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ABSTRACT
Robots are gaining more attention in the neuroscientific com-
munity as means of verifying theoretical models of social
skill development. In particular, humanoid robots which
resemble dimensions of a child offer a controlled platform
to simulate interactions between humans and infants. Such
robots equipped with biologically inspired models of social
and cognitive skill development might provide invaluable in-
sights into learning mechanisms infants employ when inter-
acting with others. One such mechanism which develops
in infancy is the ability to share and direct attention of in-
teracting participants. Pointing behaviour underlies joint
attention and is preceded by hand-eye coordination. Here,
we attempt to explain how pointing emerges from senso-
rimotor learning of hand-eye coordination in a humanoid
robot. A robot learned joint configurations for different arm
postures using random body babbling. Arm joint configu-
rations obtained in babbling experiment were used to train
biologically inspired models based on self-organizing maps.
We train and analyse models with various map sizes and
depending on their configuration relate them to different
stages of sensorimotor skill development. Finally, we show
that a model based on self-organizing maps implemented on
a robotic platform accounts for pointing gestures when a
human presents an object out of reach for the robot.
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1. INTRODUCTION
A great deal has been learned from computational models

of processes and mechanisms underlying human cognition
and behaviour. Advances in neurosciences, in particular
in brain imaging techniques, increased quantity and qual-
ity of experimental data which are invaluable for theoretical
researchers to improve and adapt theoretical models. How-
ever, modelling the development of cognitive and social skills
continues to be a daunting task due to several unresolved
issues which modellers have to face. One of the issues is

the integration of mechanisms required for the ongoing de-
velopment of skills within cognitive models and cognitive
architectures through the interaction with the environment
[20].

Epigenetic robotics in combination with neural modelling
offers an optimal starting point for this investigation. Hu-
manoid robots equipped with neurally plausible models pro-
vide a controlled environment to analyse and steer learning
mechanisms infants might employ when interacting with hu-
mans. On the other hand, it is of particular interest for the
robotics community to study the development of social cog-
nition and imitation learning skills in artificial agents. In
fact, building robots as interactive learners could reduce the
programming efforts needed by end-users for teaching them
new skills or new tasks to accomplish.

One of the foundation for imitation learning and social
cognition is the capability to understand, to manipulate and
to coordinate attentional behaviours [26]. Joint attention,
the capability to share the focus of attention between indi-
viduals, is fundamental in human social interaction and in
human-robot interaction. Its development depends on the
successive appearance of a number of underlying skills, such
as the capabilities to detect the focus of the attention of the
interacting partner, to detect and to maintain eye contact,
and to manipulate the focus of attention of the interacting
partner [11]. However, there are still several open questions
about how such capabilities emerge in humans. For instance,
it is still unclear how infants develop the capability to manip-
ulate the attention of an interacting person through pointing
gestures.

In humans, the first occurrence of pointing gestures starts
around the age of nine months [2], when infants use such
a gesture as a request for a certain object. The primitive
forms of pointing, known as imperative pointing, may arise
from failed reaching actions and may not carry any inten-
tional meaning directed at the caregiver. In fact, develop-
mental studies suggest that there is no relation between the
production of primitive pointing gestures and the compre-
hension of pointing [6]. Around the age of twelve months,
pointing starts to become declarative and to be used to draw
the caregiver’s attention to something which might also be
out of reach for the adult [11]. Nonetheless, the development
of pointing is preceded by the acquisition of early motor
competences, such as hand-eye coordination [14].

Simulating similar developmental processes in robots could



Figure 1: A sample sequence of random motor move-
ments during a babbling phase on a Nao robot. The
first row shows random hand movements, and the
second row the corresponding frames captured by
the onboard camera placed under the fake eyes of
the Nao.

provide important insights in this investigation. In the robotics
literature, interesting studies can be found on the devel-
opment of motor competences in artificial agents. In [19],
the author implemented on a humanoid robot an adaptive
control system inspired by biological development of visuo-
motor coordination for the acquisition of orienting and reach-
ing behaviours. Following a developmental paradigm, the
system starts with moving the eyes only. At this point, con-
trol is a mixture of random and goal-directed movements.
The development proceeds with the acquisition of closed
loop gains, reflex-like modules controlling the arm sub-system,
acquisition of an eye-head coordination and of a head-arm
coordination map.

