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ABSTRACT 

In this paper we present a system that allows patients with motor 

disabilities to grasp everyday objects. A closed-loop Brain–

Machine Interface (BMI) instantiates a connection between the 

human central nervous system and an industry robot designed to 

execute the grasping task. 

Two central problems were addressed in this paper, namely I) the 

implementation of a BMI to translate a subject’s voluntary 

modulation of brain activation patterns into commands for target 

selection and grasp execution and II) the development of a robot 

that autonomously grasps natural objects. Our approach in the 

work was to implement as much intelligence as possible into an 

industry standard robotic system to claim a minimum of 

information flow from the patient to the system. The final system 

demonstrates the feasibility of brain controlled grasping of natural 

objects with a robotic arm which is an important step towards the 

development of intelligent prostheses for paralyzed patients.  

Categories and Subject Descriptors 

C.3 [Computer Systems Organization] Special-Purpose and 

Application-Based Systems – Signal processing systems 

I.2.9, I.2.10  [Computing Methodologies] Artificial Intelligence 

– Robotics, Vision and Scene Understanding  

General Terms 

Human Factors, Measurement, Reliability, Experimentation 

Keywords 

Virtual Reality, Grasping, Thought, Brain, MEG 

1. INTRODUCTION 
A majority of the fifteen million people who suffer from stroke 

every year [20] suffer from paralysis at various degrees and 

remain paralyzed even after a rehabilitation therapy. Furthermore, 

neurodegenerative diseases deprive others of their ability to 

communicate with their environment after a relatively brief 

period. The extensive research in the field of Brain Machine 

Interfaces (BMI) development renders the vision of controlling 

robots by thoughts more likely. A brain controlled prosthesis 

could assist people with severe physical disabilities to interact 

with their environments [29, 40]. 

Severely paralyzed patients would greatly benefit from a device 

that allows them to autonomously perform everyday-tasks like 

picking up food or drinks, operating a telephone handset, or 

picking up a book. However, standard industry user interfaces and 

grasping strategies are not suitable for brain-controlled 

anthropomorphic prostheses. Even combinations of multiple 

human–machine interfaces e.g. tactile skin [31], speech 

recognition or computer vision [14, 16, 33], do not furnish the 

functionality required to provide services to people with 

disabilities. Moreover, the information flow available from brain 

activity decoding with non-invasive methods such as 

electroencephalography (EEG) or magnetoencephalography 

(MEG) is too low for a continuous online control of many degrees 

of freedom in the robot [36, 37].  

In this paper we address these fundamental issues and show 

solutions for user control with non-invasive methods and grasping 

in natural situations. For this purpose we make the robot as 

autonomous as possible in order to keep the information flow 

from the human required to control the robot as low as possible. 

Our non-invasive approach complements the work of Hochberg et 

al. [15], Kubánek et al. [18], Acharya et al. [1] and others who are 

decoding brain signals for continuous control and thus highly 

depend on invasive brain data recordings.  

 

 

 

 



2. MATERIAL AND METHODS 

2.1 System Overview 
The system we developed consists of an industry robot 

(Mitsubishi RV E2) equipped with a servo-electric three finger 

gripper (Schunk Dexterous Hand SDH) with tactile sensors on the 

fingertips [24], both connected to a PC via RS232, and a 

stereoscopic camera (see Figure 2, Figure 3). The camera provides 

3D representations of graspable objects and their orientation. The 

objects are presented via a Virtual Reality application (Microsoft 

Windows XP, Java3D/OpenGL) to subjects who were instructed 

to select one of them for grasping by voluntarily modulating their 

brain activity by directing their attention to the target. After the 

target object is decoded from brain activity (MEG system: BTi 

Magnes 3600 WH, 4D Neuroimaging, 248 magnetometers), the 

grasp is executed autonomously by the robot.  

 

 

Figure 1: Top: System overview and outputs. Bottom: The 

subject in the MEG selects an object for grasping by 

voluntary modulation of brain activity. The other insets show 

the gripper grasping different objects. 

 

In our BMI setup we make use of five software systems 

distributed over different computers in the internet. These 

modules include a data acquisition unit, a processing and control 

unit, one visualisation and stimulation unit, the grasp planning 

unit and a scene control unit (see Figure 1). From the data 

acquisition computer custom client software sends the raw brain 

data to a buffer running inside the processing and control unit. 

