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ABSTRACT
Functional near infrared spectroscopy (NIRS) is a promising
new tool for research in human-robot interaction (HRI). The
use of NIRS in HRI has already been demonstrated both as a
means for investigating brain activity during human-robot
interactions, as well as in the development of brain-robot
interfaces that passively monitor a person’s cognitive state
to adapt robots’ behaviors accordingly. In this paper, we
survey the utility of NIRS and its range of applications in
HRI. We discuss both some exemplary applications as well
as several pressing challenges to the deployment of NIRS in
more realistic settings.
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1. INTRODUCTION
One of the main goals of research in human-robot interaction
(HRI) is to develop effective interactions between people and
robots. While current modes of interaction primarily rely on
visual and verbal communication, there is a growing body of
work employing brain-based sensors as an additional infor-
mation channel to equip robots with an awareness of (and
thus, ability to respond appropriately to) a person’s cogni-
tive state (for a review, see [6]). Given recent advances in
brain-imaging technology, inexpensive sensors are becoming
increasingly accessible to researchers and consumers alike.
This production of affordable sensors (that are also small
and wireless) is promising for HRI, as that allows for the
wearing of such sensors in a variety of human-robot interac-
tion settings without being intrusive. Neural data, in par-
ticular, is highly relevant for HRI research as it can comple-
ment traditional survey methods such as questionnaires and
thus yield further understanding of users’ genuine responses
toward robots during an interaction (e.g., [41]). Moreover, a
growing body of work suggests that it can be used for real-
time detection of a person’s cognitive or affective state (e.g.,
[16, 26, 45, 50]), which could be used to further inform a
robot’s user model and thus modify its behavior accordingly.
Already, socially-aware robots that can capture and respond
to changes in anxiety, attention, arousal, and other states
have been found to be more effective in engaging people
(e.g., [45]). For these reasons, research on neurophysiolog-
ical signals has been attracting the attention of researchers
in the HRI community over recent years [4, 6, 32, 44, 41].

Amongst work employing brain-based measures, electroen-
cephalography (EEG) is the most commonly-used technol-
ogy for measuring brain activity as it provides high tempo-
ral resolution (which allows for the monitoring of quickly-
changing processes such as attention; see [13] for a review).
However, it is also disadvantaged by limited spatial resolu-
tion, thus reducing its efficacy for measuring region-specific
brain activity. Conversely, high spatial resolution can be
achieved using functional magnetic resonance imaging (fMRI),
but at a cost to both participant mobility and temporal res-
olution [6]. Hence, functional near infrared spectroscopy
(NIRS or fNIRS) is a promising alternative, achieving some
middle ground in both spatial resolution and mobility con-
straints between the EEG and fMRI technologies (e.g., [20]).

Within the field of human-robot interaction, two distinct
usage patterns have emerged with respect to NIRS: (1) as
a measurement tool for evaluating interactions between hu-
mans and robots (e.g., [23, 41, 44]), and (2) as a passive
input channel to better inform a robot of a person’s cogni-
tive or affective state (e.g., [45]). In this paper, we discuss
(1) the utility (i.e., cognitive states measurable by NIRS)
and applications of NIRS in HRI, and (2) the limitations
of NIRS with respect to naturalistic and unconstrained in-
teractions of more realistic HRI settings. We start with an
overview of the technology, followed by a survey of its appli-
cations to HRI, detailing selected studies as exemples. We
then discuss the challenges of using NIRS in HRI and review
general guidelines for future research directions.

2. NEAR INFRARED SPECTROSCOPY
Functional near infrared spectroscopy (NIRS, also referred
to as fNIRS or fNIR) is a neuroimaging methodology similar
to fMRI. By measuring changes in oxygenated and deoxy-
genated hemoglobin, NIRS non-invasively gauges regional
cortical activation (e.g., [20]). However, as the hemody-
namic response is a secondary response following neural ac-
tivity, it lags behind the triggering neuronal events by sev-
eral seconds (e.g., [10]). This response peaks about 5 seconds
after the onset of the stimulus and then dips back down as
homeostasis is reestablished.