In [9], the development of pointing behaviours in a hu-
manoid robot has been addressed. In particular, a humanoid
robot (Aldebaran Nao) has been programmed to acquire
early motor competences through an exploration behaviour,
namely body babbling. Learning consisted in the robot
exploring its arm movements while collecting sensorimotor
data (hand and arm joint positions), thus building up an
internal model of its own body. A simple predictive algo-
rithm provided the robot with a mechanism for producing
motor commands to reach desired hand positions. Point-
ing behaviours emerged when target points were presented
outside the reach of the robot, thus strengthening the hy-
pothesis that pointing may arise from grasping.

Here, a similar experiment is presented, where a humanoid
robot acquires hand-eye coordination and reaching skills by
exploring its movement capabilities through body babbling.
As a result, similarly to [9], the robot shows pointing be-
haviours when required to approach targets outside its reach.
Differently to [9], a biologically inspired model consisting of
self-organizing maps (SOMs) has been used for modelling
the hand-arm joints mapping. The model architecture is in-
spired by the Epigenetic Robotics Architecture presented in
[20], where a structured association of multiple SOMs has
been adopted for mapping different sensorimotor modalities
in a humanoid robot.

This paper is structured as follows. Section 2 discusses
the body babbling procedure that has been implemented
in the humanoid robot Nao. Section 3 presents neurobio-
logical support for the choice of the model and introduces
a model consisting of SOMs trained with the information
gathered during body babbling. Section 4 presents the ex-
periment that has been carried out in this study to evaluate
the model. In particular, a human subject held and moved

Figure 2: Scheme of the model architecture for
learning hand-eye coordination with SOMs and con-
necting weights

an object in front of the robot. The trained model has been
used for generating reaching actions towards the object. As
a result, the robot followed the object with its head and
arm, exhibiting pointing gestures when the object was out-
side its field of reach. Section 5 explains implications of the
results and addresses the contributions of the work. Section
6 suggests future research directions.

2. LEARNING HAND-EYE COORDINATION
THROUGH MOTOR BABBLING

Hand-eye coordination is an important motor skill ac-
quired in infancy which precedes more complex behaviours.
Infants acquire such motor skills through a self-exploring be-
haviour such as body babbling [17]. During body babbling,
infants play with muscle movements which are then mapped
to the resulting sensory consequences. This behaviour is
fundamental in learning of limb postures and correlations
between motor actions and resulting sensory input. In [10],
the authors argued that the rise of new skills in infants can
be analysed in terms of two developmental parameters: a
social dimension and an intentional dimension. From both
points of view, babbling falls at the zero-point, as it is a
behaviour without social and intentional content.

Several robotics studies have been inspired by the infants’
behaviour of body babbling. In [4] and in [24], exploration
behaviours have been implemented in artificial agents for
gathering evidence to form internal models of their bodily
characteristics. In [5], the authors propose a way for com-
bining knowledge through exploration and knowledge from
others, through the creation and use of mirror neuron in-
spired internal models. In [1], an exploration mechanism
driven by the active self-generation of high-level goals has
been proposed. Such a mechanism allows active learning of
inverse models in high-dimensional redundant robots.

We implemented acquisition of coordination skills through
self-exploration via random motor babbling on the humanoid
robot Nao from Aldebaran. The dimensions of a Nao resem-
ble those of a child standing at a height of ca. 57 cm and
simulating the real visual input perceived by a young human
subject. A sample babbling sequence is shown in Figure 1.

3. THE MODEL
We aim to develop a model that mimics the formation

of sensory maps required for the coordination of arm-hand
movements at early stages of sensorimotor development. Sen-
sory maps in the human brain contain neurons specialised in
encoding specific modalities of sensory input. The plasticity



in these areas is driven by the gradual formation of internal
representations across the lifespan [23], [8]. The two distinct
characteristics of sensory maps are the topological organiza-
tion and the self-organizing property.

