
Neuro-Robotic Technologies and Social Interactions 
Kaleb McDowell1,  
Amar R. Marathe,  

Brent J. Lance 
U.S. Army Research Laboratory  

Aberdeen Proving Ground, MD 21005  
 

Jason S. Metcalfe 
DCS Corporation 

Alexandria, VA, 22310  

 Paul Sajda 
Columbia University 
New York, NY 10027 

 
 

ABSTRACT 
The current bandwidth for understanding cognitive and emotional 
context of a person is much more limited between robots and 
humans than among humans. Advances in human sensing 
technologies over the past two decades hold promise for 
providing online and unique information sources that can lead to 
deeper insights into human cognitive and emotional state than are 
currently attainable. However, blind application of the human 
sensing technologies alone is not a solution.  Here, we focus on 
the integration of neuroscience with robotic technologies for 
improving social interactions. We discuss the issue of uncertainty 
in human state detection and the need to develop approaches to 
estimate and integrate knowledge of that uncertainty. We 
illustrate this by discussing two application areas and the potential 
neuro-robotic technologies that could be developed within them. 1 
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1. THE CHALLENGE 
A fundamental challenge for the field of robotics, and more 
specifically, human-robot interaction (HRI), is to effectively 
integrate robotic technologies into natural human social 
interactions. Here, we define effective integration as 1) humans 
considering the robotic technologies as a member of the social 
interaction and 2) the perceived quality of the interaction rising 
above mere execution of a prescribed set of tasks. 

A significant barrier to effectively addressing the challenge posed 
by human-robot social integration is that robotic technologies are 
limited in capability to understand the cognitive and emotional 
context of humans. The primary issue underlying this barrier is 
that individuals’ behavior within social settings cannot be reliably 
and robustly predicted online with any level of precision, even 
with substantial information regarding task and environmental 
context. Significant variability in humans has been demonstrated 
in many ways, from the nervous system through behavior, and 
this variability undermines precise prediction of individual 
instances of human decisions and action choices. For instance, it 
is well known that: different individuals vary widely in their 
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capabilities, limitations, biases, and proclivities within a given 
situation; individual’s decision processes and outcomes are 
variable across time and context; and individual’s behavior can be 
significantly impacted by variations in physiological and 
psychological states. While models have been developed to 
predict behavior in specific scenarios and under particular 
constraints; they generally represent the average human behavior 
and only occasionally represent the variability found across the 
population. More to the point, the developmental background and 
cognitive-behavioral repertoire of an individual human, which 
make-up the cognitive and emotional context, are not sufficiently 
accounted for in any models. Consequently, the behavior of the 
specific individual in a given context cannot be reliably predicted. 
Thus if specific knowledge of an individuals’ behavior within 
context is needed, but not reliably predictable, it becomes 
exceedingly difficult to integrate robotic technologies with 
humans in a social context. 

2. HUMAN STATE DETECTION  
Humans often face a similar issue in interactions with other 
humans. Individuals generally do not have a complete 
understanding of the background, knowledge, skills, and 
capabilities (i.e. the repertoire) of other individuals with whom 
they are interacting. To address this issue, humans integrate a 
wide variety of cues such as facial expressions, body posture and 
actions, vocal tone and inflections, with prior information to 
estimate cognitive and emotional context. While far from perfect, 
the human’s wider information bandwidth and superior processing 
for such bodily and behavioral cues provide a clear contrast with 
robotic technologies in social situations.  

The integration of neuroscience with robotic technologies 
provides an opportunity to both increase the human-robot 
information bandwidth and to provide robotic technologies with 
unique information sources that may ultimately provide 
advantages over human-human interactions. One opportunity is 
availed through the explosion in human sensing, and specifically 
real-world neuroimaging technologies, over the past two decades 
(e.g. see [1], [2]). These modern biotechnologies provide multi-
aspect online information sources that enable inference of human 
cognitive and emotional state. However, sensing advancements 
offer only a partial solution in that they must be combined with 
computational and data mining approaches that leverage research 
advances towards understanding interactions between 
psychological, physiological, and behavioral variables that 
represent human state. For example, using such approaches in 
controlled laboratory settings, researchers have demonstrated 
advances in automation that adapt the human-robot relationship 
based on the workload of the operator [3]. Concomitantly, 
technology also increasingly progresses toward providing detailed 
on- and off-line inference while humans performs complex tasks 
in progressively less constrained environments than are typically 
seen in laboratories [4], [5].  

