4πs2

(
V ol(s)
(4π/3)

)m−1

ds. (2)

Let ξ = ξm = 48 log m
11m . We break the integral into two pieces:

γm = I1 + I2, (3)

where I1 =
ξ∫
0

and I2 =
1∫
ξ

. To estimate I1, we use the crude estimate V ol(ρ)
(4π/3) ≤ 1 :

I1 =

ξ∫
0

4πs2

(
V ol(s)
(4π/3)

)m−1

ds ≤
ξ∫

0

4πs2ds = O(ξ3). (4)

For s ∈ [ξ, 1], we have s3 ≤ s, and consequently 3s
4 − s3

16 ≥ 11s
16 . This and Lemma

1 together imply that V ol(s)
4π/3 ≤ (1 − 11s

16 ) ≤ (1 − 11ξ
16 ) = (1 − 3 log m

m ). Hence

I2 ≤
1∫

ξ

4πs2(1 − 3 log m

m
)m−1ds = O(

1
m3

). (5)

Putting our estimates for I1 and I2 in to (3), we get

L(Wm = 1) ≤ mγm = O(
log3 m

m2
). (6)

2

3 Analysis of Rule 1

In this section we investigate the average size of D1(Gn), the CDS constructed
by applying Rule 1 to the random graph Gn. Recall that initially all vertices in
Gn start as ‘gateway’ nodes. According to Rule 1, a node xi ∈ V (Gn) becomes a
non-gateway node only if it is adjacent to some xj ∈ V (Gn) such that j > i and
N(xi) ⊆ N(xj). We prove that, in the random graph Gn, with high probability,
most nodes do not have such a neighbor, i.e. most nodes remain as gateways
and Rule 1 does not significantly reduce the size of the CDS.

Let U1 be the number of vertices in Gn that become non-gateways under
Rule 1, i.e. U1 = n − |D1(Gn)|. Then we have
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Theorem 3 If lim
n→∞ `n = ∞, but `n = O( 3

√
n/ log n), then E(U1) = o(n) as

n → ∞.

Proof: Define the indicator variable Ii so that Ii = 1 iff Xi ∈ V (Gn) is adjacent
to some node Xj 6= Xi such that N(Xi) ⊆ N(Xj). We note that the event
[Ii = 1] is a necessary but not sufficient condition for node i to become a

non-gateway node, thus U1 ≤
n∑

i=1

Ii. The advantage of this bound is that the

I1, I2, . . . , In are identically distributed and

E(U1) ≤ nPn(I1 = 1). (7)

In this section, let A1 be the event that that B1(X1) ⊆ Qn, i.e. that vertex X1

is not one of the exceptional vertices near the border of the region Qn. Let ρ1

be the degree of vertex X1, i.e. number of nodes of Gn in B1(X1) other than
vertex X1 itself, and define

µ = E(ρ1|A1) =
(n − 1)(4π/3)

`3n
. (8)

Also let B1 be the event that ρ1 > µ/2, and let C1 = A1

⋂B1. Then,

Pn(I1 = 1) = Pn(I1 = 1|C1)Pn(C1) + Pn(I1 = 1|Cc
1)Pn(Cc

1) (9)

≤ Pn(I1 = 1|C1) + Pn(Cc
1). (10)

The plan is to bound the right side of (10) and then use the bound in (7). Since
C1 = A1 ∩ B1, we have

Pn(Cc
1) = Pn(Ac

1) + Pn(A1)Pn(Bc
1|A1) (11)

=
(
1 −

(
`n − 2

`n

)3)
+

(
`n − 2

`n

)3

Pn

(
ρ1 <

µ

2
|A1

)
. (12)

By Chernoff’s inequality,

Pn

(
ρ1 <

µ

2
|A1

)
< e−µ/8. (13)

Therefore

Pn(Cc
1) = O

(
1
`n

)
+ O(e−n/2`3n). (14)