The change in hemoglobin due to neural activity is called
the hemodynamic response (HDR) and is measureable with
NIRS due to the differences in molar absorptivity of
hemoglobin versus the surrounding tissue. Specifically, in



Figure 1: Photons follow a banana-shaped path through the skin, skull and cerebral cortex and are measured
by a photo-receptor typically positioned between 1.5 to 4 cm from the optode.

the near infrared range of light (between 700-900nm), biolog-
ical tissue is relatively transparent, whereas oxy- and deoxy-
hemoglobin are strong absorbers of light. Estimates of the
ratio of oxygenated to deoxygenated hemoglobin can thus
be obtained through the coupling of infrared light emission
and detection. In general, a light source emits photons which
are carried through a fiber optic bundle to a sensor placed
directly the skin. From there, the photons follow a banana-
shaped path through the skin, skull and cerebral cortex to
be caught by a photo-detector positioned several centimeters
away from the source (see Figure 1). Since oxy- and deoxy-
hemoglobin are both chromophores that absorb light in the
near-infrared range, regional changes in hemoglobin concen-
tration can be calculated based on wavelength-dependent
changes in light attenuation ([6]).

Sensors (containing one or more light sources and detector)
are positioned to target specific regions of the brain via mul-
tiple channels (light source-frequency pairings; see [24] for
more details). These sensors are attached by various means
including caps, headbands, and mechanical supports. While
most sensors are tethered by cables that extend back to the
NIRS instrument (see 2), there are also wireless, portable
versions of NIRS devices in development [6]. For more de-
tailed reviews of hemodynamics and NIRS instrumentation,
see [12, 20, 24, 34].

3. APPLICATIONS AND UTILITY
There are a number of comprehensive reviews of the util-
ity of NIRS in general (e.g., [5, 20, 34, 46]). However, as
the literature on NIRS is dispersed across many publication
outlets in the HRI, HCI, neuroimaging, and brain-computer
interface (BCI) communities, we review here the cognitive
and affective states measureable with NIRS, the applicabil-
ity of NIRS in HRI, and the relevant considerations for its
deployment.

3.1 Evaluation of Human-Robot Interaction
Within the field of human-robot interaction, two distinct
usage patterns have emerged with respect to NIRS: (1) as
a measurement tool for evaluating interactions between hu-
mans and robots (e.g., [41]), and (2) as a passive input chan-
nel that alters a robot’s behavior based on a person’s cog-
nitive state (e.g., [26]. In both cases, a person performs a

task (e.g., interacts with a robot) while wearing the NIRS
probes. However, the principle difference between the two
paradigms is what happens to that signal once it reaches the
computer for processing. As an evaluation tool, NIRS en-
ables offline analyses and inferences about cortical activity.
Data recorded during a task are preserved and subsequently
inspected or visualized by the experimenter post-hoc. A
number of NIRS-based studies have been conducted in this
regard to investigate people’s cognitive reponses towards
robots [23, 28, 36, 39, 41, 44]. In this work, NIRS is typically
used as an additional measurement or as an objective mea-
surement of people’s genuine perceptions while they interact
with or observe a particular robot or particular behavior of a
robot. To-date, its usage in this manner has shown relevant
findings regarding attention, engagement, empathy, and dis-
comfort in human-robot interactions. These cognitive and
affective states are of clear relevance to the field of HRI, as
a robot designed for interactivity with a human agent need
be approachable and interesting for there to be successful
(and sustained) interaction.

Mental workload. The discrimination of mental workload
states (i.e., low versus high workload) are the predominate
focus of using NIRS in human-computer interaction (e.g.,
[17, 35]. These states are typically induced using arithmetic-
based or memory-based tasks such as mental math or the n-
back task [13] and are generally measured via the prefrontal
cortex (an area easily accessible to NIRS via the forehead,
as there is typically no hair to influence the measurements).
However, while adaptivity of robot behavior based on a per-
son’s workload level has suggested promise for improving
human-robot interactions [26, 37], the discernment of dif-
ferent states (e.g., low versus high workload) using NIRS
is relatively unstable across investigations (e.g., [42, 7, 13,
18]). Specifically, classification accuracies range from barely
above chance (e.g., [42]) to high-80s (e.g., [14]) with no clear
relation to the device or signal processing methods used.
Moreover, while some work suggests that NIRS outperforms
EEG on detecting mental workload (e.g., [18]), others sug-
gest the reverse (e.g., [7]).