This unit includes custom BMI software implemented in 

MATLAB which controls the experiment, processes the data and 

sends control commands to the visualisation and stimulation unit 

using our real-time service interface RESI1. The visualisation and 

stimulation unit renders the virtual scene, including the robot, 

table and grasp targets, in 3D, appends coloured faces and rings 

for user stimulation and presents the scenario to the user. In order 

to do this, this module requires the grasp trajectory generated by 

the grasp planning unit as well as the physical grasp targets 

recognized by a stereo camera system and transmitted by the 

scene control unit. In addition, the scene control unit interfaces the 

physical robot in order to move the virtual robot synchronously.  

 

2.2 Object Recognition 
A stereo-vision based object recognition system brings along one 

major challenge: Only parts of the object surface visible to the 

cameras can be recognized. Two strategies we considered to solve 

this problem: I) Recording images from different points of view 

and merging all the images to one complete 3D model or II) 

accepting the default point of view and use the tactile sensors at 

the fingertip of the gripper to complete the placement of the grasp 

the object.  

In respect to our aim to develop an intelligent prosthesis it is 

neither acceptable for a patient to carry a set of cameras on a huge 

construction nor to scan the environment by moving the camera 

attached to the robot to different target positions in the user’s 

vicinity. Therefore, we decided to apply strategy II). Our system 

consists of only two Allied Vision Technologies Marlin 

IEEE1394 grayscale cameras (resolution: 1280x1024) and a 

dimmable “efpe-design” 2x55W light source placed on the top of 

the scene. 

 

 

Figure 2: Object Recognition System 

 

The cameras were positioned 120cm over the table at a distance of 

45cm. The camera system mainly detects the upper part of the 

object. The upper silhouette is therefore the most prominent 

feature of the target and will allow a coarse prepositioning of the 

gripper with our grasp planning algorithm. This is a drawback as 

for grasping the fingers need to come close to the lateral parts of 

the target. However, VR-based grasp planning can only serve as 

                                                                 

1 http://www.iff.fraunhofer.de/en/business-units/virtual-

engineering/real-time-interface.html 



pre-positioning the gripper. Irrespective of the algorithm we 

implement in VR, in physical reality the force-based physical 

interaction between gripper and object which can be detected by 

joint actuator encoders and contact sensors at the fingertips is 

required to control the final grasp. 

 

 

Figure 3: Robotic manipulator attached to an aluminium 

framework with a table for the grasp targets and the camera 

system for object recognition. The field of view of the cameras 

is shown semi-transparent.  

 

The calibration is performed with the help of a calibration board. 

Calibration includes compensation of lens distortion and 

specification of the epipolar lines and has to be performed only 

once. 

 

 

Figure 4: Stereoscopic images of the calibration board 

 

After calibration, matching pixels in the left and right camera 

images can be used to calculate their spatial depth. Algorithms 

published in [32] were used to perform the stereo matching 

(epipolar line length: 150 pixel; correlation window size: 17x17 

pixel). To this end, all resulting 3D points are defined in the 

camera coordinate system. The transformation to robot 

coordinates is calculated by using the same calibration markers in 

the robot framework, a construction made of aluminium profiles 

the robot is firmly attached to.  

 

 

Figure 5: Stereoscopic images of the robot framework. In the 

left image the eight markers are highlighted. 

 

Each marker consists of a big dot specifying the location and a set 

of small dots making the marker distinguishable from others by 

assigning a binary coded number to it. Figure 6 shows some 

example markers and their numeric representation.  
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Figure 6: Used markers 

 

Although stereo-vision systems are already widely spread and 

numerous publications present the 3D reconstruction algorithms 

[32] and applications [31], two principle problems still had to be 

solved for the system: I) Segmentation of the result data and II) 

Artefact removal.  

Since 3D segmentation was error-prone due to soft shadows and 

limited surface information, the segmentation of the objects was 

already done in 2D image space. Therefore, by applying a binary 

threshold filter, a region-growing filter and contour-extracting 

filter, each foreground pixel in both images is tagged with the 

identifier of the object it belongs to. Our system depends on a 

specific known background colour which can be well separated 

from the foreground. In our demonstrator we put a white sheet of 

paper under the grasp targets.  

Irrespective of the object illumination quality, the correlation 

analysis on the epipolar lines [32] reveals artefacts, especially 

when we capture the entire surface of the grasp target. For artefact 

detection we implemented a region check based on the number of 

other surface points in the vicinity of one 3D point to decide if it 

is an artefact or not. An object accepted for grasping is required to 

consist of 1.500 3D points minimum where each point must have 

a neighbour point in the distance of 10 mm.  