For the remaining term on the right side of (10), we write

Pn(I1 = 1|C1) =
∑

m>µ/2

Pn(I1 = 1|ρ1 = m,A1)Pn(ρ1 = m,A1|A1 ∩ B1) (15)

By Lemma 2 there is a constant C > 0 such that, for all m > µ/2,

Pn(I1 = 1|ρ1 = m,A1) <
C log3 m

m2
≤ C log3 µ

µ2
. (16)
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Putting the bound (16) into (15) on m, and summing on m, we get S

Pn(I1 = 1|C1) = O

(
log3 µ

µ2

)
. (17)

Recall that µ = Θ(n/`3n). Putting (17) back into (10), we get

Pn(I1 = 1) = O

(
log3 µ

µ2

)
+ O

(
1
`n

)
+ O(e−n/2`3n) = o(1), (18)

and therefore
E(U1) ≤ nPn(I1 = 1) = o(n).

2

4 Local Coverage by Four Vertices

The next lemma is a geometric result which is needed for the proof of Theorem
5. Let z be any point in Qn, and let B′ = B1(z) ∩ Qn be the set of points in
the cube Qn whose distance from z is less than or equal to one.

Lemma 4 There exist points z1, z2, z3, z4 ∈ B′ such that

• B′ ⊆
4⋃

i=1

B.98(zi), and

• for any 1 ≤ i 6= j ≤ 4, d(zi, zj) ≤ 2
√

2/3.

Proof: We begin by considering the case where B1(z) ⊆ Qn, i.e. z is not near
the boundary of the cube Qn. We may, without loss of generality, choose the
coordinate system such that z = (0, 0, 0) and such that each axis is parallel
to one on the edges of the cube Qn. Define four points z1 = ( 1

3 , −1
3 , −1

3 ),
z2 = (−1

3 , 1
3 , −1

3 ), z3 = (−1
3 , −1

3 , 1
3 ), and z4 = ( 1

3 , 1
3 , 1

3 ). These are non-adjacent
vertices of a cube that is centered at the origin and has edges of length 2

3 .
Hence they are the vertices of a regular tetrahedron. (We thank Ron Perline
for suggesting that we try a tetrahedron.) For each 1 ≤ i ≤ 4, the half-line that
begins at zi and passes through the origin meets the surface of the unit sphere
∂B1((0, 0, 0)) at a unique point ζi. For example, ζ4 = (−1√

3
, −1√

3
, −1√

3
). It follows

from straightforward (though somewhat tedious) geometrical calculations that
the points ζ1, ζ2, ζ3, ζ4 are the four points in B1(z) that are ‘most distant’ from
the set

{
z1, z2, z3, z4

}
: for any any x ∈ B1(z), and any i,

d(x,
{
z1, z2, z3, z4

}
) ≤ d(ζi,

{
z1, z2, z3, z4

}
) =

√
12 − 2

√
3

9
< .98. (19)

So the result holds in this case.
Next we consider the case where z ∈ Qn but B1(z) is not contained in Qn.

Again, choose the coordinate system and the points z1, z2, z3, z4 as above. Since
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B1(z) ∩ Qn ≡ B′ 6= B1(z), one or more of the points z1, z2, z3, z4 may not lie
in Qn. In particular, if zk /∈ Qn, then there is a (unique) z′k ∈ Qn such that
d(zk, z′k) = d(zk,Qn). We replace zk by z′k and observe that every point of B′

is closer to z′k than it is to the original point zk, i.e. if x ∈ B0.98(zk) ∩ Qn

then x ∈ B0.98(z′k) ∩ Qn. After replacing all zk such that zk /∈ Qn by the
corresponding z′k we obtain four points that satisfy the conditions of the lemma.
2

Now fix z ∈ Qn and let P1, P2, . . . , Pm be m points sampled uniformly and
independently from B′ = B1(z)∩Qn. In this section, let Am be the event that
there exist 1 ≤ i1 < i2 < i3 < i4 ≤ m such that

• B′ ⊆ ∪4
k=1B1(Pik

), and

• the unit ball graph with vertices Pi1 , Pi2Pi3 , Pi4 is connected.