Positive affect. Compared to the volume of workload-based
investigations, there have been only a few NIRS-based stud-
ies targeting postiviely-charged states such as attention, en-



Figure 2: A subject fitted with a two-probe NIRS instrument. The sensors are positioned along the forehead
to measure the prefrontal cortex and secured using a spandex cap. Data is transmitted via fiber-optic cables
to the computer (back, left) that is connected to the oximeter (right). Image reproduced from [40] with
permission.

gagement, and empathy [23, 28, 36, 39]. Specifically, Kawaguchi
and colleagues [23, 36] investigated the effectiveness of Paro,
the robotic seal, for robot-based therapy. Using NIRS, they
observed activation in both sides of the Sylvian fissure while
participants interacted with Paro, which indicated partici-
pants recognized and responded to Paro’s emotional gesture
expression. Similarly, Nozawa and Kondo (2010) used NIRS
to evaluate human interactions with three different adap-
tive agents, finding that the degree of intrinsic motivation
of an agent increased participants’ brain activity in the the
dorsolateral cortex – an area associated with both the con-
trol and sustanence of attention. More recently, we investi-
gated the degree to which people ‘empathized’ with robots in
moral utilitarian dilemmas and the relative effects of agency,
moral value, and incentive on both participantsâĂŹ behavior
and prefrontal hemodynamics in utilitarian decision-making.
Consistent with a recent fMRI investigation of empathy to-
wards robots (e.g., [33]), we initially observed that seeing a
humanoid robot (the Aldebaran Nao) in danger elicited sub-
stantially more activity in the prefrontal cortex than other
inanimate objects, but significantly less activity compared to
seeing a human in danger [39]. However, in a set of follow-up
studies, the agency effects on prefrontal activity (the differ-
ences in activity levels between seeing a robot versus human
in danger) did not persist [43]. As participants only viewed
images of the humanoid robot agents, however, it is possible
that, by increasing the presence of the robot agents, such
agency effects may become more apparent from the NIRS
data (as was the case in [41]).

Negative affect. There are also a growing number of NIRS-
based studies showing the measurability of negatively-charged
emotional states such as negative mood [3, 2], low versus
high arousal/valence [16], emotion regulation [47], and frus-
tration [19]. While still a relatively unexplored application
area, the results here are highly consistent across the various
efforts to detect negative affect and moreover, across a di-
verse set of contexts (e.g., threat, working memory tasks,
moral dilemma, human-robot interactions) in which that
has been achieved. Regarding human-robot interactivity in
particular, we have used NIRS to investigate discomfort in
various interactions and contexts with a number of robots
[41, 44]. Specifically, in a recent mixed-methods study, we

employed both survey-based subjective and brain-based ob-
jective measures to investigate the effects of several situa-
tional factors on the perceived effectiveness of the human-
robot interaction. The aim of our study was to measure
the effects of robot communication strategies such as direct
vs. indirect speech in advice-giving contexts. We manip-
ulated three additional factors – robot appearance, inter-
action modality, and interaction distance – as they have
been shown to modulate the effectiveness of human-robot
interactions. Here we observed significant differences in pre-
frontal activity in response to two robots (the Xitome De-
signs’ MDS and Willow Garage’s PR2) based on whether
the participant was co-located or remotely located with the
given robot. Specifically, we found that when co-located
with the very human-like MDS, significant brain activity
was elicited and moreover, participants reported severely
decreased preferences for further interaction with the MDS.
Whereas, participants showed no significant reaction to co-
located interactions with the PR2. Moreover, participants
showed no significant reactions (neither in brain activity nor
in subjective preferences) towards the MDS when there was
substantial distance in the interaction (i.e., interaction via a
Skype call or observation of a video recording). The survey-
based and brain-based measures hence, in combination, sug-
gest there may be emotion-regulatory mechanisms evoked
when directly interacting with a co-located, humanoid robot.
Whereas, in a removed context such as that of observing
video of the two – much like viewing a movie – the fear
or anxiety elicited by the MDS’ eerie appearance may have
been reduced or non-present.