Topological structure is observed throughout the cortex
such as somatotopic maps in the somatosensory cortex, tono-
topic maps in the auditory cortex and retinotopic maps in
the visual cortex. Although representing different sensory
information, all these maps share the property that the sim-
ilar input features are processed by the neighbouring patches
of the brain tissue. For example, somatotopic maps follow
the organization of the body, which means that spatially
close sensory parts of the body are represented by the adja-
cent brain regions.

Self-organizing property becomes evident in sensory maps
throughout the brain development and in response to perni-
cious bodily changes of sensorimotor system. For example,
Farah [7] argues that the self-organization in the somatosen-
sory maps takes place in the womb while the pose of the
foetus imposes mutual touching of the face and the hands,
as well as the feet and the genitals. She proposes that this
might be the reason why these body parts, although not
close to each other physically, are represented close to each
other in the brain. However, Parpia provides arguments
against causality between costimulation and somatotopy in
sensorimotor cortex, suggested by Farah [22]. Nevertheless,
it is important to note that both authors support that sen-
sory information actively influences the organisation of the
respective brain areas. Cortical self-organization is also ap-
parent in case of amputated body parts. Merzenich [18]
showed the reorganization of cortical maps in monkeys be-
fore and after the amputation of fingers.

Based on these insights into the way brain represents and
manipulates sensory information, we decided to simulate
sensory maps in our model using artificial neural networks
(ANNs), which are computational algorithms inspired by the
brain organization and structure. Expressed using mathe-
matical vocabulary, an ANN is a graph whose nodes are neu-
rons organised in a layered architecture and connecting edges
among them are neural weights. Weights are computed us-
ing various learning rules such that they map the input val-
ues onto the desired output. ANNs do not capture the ex-
haustive level of information processing detail as observed in
real biological systems, but rather attempt to approximate
experimental data or phenomenologically simulate certain
aspects of neural systems. The topology-preserving char-
acteristic of a particular class of ANNs known as Kohonen
networks [12] or self-organizing maps (SOMs) motivated the
choice of the model. SOMs have been widely utilised in mod-
elling of formations of different sensory modalities such as
those in the auditory cortex [16], somatotopic maps [21] and
orientation maps in the striate cortex [15]. One of the rea-
sons for using a biologically-inspired model is to gain better
understanding of the biological system through computa-
tional modelling. We use brain-inspired Hebbian learning
paradigm to associate maps to simulate interaction between
brain areas based on the interaction of the agent with the
external world.

It has to be pointed out that the biologically inspired
model has not been adopted just for the sake of reproducing
a biological system into an artificial one. Rather, our aim
is to provide an artificial system with capabilities such as
autonomous learning, adaptability and plasticity. In fact,

state-of-the-art robots still lack basic capabilities such as
learning, adapting, reacting to unexpected circumstances,
exhibiting a proper level of intelligence and autonomously
and safely operating in unconstrained and uncertain envi-
ronments.

Through the proposed model, a robot can autonomously
build up an internal representation of its body, or of parts of
it. In particular, the nature of the proposed model allows an
artificial agent to build up and, eventually, to reshape its in-
ternal body representation through the interaction with the
external world. In addition, a particular emphasis has been
given to the developmental progression in the acquisition of
motor and cognitive skills (such as attention manipulation
through pointing gestures). We strongly believe that study-
ing human development could give insights in finding those
basic behavioural components that may allow for the au-
tonomous mental and motor development in artificial agents.
A robot capable of developing motor and mental skills au-
tonomously can better deal with the aforementioned chal-
lenges related to real world scenarios.

3.1 SOMs and Hebbian learning
A SOM is constructed as a grid of neurons, where each

neuron is represented as a n-dimensional weight vector wi.
The number of dimensions of a weight vector corresponds to
the dimensionality of input data. Each neuron approximates
a certain region of data points in the input space yielding
less units needed to represent the input.