Our goal is to prove that Am occurs with high probability:

Theorem 5 There is a constant 0 < α < 1 (which is independent of n and of
the location of z in Qn) such that, for all positive integers m, Pr(Am) > 1−4αm.

Proof: Choose points z1, z2, z3, z4 as in the proof of Lemma 4 and let r =

1 −
√

12−2
√

3
9 = .026 . . .. For 1 ≤ k ≤ 4, let Ek be the event that Br(zk) ∩ Qn

does not contain any of the m points P1, P2, ..., Pm. Then

Pr(Ek) =
(

1 − Volume(Br(zk) ∩Qn)
Volume(B′)

)m

. (20)

Since Volume(Br(zk) ∩ Qn) ≥ 1
8Volume(Br(zk)) = r3

6 and Volume(B′) ≤ 4π
3 ,

Boole’s inequality yields

Pr

(
4⋃

i=1

Ei

)
≤ 4αm. (21)

where α = (1 − r3

8 ) < 1.

If the event
4⋃

k=1

Ek does not occur, then we can choose i1, i2, i3, i4 such that,

for 1 ≤ k ≤ 4, we have Pik
∈ Br(zk). Let x be an arbitrary point in B′ =

B1(z) ∩ Qn, and let zk be the point closest to x of the four points z1, z2, z3, z4.
Then by our choice of the points z1, z2, z3, z4, Pi1 , Pi2 , Pi3 , Pi4 , and of r, we have

d(x, Pik
) ≤ d(x, zk) + d(zk, Pik

) ≤ (1 − r) + r = 1. (22)

We also have for 1 ≤ k < j ≤ 4

d(Pik
, Pit

) ≤ d(Pik
, zk) + d(zk, zj) + d(zj , Pij) ≤ 2r +

2
√

2
3

< 1. (23)

Hence (∪4
k=1Ek)c ⊆ Am and the result follows from inequality (21). 2
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5 Analysis of Rule 4.

Now that Theorem 5 is proved, the remaining analysis of Rule 4 is quite similar

to the 2D case [18]. Let U4 =
n∑

i=1

Ii, where (in this section) the indicator variable

Ii = 1 iff node i is excluded from D4(Gn) under Rule 4. Thus Rule 4 selects a
dominating set having |D4| = n − U4 vertices, and it is desirable for U4 to be
large. Our goal in this section is to prove that E(U4) ≥ n − O(`3n).

Let X1, X2, . . . , Xn be uniform random points in Qn, namely the locations
of vertices 1, 2, . . . , n. Let ρ̂i be the number of neighbors of vertex i having a
larger ID, i.e. the number of j > i such that d(Xi, Xj) ≤ 1.

Lemma 6 For all i, Pn(ρ̂i < (n−i)π
12`3n

) ≤ exp(−(n−i)π
48`3n

)

Proof: Let |B1(Xi)| be the volume of the set of points in Qn whose distance
from Xi is one or less. Thus |B1(Xi)| = 4π

3 unless Xi happens to fall near the
boundary of Qn, and in all cases |B1(Xi)| ≥ π

6 . Given |B1(Xi)|, the variable ρ̂i

has a Binomial
(
n− i, |B1(Xi)|

`3n

)
distribution. Therefore Chernoff’s bound on the

lower tail distribution gives

Pn

(
ρ̂i <

(n − i)π
12`3n

∣∣∣∣ |B1(Xi)|
)

≤ Pn

(
ρ̂i <

(n − i)|B1(Xi)|
2`3n

∣∣∣∣ |B1(Xi)|
)

≤ exp
(−(n − i)|B1(Xi)|

8`3n

)
≤ exp

(−(n − i)π
48`3n

)
. (24)

Since the bound on the right hand side of (24) is uniform over all possible values
of |B1(Xi)|, the result follows.

2

Theorem 7 E(U4) ≥ n − O(`3n).