 

2.3 Grasp Planning 
A grasp planning algorithm for autonomous robots is expected to 

fulfil certain requirements in a BMI setting:  

a) Applicable for complex grippers with anthropomorphic 

structures (robotic hands). 

b) Robust in natural environments with complex grasp targets. 



c) Aware of the restrictions and kinematic limits of the 

manipulator. 

d) Able to deal with obstacles and stereo-vision recognized 

incomplete objects. 

e) Execute fast and/or parallelize well. 

A study of the literature about grasp planning clearly showed that 

none of the published algorithms fulfils all these requirements [2, 

4, 5, 7–10, 13, 25, 30, 38, 39]. Therefore, a new algorithm for 

grasp planning was developed for this system. The algorithm 

generates point poles on the surface of the grasp target. Between 

these poles and the ones placed on the manipulator a virtual force 

field is instantiated. The impact of the forces on the manipulator is 

simulated in consecutive time frames. The innovation of this 

algorithm is the involvement of exponentially scaled force 

magnitudes that allowed us to integrate even collision detection 

and collision avoidance. Forces driving intruded poles out of the 

target are calculated the same way as those moving the gripper 

close to the target. The mathematical details of the grasp planning 

algorithm can be found in [28].  

The grasp planning algorithm sums up all the torques resulting 

from the distances of the pole pairs. Therefore, the calculation of 

the actuating torques can be performed in parallel on a multi-core 

CPU.   

The performance and result of the grasp planner highly depends 

on the distribution and number of point poles used for calculation. 

For CAD designed virtual objects we placed the poles on each 

triangle of the grasp target [17, 27, 28]. Stereo-vision itself does 

not generate surface triangles. Furthermore, the tessellation of 

point clouds resulting from object recognition only produces good 

results if the points are well distributed over the entire relevant 

surface. As our system cannot meet this condition we approximate 

the grasp targets with virtual bounding ellipsoids. To avoid 

underestimation of invisible lower parts of the grasp target we 

increase the size of the ellipsoid by the point cloud orthogonally 

projected to the floor plane. Additionally, the length of both semi-

axes was increased statically by a fixed amount. Figure 7 shows 

the resulting ellipsoid for virtual and 3D-captured objects.   

 

 

Figure 7: A bounding ellipsoid is placed around each grasp 

target to guide grasp placement. The algorithm works for 

virtual (left) and 3D-captured objects (right). 

 

The point poles are equidistantly placed over the surface of the 

ellipsoid. On the basis of a collision analysis we decide which 

frame has to be relayed to the robot. Timeframes with a deeper 

intrusion of gripper contact points into the ellipsoid are dismissed. 

The increased size of the ellipsoid makes small intrusions 

tolerable. When the stability test responds a positive force-closure 

condition [6, 11, 41], the grasper is commanded to close the hand. 

In this case, the gripper uses the tactile sensors to come close to 

the physical object which is always smaller than the bounding 

ellipsoid. Hereby, the sensors serve as trigger for gripper–object 

contact, influence the desired speed of a gripper finger, dependent 

on the degree of target contact and allow analysing whether the 

object is firmly attached to the robot or not.  

 

2.4 Brain Decoding – Grasp Target Selection 
We performed two experiments to test two different approaches to 

select objects for grasping by voluntary changes of brain activity. 

In both experiments subjects performed 2–4 training runs to 

provide the classifier with training data. In most runs the target 

object to be selected was cued in order to be able to determine the 

correctness of the selection. However, we also applied runs with 

free selection to demonstrate the independence of the system. 

Here, subjects signalled an erroneous detection by saying “no” to 

provide the possibility of evaluating the accuracy. 

One characteristic brain signal potentially useful for triggering a 

grasp is the steady state visual evoked potential (SSVEP, for a 

review see: [35]). Visual flicker stimulation causes neural activity 

changes at the same frequency in the brain which can then be 

decoded from the MEG to determine the focussed target. In order 

to stimulate subjects with flickering targets, we developed a VR 

application that can be controlled by our real-time service 

interface.  

 

 

Figure 8: Objects selectable for grasping are presented in a 

VR scenario to the subject. Object backgrounds were flashed 

to create identifiable object tags in the user’s brain activity. 

 

In the experiment we flicker the background of four selectable 

objects at different frequencies (6.67Hz, 8.57Hz, 10Hz, 15 Hz), 

which elicits brainwaves at the same frequencies measured with 



the MEG. Directing attention towards a flickering object enhances 

the amplitude of the brain oscillations at the specific frequency. 

This increase can be detected and used to select the target object. 