Weights in the network are initially set to random values
and then adjusted iteratively by presenting the input vector
xp randomly chosen from the input data. In each iteration,
the winning neuron i is selected as a neuron whose weights
are closest to the input vector in terms of the Euclidean
distance:

arg min
i
||xp −wi|| (1)

After selecting a winning neuron, the weights of all neurons
are adjusted:

∆wj = η(t)h(i, j)(wj − xp) (2)

The η(t) parameter is a learning rate which defines the
speed of change. The function h(i) is a Gaussian neighbor-
hood function defined over the grid of neurons as:

h(i, j) = e

(
w2

i −w2
j

2πσ(t)2

)
(3)

The learning rate η and the spread of the Gaussian func-
tion σ are held constant for the first half of iterations, and
afterwards are annealed exponentially. The function is cen-
tered around the winning neuron i and its values are com-
puted for all neurons j in the grid. The spread of the func-
tion determines the extent to which neighbouring weights of
a winning neuron are going to be affected in the current it-
eration. The topology of the network is preserved by pulling
together neurons closest to the winning node. This under-
lies the assumption that the initial configuration of neurons
in the network covers the space arbitrarily, and only upon
iterative presentations of input data starts converging to the
optimal state.

The activation function of a neuron, A(x) is computed
over the Euclidean distance between the neural weights and



Figure 3: The SOM with 225 neurons approximating
the left hand trajectory samples in the 15×15 model

the input vector, denoted with x:

A(x) =
1

1 + tanh(x)
(4)

It is a common practice in cognitive modelling to connect
multiple SOMs using the associative links ([20], [27] and
[13]). The Hebbian learning paradigm describes an associa-
tive connection between activities of two connected neurons.
If a postsynaptic neuron j is always activated after the presy-
naptic neuron i, the connection between these two neurons
is strengthened using the following rule:

∆wij = ηhAi(x)Aj(y) (5)

Initially, all weights between two SOMs are set to zero
allowing for an activity-dependent role of structural growth
in neural networks. The scaling factor ηh is chosen to be
0.01, to slow down the growth of weights.

3.2 Model architecture and training
The model consists of structured associations of two 2D

SOMs with each SOM representing a different part of the
left arm posture. This is schematically depicted in Figure
2 where the “blue” SOM is used to represent the elbow and
shoulder positions, and the “red” SOM the hand positions.

The model was trained using data points gathered in the
babbling experiment. The implementation of the babbling
procedure was adapted from [25]. The robot has been pro-
vided with a simple behaviour based on sensorimotor coor-
dination which allowed it to look at its own random arm
movements. First, a motor command which is a desired an-
gle position is sent to each joint of the left arm. When the
hand of the robot, represented for simplicity by a fiducial
marker1, is detected, the joints of the neck are rotated in
order to center the fiducial marker in the perceived visual
input. The bottom camera placed in the robot’s head has
been used to capture the visual input. During the babbling
process, information related to the estimated position of the

1We used the ARToolkit library for marker detection
(http://www.hitl.washington.edu/artoolkit).

Figure 4: The SOM with 25 neurons approximating
the left hand trajectory samples in the 5× 5 model

marker is stored and mapped with the current configuration
of the arm joints. The position of the marker is charac-
terised by a horizontal, vertical and depth dimension. Four
arm joints have been used: shoulder pitch, shoulder roll, el-
bow yaw and elbow roll. Together, the 3D marker position
and 4D positions of joints form a 7D data point.

The babbling experiment lasted approximately 40 minutes
and yielded 74,143 data points which were used to train the
model. The training comprised adjustment of weights for all
neurons in each SOM and it consisted of 20,000 iterations.
In each iteration, a random input vector corresponding to
one data point was chosen from the training set. The part of
the vector describing the marker position was presented to
the first SOM, and elbow and joint positions were presented
to the second SOM. In both SOMs, neurons approximating
inputs with lowest Euclidean distances were regarded as win-
ning neurons. Weights were adjusted for a winning neuron
and its neighbourhood. The learning rate η was set to 0.9
and the spread of the Gaussian neighbourhood function σ
was 0.7. Both hyperparameters were kept constant for the
first half of iterations, and afterwards annealed exponen-
tially. After the local weight adjustment, the links between
winning neurons in SOMs were computed using the Hebbian
learning paradigm as explained in the previous section.