 

 



While the recent progress has been impressive, modern sensing 
and state estimation technologies remain unable to provide strong 
real-world demonstrations applicable to HRI in natural human 
social interactions. One of the limitations in current technology is 
its robustness and reliability. Quite simply, technologies have 
focused on providing estimates of behavior and state but rarely 
provide any indication of the uncertainty in those estimates.  
However, this limitation can be overcome; as illustrated by recent 
advances in brain-computer interaction (BCI) technologies, which 
have leveraged uncertainty estimates for cognitive variables and 
integrated that information to improve system design [6], [7].  

The use of state sensing techniques in autonomous driving 
technologies offers an exemplar domain within which increased 
human-robot information bandwidth can play an important role. 
Real-time sensing and advanced state inference can enable 
adaptation of human-autonomy system responses to account for a 
wide variety of human states. For example, the content and timing 
of warnings, cautions, and alerts can be manipulated online based 
on estimated capabilities of the operator. Even implementation of 
operator state estimation alone can enable inference of changes in 
emotion, stress, fatigue, and inattention (among others) that then 
may serve as valuable information for integration into vehicle 
control decisions, e.g., collision avoidance systems that adapt 
when drivers are fatigued or inattentive. From a broader social 
interaction perspective, these technologies create an opportunity 
for communication across vehicles, both human-driven and 
autonomy-driven, as well as non-vehicle agents in a broader 
traffic management infrastructure. Street-legal vehicles are 
already required to have indirect indicators; such as brake and 
hazard lights, and observation of their use can betray the state of 
the operator inside to a small degree (e.g. rapid brake light 
cycling may indicate an uncertain, fatigued, or otherwise 
compromised driver). These types of indicators serve as a form of 
vehicle-to-human communication that can warn drivers of other 
vehicles to beware when approaching. It is reasonable to consider 
that, with adequate operator state sensing, generalized warning 
indicators (e.g. automatic triggering of the hazard lights) could be 
created to enable external alerts when the operator is 
compromised. Such information could be propagated through 
local vehicle networks to, for instance, warn of an increased risk 
in the vicinity without necessarily betraying the identity of the 
specific vehicle or vehicles of concern. These scenarios portray a 
potentially unique social integration wherein the 
neurotechnologies for sensing the human are highly integrated 
with the robotic technologies, creating human-robotic vehicles 
that form a basic unit of the social interaction. 

3. SHARED SEMANTIC LEXICON 
The application of advancements in BCI technologies to human-
robot communications offers additional opportunities for 
disambiguating communicative signals sent by a human to a 
robot. One example of this is use of a BCI to improve human-
robot communication by improving the mutual understanding of 
concepts between a robot and a human. For instance, the same 
language can lead to different intent depending on the 
communicator’s context. Two advancements show promise in 
addressing this challenge. First, the increasing use of exemplar-
based learning systems for machine vision and robotics suggest 
that the incorporation of image-based communications may 
increase efficiency in human-robot communications. Second, 
some BCI technologies have been developed to extremely rapidly 
label images based on high-level semantic content and context, 

and then extrapolate class membership and then propagate those 
labels to a larger set of examples in a database [6]. By combining 
these advancements, it may be possible to rapidly label a set of 
images that a human user associates with a high-level semantic 
concept using a BCI, and then use those images as a database to 
train a computer vision system to recognize images that represent 
that user’s understanding of this high-level semantic concept. This 
trained model would then represent an “image-based shared 
understanding” of the specific semantic concepts desired. 

By placing a dictionary of these image-based semantic models on 
a robot, a shared, context-specific understanding may be created, 
which could be used to disambiguate and interpret operator intent, 
thereby improving communication between the human and the 
robot. These semantic concepts could be trained for different 
human cognitive and emotional contexts, as well as 
environmental or task-specific contexts. In the longer term, these 
technologies, when coupled with the concepts of pervasive 
intelligence, could provide capabilities for broader social 
interaction. When humans communicate in non-face-to-face 
modalities, they lose access to nonverbal communication, thus 
increasing the possibility of misunderstandings caused by 
communicative ambiguity. By providing individual 
‘communication agents’ with shared semantic understandings 
coupled to environmental, task, affective, and cognitive state, 
these technologies could create a mechanism for identifying 
ambiguities that cause misunderstandings in non-face-to-face 
human-human interaction.   
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