Additionally, coloured circles were displayed to provide feedback 

which object was selected. We detected the SSVEPs by 

determining spectral features, based on a Fourier transform, for 

each stimulated frequency from a 4.5s signal interval at 59 MEG 

sensors that we expected to capture early visual processing 

activity. A classifier based on penalized logistic regression 

decoded the potential target frequency from this feature space. 

Using this paradigm, we performed a study with 22 subjects. On 

average, 74.4% of the trials were correctly decoded in the online 

closed-loop BMI (25% chance level). Improvements on the 

decoding performance to 93.8% in an additional offline analysis 

of the same MEG-data indicated that the accuracy of the online 

decoder can be considerably improved. The detailed methods and 

results of the experiment are reported in [26]. 

The second paradigm we implemented for grasp target selection is 

based on the oddball paradigm [12]. In our variant of this 

paradigm the occurrence of an infrequent target stimulus which is 

a short flash of the object’s background, is decoded from MEG 

measurements. The detection is based on the fact that the 

perception of a rare stimulus in a series of irrelevant stimuli elicits 

increased electrical activity in the brain approximately 300 ms 

after the stimulus, also known as the P300 potential. We flashed 

the object backgrounds in random sequences 5 times each within 

ten seconds, avoiding successive flashes at the same object. In 

addition, we increased the number of selectable objects to six (see 

Figure 8). We detected the P300 potential by support vector 

machine (SVM) classification [34]. The feature space was 

represented by discrete MEG time series values sampled at 32 Hz, 

lasting 1 second from the start of a flash stimulation and involving 

152 hypothetically preselected sensors. We reduced the number of 

features by selecting 64 sensors after an initial classifier training 

and subsequently ranking the weight values of the SVM’s 

decision function. The SVM was then retrained in the smaller 

feature space and updated after a run was finished. We performed 

the experiment with 17 subjects and found even better 

performance than with the SSVEP paradigm. The P300 paradigm 

allowed for 77.7% correct detections of the target object from 

brain activity (16.7% chance level) when we instructed the target 

object in each trial. We observed an increase of decoding 

accuracy during the course of the experiment, indicating that 

training improved performance. Furthermore, accuracy was higher 

when targets were freely chosen compared to when targets were 

cued. Importantly, object selection was very accurate (91.2%) 

when the grasp of the robotic gripper was shown in the VR-

environment as feedback. This suggests that a sense of agency is 

an important human factor in the control of the system. A more 

detailed description of this experiment can be found in [28]. 

Finally, we tested brain controlled grasping of stereoscopically 

recognized objects in two subjects using the P300 oddball 

paradigm with three objects and online classification. The 

decoded intention was forwarded to the grasp planner and 

consequently to the virtual and real robot. The first subject 

performed 18 selection trials without grasp initiation and 6 

selection trials with grasp initiation. In both cases 100% selection 

accuracy was achieved. The second subject performed 36 

selection-only trials with 91.7% accuracy and six trials followed 

by a grasp with 100% accuracy. The guessing level was 33.3%. 

 

3. RESULTS AND DISCUSSION 

3.1 Object Recognition 
We tested our system with a couple of natural camera-recognized 

objects (telephone headset, cup, tea box, ball, see Figure 1, Figure 

9) which are relatively good-natured (no transparencies, no big 

specular reflective areas on top) but representative of relevant 

objects. Although there are big gaps in the surface reconstruction, 

no problematic artefacts could be observed that prevented the 

successful grasp of the tested objects when the object was 

standing upright.  

The camera system, as presented in this paper, has a limited 3D-

scanning volume of about 500mm/500mm/200mm 

(width/length/height). Compared to the human field of vision and 

workspace of a human limb this is quite restrictive. Nevertheless, 

the accuracy of a recognized object point is in the sub-millimetre 

range and no noise on the captured 3D-data could be observed. 

This was one reason to prefer this system over Microsoft Kinect 

which provides lower resolved and noisy recognition results [22].  

 

 

Figure 9: Sample results of the object recognition algorithm. 

 

Up to now we strongly depend on well textured surfaces of the 

grasp targets. A light projection system could significantly 

improve our grasp planning. The choice of a suitable type of light 

projection for future applications is an open issue.  