We trained two different instances of the model: one con-
sisting of two SOMs with 50 neurons in total, where neu-
rons in each SOM were arranged in 5 columns and 5 rows
(the 5 × 5 model in Figure 4) and the other consisting of
two SOMs with 450 neurons in total, where neurons in each
SOM were arranged in 15 columns and 15 rows (the 15× 15
model in Figure 3). The motivation for the two models un-
derlies the assumption that the model containing more neu-
rons represents the more advanced stage of pointing skill
development. We assume that such stage is characterised
by the increased number of specialised neurons and thus the
15 × 15 model might develop from the 5 × 5 model. Both
models trained on the same data set using the same param-
eters. The 15× 15 model was used to determine the robot’s
arm posture in the experiment with a human.



Figure 5: Pointing sequence in a human-robot inter-
action

We evaluate both models by comparing pointing preci-
sions obtained in the experiment. Additionally, we theo-
retically analysed how the duration of babbling procedure
influences the pointing precision under the assumption that
shorter babbling phase corresponds to a shorter period of in-
fant’s engagement in sensorimotor self-exploration prior to
pointing behaviour.

4. THE EXPERIMENT
The experiment consisted of human-robot interaction in

a setting as shown in Figure 5. The human subject held an
object tagged with a marker in front of the robot and moved
it for approximately 2.5 minutes. Movements at varying
speed were random and covered the space within and beyond
the reach of the robot’s hand. The robot followed the object
with its head and arm.

Both the 15×15 and 5×5 models trained on babbling data
were implemented on a robot. In the experiment, the 15×15
model was used to set the shoulder and elbow configuration.
Although the same configurations determined by the 5 × 5
model were not used to set robot’s joints, their values were
saved and used for comparison with the values obtained by
the 15 × 15 model. When the robot detected the object,
the 3D coordinates were used to activate a neuron in the
first SOM. Neuron with the strongest Hebbian link in the
second SOM was chosen. Weight values of neurons were
used to issue a motor command to set the configurations of
the robot’s joints.

4.1 Results
The 3D position of the marker was taken as a ground

truth in the attempt to evaluate the precision of pointing.
We plotted it against reached hand positions determined
by the SOMs for both the 5 × 5 and the 15 × 15 models in
Figure 6 (only for the horizontal dimension). It is important
to notice that the robot’s hand was in total 240 mm in
length, and object positions beyond that length were not
reached contributing to the high error. However, this error
is not a trustworthy measure of pointing quality since we are
interested in the direction of pointing along the axis rather
than exact overlap of the trajectories. In the plot, one can
see that the hand trajectory determined by both models
approximately follows the position of a marker. The 15×15
model captures the trend with the higher precision.

As a simple quantification measure of pointing we intro-
duced the pointing precision error, which is defined as the
Euclidean distance between the 3D position of a marker and
the 3D hand position. A paired-samples t-test was con-
ducted to compare precision errors for the 5× 5 model and

Table 1: Pointing precision (in mm) for different
network sizes and different training conditions

1% data 10% data 100% data

5× 5 46.00± 37.75 29.82± 18.15 29.11± 14.99

15× 15 39.45± 38.23 17.82± 15.78 14.18± 8.30

the 15 × 15 model. There was a significant improvement
in the performances from the 5 × 5 model (Mean error =
99.93mm , Std. Dev. = 32.10) to the 15 × 15 network
(Mean error = 80.32mm, Std. Dev. = 33.41) conditions;
t(1400) = 76.47, p < 0.05.