Proof: For 1 ≤ i ≤ n, let Bi be the event that ρ̂i ≥ (n−i)π
12`3n

. By Lemma 6,

Pn(Ii = 1) ≥ Pn(Ii = 1|Bi)Pn(Bi) ≥ Pn(Ii = 1|Bi)
(
1 − exp

(−(n − i)π
48`3n

)
)
(25)

Observe that

Pn(Ii = 1|Bi) =
∑

v≥ (n−i)π

12`3n

Pn(Ii = 1|ρ̂i = v)Pn(ρ̂i = v|Bi) (26)

To estimate this, observe that

Pn(Ii = 1|ρ̂i = v) =
∫
Qn

Pn(Ii = 1|ρ̂i = v,Xi = x)fXi
(x|ρ̂i = v)dx (27)
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where fXi
(x|ρ̂i = v) is the conditional density of Xi on the cube Qn given that

ρ̂i = v. For v ≥ (n − i)π/12`3n, Theorem 5 yields

Pn(Ii = 1|ρ̂i = v,Xi = x) ≥ 1 − 4αv ≥ 1 − 4α(n−i)π/12`3n . (28)

Putting this back into (27) and then (26), we get

Pn(Ii = 1|Bi) ≥ 1 − 4α(n−i)π/12`2n (29)

and therefore

Pn(Ii = 1) ≥ Pn(Ii = 1|Bi)Pn(Bi) ≥ (1 − 4α(n−i)π/12`2n)
(
1 − exp(− (n − i)π

48`3n
)
)

≥ 1 − 4α(n−i)π/12`3n − exp(− (n − i)π
48`3n

)

≥ 1 − 5α(n−i)π/12`3n . (30)

Finally, let λn = n − `3n and β = απ/12, then it follows from the inequality (30)
that

E(U4) ≥
∑

1≤i<λn

Pn(Ii = 1) ≥
∑

1≤i<λn

(
1 − 5β(n−i)/`3n

)
(31)

≥ λn − 1 − 5
n∑

j≥`3n

β
j

`3n (32)

≥ λn − 1 − 5`3n

∫ ∞

1− 1
`3n

βxdx (33)

≥ n − C`3n (34)

where C is a constant which does not depend on n.

2

Corollary 8 E(|D4|) = O(`3n).

6 Lower Bound

If a vertex v has higher ID than any of its neighbors, then it cannot be eliminated
under Rule k. This simple observation is the basis for

Theorem 9 If `n = O( 3
√

n/ log n), then, for all sufficiently large n, the ex-
pected size of the Rule k dominating set is greater than `3n.

8



Proof: Let Z =
n∑

i=1

Ii, where (in this section) Ii = 1 iff node i has a higher ID

that all the nodes in B1(Xi). Note that Ii = 1 iff the nodes Xi+1, Xi+2, . . . , Xn

all fall outside the ball B1(Xi). Therefore

Pn(Ii = 1) =
(

1 − |B1(Xi)|
`3n

)n−i

≥
(

1 − π

6`3n

)n−i

(35)

Therefore

E(|D4|) ≥ E(Z) ≥
n∑

i=1

(
1 − π

6`3n

)n−i

=
6`3n
π

(
1 − O(e−πn/6`3n)

)
. (36)

2

Combining Theorems 7 and 9, we get

Corollary 10 E(|D4|) = Θ(`3n).

7 Discussion

It is clear from the proof that the expected size of the Rule k dominating set
is Θ(`3n) for any fixed k ≥ 4 : if k > 4, then in the proof of Theorem 5 we
could simply include k− 4 redundant vertices. Simulations by Patricia Stamets
suggest that Rule 3 will be effective and Rule 2 will not. However we do not
have proofs of these conjectures; it is an open problem to estimate the expected
size of the Rule 2 and Rule 3 dominating sets in the three dimensional stochastic
model.

Acknowledgement Li Sheng and Ron Perline made helpful comments. We
also thank Patricia Stamets for doing the simulations.
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