 

3.2 Grasp Planning 
The presented algorithm for grasp planning satisfies all mentioned 

requirements of a brain-controlled grasping robot. There is no 

prior knowledge about a specific robot and its structure embedded 

in the algorithm. Thus, the algorithm has the potential to work 

with any robotic gripper. The grasp planner only requires the 

kinematic CAD-data of the robot and the specification of the 



contact regions (point poles on surface parts of the gripper) in the 

XWS-format [3]. With this information it is able to grasp objects 

represented by a point cloud (set of 3D-coordinates). New grasp 

targets can be transferred to the grasp planner when available. The 

result of the grasp planning process is both, the grasp pose and the 

robot trajectory to reach it, avoiding obstacles like the table or 

other grasp targets. 

Both Figure 9 and Figure 10 show big gaps in the reconstructed 

surface of the grasp target. Nevertheless, our ellipsoid-based 

approach is able to deal with these problems, although the targets 

are not elliptic. Therefore, our algorithm can be expected to be 

robust in natural environments.  

The selected start pose of the robot highly influences the 

calculated grasp. Therefore, modification of the start pose can be 

considered an intuitive way to adapt the grasp to the purpose the 

user has with the target. This will be an important feature in the 

further development because the system presented here has no 

information about the semantic context of a point cloud.  

 

 

Figure 10: Grasp planning for stereo-vision recognized objects 

 

The manipulation of the robot on the basis of a virtual force field 

can theoretically run into local situations where the algorithm 

cannot converge. This happens if an obstacle is between the 

gripper and the grasp target. The propulsive collision forces 

prevent the manipulator from intruding into the obstacle but the 

attractive forces antagonise, thus the manipulator stops. In the 

moment we have no strategy to avoid this problem in general. 

Nevertheless, if the grasp targets were not placed too close to each 

other, this problem could not be observed in our setting.  

Small objects are still challenging for the grasper because the 

grippers’ fingers cannot surround small and only partially 

captured objects if the obstacle “table” is too close.  

 

3.3 Brain Decoding – Grasp Target Selection 
We demonstrated that the control of a robotic device including a 

complex gripper with 14 degrees of freedom (two of them are 

mechanically coupled) is possible by decoding conscious brain 

wave modulations of the user. We implemented user-friendly 

communication paradigms into our demonstrator which rely on 

visual stimulation. The initiation of a grasp requires low mental 

effort and is highly accurate compared to continuous imagination 

of limb movement aiming to control the ongoing movement using 

non-invasive modalities [19, 21, 23].  

Our results show that both the P300 and the SSVEP paradigm 

allowed for reliable object detection. Importantly, all subjects 

were able to gain control over the system after only a few minutes 

of training and the performance improved considerably in short 

training periods.  

The influence of human factors on BCI control has been rarely 

considered in BCI design. Our results suggest that the degree of 

agency in the task and the type of feedback can improve accuracy 

of user control of the BCI system. We speculate that these factors 

help the subject to keep the level of attention in the task high. This 

was unexpected because the robot grasp feedback increased the 

time interval between two time intervals and thus could have 

made the task more boring for the subject. 

 

4. CONCLUSION 
The paper I) shows that a subject’s voluntary modulation of brain 

activation patterns can be decoded and translated into commands 

that initiate a grasp to a selected object and II) describes a robot 

that autonomously grasps natural objects and thus completes the 

loop of a BMI. We successfully showed that a grasp of one of up 

to six objects can be initiated by brain waves and a robot with a 

complex manipulator can execute a grasp to a target object only 

by analysing the point cloud of the target. Importantly, the core 

algorithms of the system do not require any prior knowledge of 

the robot. We conclude that we achieved an important step 

towards our goal of constructing an intelligent assistive device or 

prosthetic limb for completely paralyzed patients. 

Our autonomous grasper is set up to deal with specific problems 

of brain-robot control. Nevertheless, the grasp planning algorithm 

does not contain specifics of the grasper and therefore can be 

adapted to new and even much more complex kinematic 

structures (e.g. Shadow Dexterous Hand2).  

Certainly, MEG signal acquisition and the control of an industry 

robot are not suitable for daily use and particularly not for use as a 

prosthetic device. Rather, we consider our study basic research 

and an important milestone to the development of an EEG 

controlled lightweight robotic arm attachable to a patient.  

We developed communication strategies to transfer data and 

control commands to the different components that are involved 

in our BMI based grasping system. Since we performed 

experiments with subjects sitting in a magnetically shielded room 

we developed a VR-based real-time interfaced application. 

However, also for EEG based BMIs this application can serve as 

presentation unit to control the system. Using MEG signals, we 

investigated the ability of users to initiate grasp commands by 

focusing steady state stimulations and shifting attention to short 

object background flashes.  

                                                                 

2 http://www.shadowrobot.com/products/dexterous-hand/ 
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