The influence of training data on pointing precision was
analysed using babbling data sets of different sizes for the
training of the 5×5 and the 15×15 model. We distinguished
between three different cases: one training case used only the
first 1% of the babbling data, the other case the first 10% of
the babbling data and the last case the whole 100% of the
babbling data. This amounts to six models in total whose
precision accuracies were tested in a simulated experiment
on a computer. After all six models have been trained, they
were tested with a new babbling data set that was differ-
ent from the one used for training. Data points in this set
were acquired in random motor babbling experiment with
the robot that lasted for approximately 30 minutes and it
yielded 57,778 data points. Testing of a single model con-
sisted in iterative presentation of the 3D hand position vec-
tor from the testing set to the first SOM, activation of a
winning node and computation of Euclidean distances be-
tween the weights of a winning node and the hand position.
Different training cases can be regarded as different learn-
ing processes with respect to the duration of the exploration
in the random motor babbling phase. Precision errors for
different training conditions and different models are pre-
sented in Table 1. The values differ from those observed
in the pointing experiment, where the human subject was
holding an object. This difference comes as a result of the
first experiment using babbling data for both testing and
training, while during the pointing experiment, testing was
performed with an object which was often out of reach, re-
sulting in a larger precision error, as discussed before.

5. DISCUSSION AND CONCLUSIONS
With this work an important open question “How can

pointing emerge from grasping behaviour” (T2.3 from [11])
in developmental psychology and developmental robotics has
been addressed. We identified and extended the informa-
tional and sensory prerequisites for realising pointing from
motor babbling in a computational model. Compared to the
similar model presented in [25], the advantage of our model
is the biological plausibility, which aims to make a contribu-
tion towards the research direction that might be of interest
for neuroscientists and roboticists. The modular organiza-
tion of the model in terms of sensory maps and associated
representations of sensory data via Hebbian learning allow
for easier extension and identification of its components with
the biological equivalents.

The results presented here enable us to draw several par-
allels with respect to the development of pointing skill in
infants. First, the two instances of the model can be com-
pared to the two different stages of hand-eye coordination



Figure 6: Left hand trajectory along the horizon-
tal axis as predicted by the two networks and the
ground truth value

development. Under the assumption that the more advanced
stage is described by more specialised neurons which facili-
tate pointing, the model containing more neurons simulates
the later stage by performing significantly better in terms of
smaller pointing errors. Second, we explored the influence
of data acquisition procedure through random motor bab-
bling and showed that longer babbling phases yield better
pointing accuracies. Following this line of arguments, one
would expect that infants which explored the greater set of
body configurations might acquire better manual coordina-
tion. This hypothesis can be further tested by analysing the
motor coordination of children who were differently exposed
to sports in their early childhood.

When trained on different data, the model for pointing can
be used for learning other sensorimotor skills. For example,
one could use the model to learn relations between observed
pointing gestures and motor commands for moving into the
pointed direction, similarly to [3]. Knowing and handling
these relations is important, as situations requiring them
occur in everyday life. For example, in a bookstore when
we point to a book on the shelve we can not reach or on
the street where we ask for an unknown path. Thus, for
robots to exhibit human-like behaviour in such situations
they need to be able to recognize the pointed position and
to associate this position with a certain motor command
which should be issued to reach that position. In order to
achieve this behaviour, one would need to train one SOM
to represent the space of joint configurations and associate
this SOM with the motor commands in the second SOM.
Depending on whether the robot should point or move, one
should use one or the other SOM to determine kinematics
of robot.

6. FUTURE WORK
The research presented here can be expanded into multi-

ple directions. One might like to address the training proce-
dure in a greater detail and analyse the influence of learning
parameters on the pointing precision. Exciting questions

with implications relevant for neuroscience might be tackled
by introducing more complex neuron models that exhibit
spiking behaviour. In that case, instead of simple Hebbian
learning rule, SOMs can be coupled with more biologically
realistic spike-timing-dependent plasticity rules. With this
modifications, one would expect to strengthen the link be-
tween the model and the biological system.

A mechanism which reflects the ongoing development and
learning in neural models is the ability of a model to gradu-
ally adapt to more complex inputs. The adaptation should
be observed as the increase in the model complexity which,
in return, should be observable in the roboot’s behaviour.
We speculate that one important aspect of such adaptive
mechanism involves the increased number of neurons in a
neural network. More complex SOM-based algorithms such
as growing neural gas qualify as a starting point for simula-
tion of ongoing development.
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