3.2 Passive Adaptivity of Robot Behavior
As a passive input to adapt various robot behaviors, the
NIRS measurements are analyzed in realtime and interpreted
by a system trained to identify a state of the NIRS signal
(e.g., high workload). When a particular state of the user
is identified, a control signal is transmitted to the robot to
change its behavior accordingly. While NIRS-based robot
adaptivity has been suggested to improve the efficacy of
human-robot interactions, the results and their reliability
are still limited. To-date, there have been just a couple
demonstrations of such systems [26, 37].



3.2.1 Exemplars
Matsuyma and colleagues created a simple, proof-of-concept
system based on the detection of workload-related activity.
Their study was a preliminary (and first) attempt at us-
ing passive monitoring of a person’s cognitive state (using
NIRS) to adapt a robot’s behavior. There they measured
participants’ prefrontal cortex while they solved arithmetic
problems. When an increase in oxygenated hemoglobin cor-
responding to the participant actively working on a arith-
metic problem was detected, the robot received a motor
command to raise its arm. However, this study exposed
a particular shortcoming of NIRS that is an obstacle for its
effectiveness in more realistic scenarios, namely that of on-
set detection latency [6]. Specifically, using their approach
to workload monitoring, the time between a participant be-
ginning the arithmetic problem and the transmission of the
motor control signal ranged from just few seconds to over fif-
teen seconds [6, 26]. As task-related hemodynamic changes
in oxygenated hemoglobin occur over several seconds [8], this
delay was (and is) somewhat unavoidable due to the inher-
ent hemodynamics; however, recent work has demonstrated
vast reductions in temporal delays to onset detection [10]
which suggests further improvement may be possible.

Similar to [26], we previously participated in the develop-
ment of a passive NIRS-BCI aimed at adapting a robot’s be-
havior based on a person’s detected multitasking state [37].
A two-probe NIRS instrument (with four sources per probe)
was used to image participants’ prefrontal cortex, while they
worked with two simulated robots on a human-robot team
task. Here we designed a naive SVM classification model
based on gross temporal dynamics and trained using data
collected while participants performed a variant of the n-
back task. In the human-robot team task, we hypothesized
that adapting the level of a robot’s autonomy would lead
to better task performance and better perceptions of team-
work. Thus, while participants performed the team task,
classifications of their mental workload dynamically adapted
the autonomy of one of the robots according to the partici-
pant’s multitasking state. An initial evaluation [37] showed
successful task completion was significantly moderated by
adaptivity: the dynamic adaptivity of the robot’s autonomy
improved task performance (82% of participants successfully
completed the team task versus a baseline performance rate
of 45%). This system was thus a substantial extension of
[26], as it was the first NIRS-BCI to demonstrate effective
improvements on a realistic task. However, in a recent series
of reinvestigations [42] of this system’s classification perfor-
mance, the average classification accuracy on an alternative
dataset (of mental arithmetic) was only 54.5% (SD=14.3%)
suggesting limited generalizability of the system’s signal pro-
cessing. Additionally, this NIRS-based classification model
was found effective (statistically better than chance) for only
10/40 participants in the alternative dataset [42], which sug-
gested limited utility for a more realistic population sample
(i.e., when N=40 vs. N=3 in the initial evaluation).

