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Summary

When applicable, boundary integral equation (BIE) methods are an elegant way to transform a dif-

ferential equation posed on (often unbounded) domain Ω ⊂ Rn to a BIE on the (often bounded) n-1

dimensional boundary Γ = ∂Ω. In the frequency domain, this approach has been very successful for

the numerical solution of acoustic and electromagnetic scattering problems. In time domain acous-

tics, numerical methods for boundary integral equations (TDBIE) have until recently received less

attention. Nevertheless, good methods do exist and promising results have been achieved in produc-

ing e�cient and stable numerical solutions. In this talk, we describe a generalization of convolution

quadrature, a method that can be used to solve TDBIE numerically. Recently the �rst author has

been involved in proving convergence and stability of high-order Runge-Kutta convolution quadra-

tures and in developing e�cient algorithms for their implementation. Here, we extend these results

to a family of related methods that are potentially more e�cient in situations where high accuracy

is not essential, but good (low) dispersion and dissipation properties of the numerical solution are

paramount. First numerical experiments with the new method are promising.

PACS no. 43.20.Px, 43.20.Fn

1. Introduction

Consider the wave equation on a possibly unbounded
domain Ω ⊂ Rn with boundary Γ = ∂Ω:

∂2t u(x, t) = ∆u(x, t), (x, t) ∈ Ω× [0, T ],

u(x, 0) = ∂tu(x, 0) = 0, x ∈ Ω, (1)

u(x, t) = g(x, t), (x, t) ∈ Γ× [0, T ]

and the family of Helmholtz equations obtained by
Laplace transforming (1)

s2û(x, s) = ∆û(x, s), (x, s) ∈ Ω× {z : Re z > 0},
(2)

û(x, s) = ĝ(x, s), (x, s) ∈ Γ× {z : Re z > 0},

where û(x, s) = L u(x, s) =
∫∞
0
e−stu(x, t)dt and

ĝ = L g denote the Laplace transforms of data g and
unknown solution u.

1.1. Boundary integral formulation

From now on, in order to simplify the formulas we
will concentrate on the three dimensional case Ω ⊂
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R3. A widely accepted method to numerically solve
(2), especially at high frequencies, is to represent the
solution u as an integral over the boundary of the
domain

û(x, s) =

∫
Γ

e−s|x−y|

4π|x− y|
ϕ̂(y, s)dΓy. (3)

Since for any choice of ϕ̂ such û satis�es the homo-
geneous Helmholtz equation, it su�ces to �nd ϕ̂ such
that the boundary condition is satis�ed.
Taking the inverse Laplace transform of (3) we ob-

tain the boundary integral representation of the time-
domain solution

u(x, t) =

∫ t

0

∫
Γ

δ(t− τ − |x− y|)
4π|x− y|

ϕ(y, τ)dΓydτ,(4)

where δ(·) is the Dirac delta distribution. The spatial
discretization of (4) can be performed in the same
multitude of ways as that of the frequency domain
counterpart (3), e.g., Galerkin or collocation. For this
reason, in this paper we concentrate on the temporal
discretization.

2. Convolution quadrature

Convolution quadrature (CQ) has been introduced by
Lubich [1, 2] as a quadrature method for convolution
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integrals with two very important properties: good
stability and exclusive use of the transfer function
(while remaining a time domain method) instead of
the time-domain kernel. In our application both prop-
erties are very welcome, since from early on it has been
recognised that numerical discretizations of (4) often
become unstable, and since the computation with the
analytic function e−sr/r is much easier than with the
distributional kernel δ(t− r)/r.

