RINGS, INTEGRAL DOMAINS AND FIELDS

Definition. Let R be a set and let $+$ and \cdot be binary operations on R. Then $(R, +, \cdot)$ is a ring if

- $(R, +)$ is a commutative group;
- \cdot is a closed associative operation on R;
- \cdot is distributive over $+$, i.e., $a \cdot (b + c) = a \cdot b + a \cdot c$ and $(b + c) \cdot a = b \cdot a + c \cdot a$ for all $a, b, c \in R$.

Remark. The identity element with respect to $+$ is usually denoted by 0; the inverse of a with respect to $+$ is usually denoted by $-a$. We will often write ab for $a \cdot b$.

Definition. Let $(R, +, \cdot)$ be a ring.

- If \cdot is commutative, R is called a commutative ring;
- if there exists an identity element for \cdot (usually denoted by 1), R is called a ring with unity.

Theorem. Let $(R, +, \cdot)$ be a ring and let $a, b, c \in R$. Then

- $a + b = a + c \implies b = c$;
- $0 \cdot a = a \cdot 0 = 0$;
- $(−a) \cdot b = −(a \cdot b)$;
- $(−a) \cdot (−b) = a \cdot b$.

Invertible elements (units) and divisors of zero

Let $(R, +, \cdot)$ be a ring with unity 1 (we shall always assume $1 \neq 0$). Let $u \in R$. In general u may or may not have an inverse with respect to \cdot.

Definition. We say that u is a unit (or that u is invertible) if u has an inverse with respect to \cdot, i.e., if there exists $u' \in R$ such that $u \cdot u' = u' \cdot u = 1$. ($u'$ is usually denoted u^{-1}.)
Theorem. If S is a set of all units in $(R, +, \cdot)$, then (S, \cdot) is a group.

Definition. Let $(R, +, \cdot)$ be a ring. If $a, b \in R$, $a \neq 0$, $b \neq 0$, and $a \cdot b = 0$, then a and b are called divisors of zero.

Theorem. Let $(R, +, \cdot)$ be a ring with unity and let u be a unit in R. Then u is not a divisor of zero.

Corollary. If u is a divisor of zero, then u is not a unit.

Integral domains and fields

Integral domains and fields are rings in which the operation \cdot is better behaved.

Definition. Let $(R, +, \cdot)$ be a commutative ring with unity. If there are no divisors of zero in R, we say that R is an integral domain (i.e., R is an integral domain if $u \cdot v = 0 \implies u = 0$ or $v = 0$.)

Theorem. Let $(R, +, \cdot)$ be an integral domain. If $ab = ac$ where $a \neq 0$, then $b = c$.

Definition. Let $(R, +, \cdot)$ be a commutative ring with unity. If every element of $R \setminus \{0\}$ is a unit, R is called a field.

Theorem. Let $(R, +, \cdot)$ be a field. Then $(R, +, \cdot)$ is an integral domain.

Corollary. If $(R, +, \cdot)$ is a field, then $(R \setminus \{0\}, \cdot)$ is a commutative group.

Theorem. Let $(R, +, \cdot)$ be a finite integral domain. Then R is a field. (No proof is required.)