3.2.2 Utility
Despite the limited success of passive NIRS-based robot
adaptivity thus far, there is evidence supporting its utility.
For instance, although our more recent findings [42] suggest
low replicability and extensibility of [37], the subjective re-
ports in the original experiment indicate the dynamic auton-

omy improved perceptions of the robot teammates. Specif-
ically, the adaptively autonomous robot was found to be
more helpful and cooperative than its non-adaptive coun-
terpart. Thus, there may be still some utility to the NIRS-
based adaptivity (despite the confounds), though perhaps
not measureable at the scale of task completion rates.

Additionally, NIRS may be particularly useful for evalua-
tion and/or passive monitoring of a person’s aversion or dis-
comfort with a robot. Via a qualitative evaluation ([44]) of
participants’ prefrontal activity during human-robot inter-
actions, we found persistent trends across participants based
on situational factors of the interaction and similar changes
in activity as a function of the duration of exposure to a
robot (see Figure 3). Specifically, we analyzed prefrontal
cortical activity over the course of two-minute (semi) free-
form interactions. Additionally, we evaluated the changes in
activity over repeat interactions and whether the effects ob-
served were large enough to persist at an individual subject-
level. The findings were consistent with our prior results
[41], suggesting, in combination with subjective measures
of preference, that PFC hemodynamics reflect a person’s
aversion to a robot and are moderated by the settings of the
interaction and the human-likeness of the robot interlocutor.
But our results also suggest that participants’ responses fluc-
tuate over the course of a task, and may diminish with pro-
longed exposure to or interaction with a given robot. This in-
dicates that passive monitoring of a person’s cognitive state
would be particularly useful, as it would allow the robot to
react or modify its behavior in order to reduce a person’s
aversion. However, given the high variability and noise in
the NIRS data, it is unclear whether these effects are reliably
detectable at an individual level. Thus the use of NIRS as a
feasible realtime measurement for adapting robot behavior
based on a person’s affective state may be still premature
without more controlled investigations to better understand
individual variations in the signal.

3.3 Considerations
In the previous section, we discussed more prototypical ex-
amples of NIRS in HRI, which were intended to serve as
proof-of-concept studies that NIRS can be utilized both as
a component of an interface device and as an evaluation
tool in HRI. However, many applications have encountered
significant challenges that are not yet, in most cases, suffi-
ciently addressed. The goal of this section is to discuss the
most pressing considerations for the wide use of NIRS in
HRI.

In the standard, offline approaches to signal processing of
NIRS data, the signals are short (3 to 60 seconds) and heav-
ily filtered post-hoc (with roughly the following measures)
– detrending (removal of low frequency signal artifacts and
drift), smoothing (removal of systemic artifacts such as car-
diac pulsations, respiration, and Mayer waves), motion cor-
rection (reduction of motion artifacts), and data reduction
(removal of noisy or corrupt trials; averaging over repetitions
of a task and/or truncation of the signal to reduce tempo-
ral variation; using summary statistics, e.g. area-under-the-
curve, percent signal change to represent the overall hemo-
dynamic response) – see [5, 6, 9, 20, 25, 29, 34, 46]. Such
processing can result in dramatic reductions of signal noise,
however, in online, passive settings, signal processing faces



Figure 3: Average (N=15) hemodynamic activity sampled from the left prefrontal cortex in response to
interactions with the MDS (red) and PR2 (gray) robots, mediated by situational context [41]. Left: third-
person observation of video-recorded interactions. Center: remote human-robot interaction (occured over
Skype). Right: co-located interaction. Image reproduced from [44] with permission.

substantial limitations [6, 35, 40].

Participant mobility. Motion artifacts degrade and trans-
form the NIRS signal. These artifacts can be caused by
various sources including movement of the sensors on the
skin, facial expressions, head orientation, and more [6, 27,
31]. Attempts at combating these effects include chin rests
and mechanical supports [8] (which are not particularly rea-
sonable in realistic HRI settings) as well as specific signal
processing filters. There are, however, several recent and
promising proposals for real-time motion artifact correction
in natural environments [1, 5, 22].

Task-unrelated activity. Separating task-related from unre-
lated cortical activity and signal noise is also difficult. Task-
unrelated activity such as resting-state fluctuations [20, 21]
or whole brain activity [26] can degrade the signal qual-
ity. Additionally, the prefrontal cortex, for example, is a
“bustling metropolis of executive functions” [6], hence it is
unlikely that it is possible to discriminate among the various
parallel ongoing processes in this area. Moreover, NIRS is
sensitive to systemic physiological artifacts such as Mayer
waves and those from respiration, blood pressure, and car-
diac pulsation (e.g., [9, 11, 27, 49]). Hence, all of these
factors confound inferences about characteristics of the sig-
nal, specifically characteristics attributable to the task (i.e.
not present during rest). This sensitivity can obfuscate task-
related activity and potentially lead to incorrect interpreta-
tions of the signal.

Hemodynamic response. It is unclear how reliably and quickly
any such distinction could be made since even the onset of
vascular change lags 1-2 seconds behind the neural activation
that caused it (e.g., [10]). Realtime systems which intend to
dynamically act on rapid cognitive changes (e.g., [26, 37])
must address this inherent trait since it otherwise limits the
applicability of NIRS to slow-changing (on the order of sev-
eral seconds) cognitive phenomena. Another potential lim-
itation is the way the hemodynamic response changes over
longer periods of time. Most previous NIRS research in HCI
and HRI has been limited to task-onset detection in 10-45
second windows. The signal over longer time spans has gone
largely uninvestigated.

Probe placement and reproducibility. Sensors must be at-

tached securely in order to avoid creating motion artifacts
that degrade the NIRS signal. One research group reported
that the method of connecting the optodes to the subject’s
head actually had the greatest bearing on system perfor-
mance because of its substantial effect on signal quality [8].
The quality of the NIRS signal is additionally affected by
dark skin pigmentation [48] and hair caught between the
sensor and scalp [8]. While a first step toward imaging
specific regions of the brain with NIRS is to use a probe-
placement framework like the international 10-20 system for
EEG [13], there is no guarantee precisely which regions are
measured [20, 30]. These frameworkis rely on anatomical
landmarks for placing sensors and so are inherently inex-
act across participants. There is also variation in precise
function-location mappings between partici- pants. Further-
more, re-positioning the probe set on an individual is prone
to error and even millime- ter movements of the probe set
can lead to centimeter shifts in whole channel position [30].

Hardware and Environment Additional complications arise
due to NIRS hardware and environmental conditions. For
one, because probes need to be placed on the subject’s head
and connected to a processing device (either through wires
or through a wireless tether), there are range and mobility
limitations imposed on the kinds of interactions that can be
performed. This is especially limiting of proximate interac-
tions (e.g., situated social robotics experiments). Moreover,
in some cases, the subject’s hair may entirely prevent appro-
priate probe placements and thus prevent NIRS from being
used (as shaving the head is usually not an option). Ambient
light and changes of lighting conditions in the environment
also poses potential problems as they can alter the signal-to-
noise ratio. In most cases this can be addressed with thick
opaque covers (e.g., headbands, helmets, etc.) that protect
the probes.

4. DISCUSSION
The aim of this paper was to provide (1) an overview of
what we can do with NIRS in HRI and (2) a discussion of
the relevant considerations for its usage in more realistic set-
tings. We described two ways of utilizing NIRS: as a tool for
evaluation of interactions and as a passive input for adapt-
ing robot behavior. The prototypical application of NIRS
as an evaluation tool is as an offline post-hoc analysis of a
signal recorded during some interaction. Whereas, the usage



of NIRS as a passive BCI has emerged as realtime monitor-
ing of a person’s cognitive state, and with its emergence,
a number of considerations have followed. The exploration
of NIRS as a tool in HRI research and the evaluation of its
potential have already begun, as demonstrated by the above
exemplary studies. However, given the many challenges to
NIRS that remain to be addressed, it seems premature to
consider NIRS ready for more realistic HRI applications.
Hence here we summarize best practices, research avenues,
and paradigms.

The following list suggests paradigm-independent best re-
search practices for any application of NIRS to HRI (and
related fields):

• Probe placement: effective, consistent placement that
ensures no hair caught between the probes and the
forehead, no movement of the probes, and constant
contact with scalp. Application should also adhere to
a standard framework for probe placement (e.g., 10-20
system for EEG).

• Limited subject movement and motion: support for
the subject’s head as well as verbal instructions to min-
imize movement. Moreover, facial expressions should
be recorded for post-hoc filtering as contortion of the
facial muscles (e.g., frowning, smiling, talking, etc.)
can produce signal artifacts (e.g., [16]).

• Appropriate signal processing: filtering of regular ar-
tifacts from the NIRS signal, including those caused
by Mayer waves, cardiac and respiration patterns, and
subject mobility (including facial artifacts).

• Statistical inference: use of adequate control condi-
tions (e.g., samples should be recorded of the partici-
pant frowning if the task involves negatively-valenced
stimuli that might induce frowning).

The above guidelines are important for optimizing the signal-
to-noise ratio, reliability of data, and legitimacy of inferences
about those data.

While the utility of NIRS for robot adaptivity based on
mental workload states remains to be determined, there are
some domains where NIRS can already be rather straight-
forwardly deployed. Candidates include any type of HRI
domain where human motion can be significantly restricted
and environmental conditions can be controlled (such as in
the case of a human operator situated at a computer screen
in an indoor environment) and where monitoring the hu-
man can lead to some performance improvement (either by
just collecting data about the human for post-hoc processing
or by directly adapting robot behavior during task perfor-
mance). This includes mixed-initiative human-robot teams
where robots would benefit from being better-informed about
the physiological state of their human teammates allowing
them to make better and more informed decisions (e.g., re-
garding task allocations, behavior adaptations, and verbal
communication). Such tasks include coordinated search and
rescue missions, remote deep-sea and space exploration, mil-
itary exercises, unmanned aerial vehicle (UAV) operation,

and many others [15] for a complete survey of HRI prob-
lem domains). In particular, NIRS might be able to help
address one of the important open problems in HRI: how to
provide interfaces and mechanisms to allow a single operator
to control multiple robots (e.g., human cognitive workload
measured by NIRS during multi-robot interactions could be
used be used to dynamically adjust the autonomy of these
robots; for early efforts, see [38]). Currently, however, NIRS
might find wider and more robust use as a component in
evaluative studies. Evaluation studies do not necessitate re-
altime processing of the NIRS signal and thus the signal can
be processed offline, after the interaction, which does not
impose as many challenges.

The properties of the hemodynamic response should also in-
fluence application avenues for NIRS in HRI. Since the onset
of the vascular response lags behind the neural stimulus by
several seconds, NIRS is not suited for rapid (subsecond time
scale) reaction to cognitive events. Instead, NIRS might be
better suited to detection of minute-by-minute state changes
over sustained periods (i.e., slower-changing cognitive phe-
nomena). However, there are still many obstacles to over-
come even for this kind of application, and it is necessary to
integrate knowledge of regional hemodynamics over time to
design appropriate applications.

5. CONCLUSIONS
Functional near-infrared spectroscopy is a promising new
technology for the HRI community and there is a wide range
of areas to which brain-imaging seems to be applicable within
and outside HRI. NIRS has already been used for HRI re-
search (such as robot-assisted therapy, engagement, atten-
tion, limb-control and rehabilitation, intention, and oth-
ers), both as a brain-robot interface to control robot be-
havior and as an evaluation tool for ascertaining the effec-
tiveness of human-robot interactions. However, several sig-
nificant challenges remain to be addressed before NIRS can
become a more widely useful, practical tool for HRI research.
These challenges include context-dependent hardware con-
cerns, signal inference, interface design, robust signal pro-
cessing, properties of the hemodynamic response, effective
probe placement, and developing statistical analysis and in-
ference tools. While many of the difficulties with NIRS have
been recognized, there is currently a dearth of follow-up
studies to address them. It is thus our hope that this survey
will prompt researchers to actively engage in NIRS-related
HRI research that can help overcome the current challenges
to make NIRS a genuinely and consistently useful tool to
the HRI community.
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