2.1. Linear multistep based CQ

The convolution quadrature of (4) can be obtained
by substituting an approximation of the kernel e−sr/r
into (3) and taking the inverse Laplace transform. To
explain this procedure in detail, let h > 0 be the time-
step and let us introduce the following approximation

e−s·r

4πr
≈ e−δ(e−sh)/h·r

4πr
=

∞∑
j=0

ωh
j (r)e

−sh·j , (5)

where

δ(ζ) =

p∑
j=1

1

j
(1− ζ)j , p = 1, . . . , 6. (6)

Note that δ(e−sh) = sh + sp+1O(hp+1), hence (5) is
indeed an approximation of the kernel function. Sub-
stituting this approximation into (3) and taking the
inverse Laplace transform we obtain a convolution
quadrature of (4):

uh(x, t) =

btc∑
j=0

∫
Γ

ωh
j (|x− y|)ϕ(y, t− tj)dΓy, (7)

where tj = jh and we have implicitly assumed the
extension ϕ(x, t) ≡ 0 for t ≤ 0. The following points
are important to have in mind:
(i) The functions δ(ζ) are the generating functions

of the BDF class of linear multistep methods.
Only the �rst two, i.e., with p = 1, 2, are A-
stable as implied by Dahlquist's order barrier.

(ii) Discretization (7) is stable if and only if the un-
derlying linear multistep method is A-stable.

Thus, at least with this construction of the quadrature
we are restricted to orders 1 and 2.

2.2. Runge-Kutta based CQ

With A-stable Runge-Kutta methods, higher order,
stable discretizations can be obtained. For details we
refer the reader to [3] for properties of Runge-Kutta
methods and to [4, 5] for Runge-Kutta convolution
quadrature. Here, we give enough detail to be able to
follow the contributions of the present work.
Using the Butcher tableau notation

A = (aij)
m
i,j=1, b = (b1, . . . , bm)T ,

c = (c1, . . . , cm)T , 1 = (1, . . . , 1)T .

the frequency domain kernel is approximated as

e−s·r

4πr
≈ bTA−1 e

−∆(e−sh)/h·r

4πr
· esh(c−1)

= bTA−1
∞∑
j=0

Wh
j (r)e

−sh·j · esh(c−1), (8)

where ec := (ec1 , . . . , ecm)T . Notice that Wh
j (r) ∈

Rm×m. Performing the same procedure as in the pre-
vious section we obtain the Runge-Kutta based con-
volution quadrature of (4):

uh(x, t) = bTA−1

·
btc∑
j=0

∫
Γ

Wh
j (|x− y|) [ϕ(y, t− tj`)]

m
`=1 dΓy, (9)

where tj` = tj + c`h = (j + c`)h; notice that
[ϕ(y, t− tj`)]

m
`=1 is a vector in Rm.

2.3. Dissipation and dispersion

The convergence, as h→ 0 of the above two schemes,
has been investigated in [2] and [4, 5] respectively.
For practical use of the methods it is of utmost impor-
tance to investigate the pre-asymptotic regime of con-
vergence, i.e., we are interested in understanding how
small h has to be chosen with respect to the smallest
detail (highest frequency content) in the data g. This
question has been analysed in [7]; here we give a dif-
ferent approach to this analysis which very naturally
follows from the above derivation of CQ.
From (5) it is clear that the continuous wave

number s is replaced by a discrete approximation
δ(e−sh)/h. Comparing the two is often called the dis-
sipation and dispersion analysis [7]. For the highest
order A-stable BDF method, i.e., p = 2, we easily
obtain

1

h
δ(e−sh) =

1

h
(1− e−sh) +

1

2h
(1− e−sh)2

= s− 1

3
s3h2 +

1

4
s4h3 +O(h4). (10)

Therefore if s = iω with ω ∈ R and |ω| � 1,
i.e., high oscillations are involved, we have to choose
h � 3|ω|−3/2 in order to obtain good accuracy. This
is clearly wasteful if we compare it with the usual
sampling condition h ∝ |ω|−1.
Similar analysis for Runge-Kutta methods is possi-

ble and from [5, Lemma 4] we obtain that, with r = 1
in (8),

error in (8) = sp+1O(hp), (11)

where p is the classical order of the Runge-Kutta
method; it is important to recall that unlike for linear
multistep methods, we have no restriction on order p
here. One class of Runge-Kutta methods is particu-
larly suited to our problems: the m-stage Radau IIA
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methods [3], which have classical order p = 2m−1 and
stage order q = m. For example the 3-stage Radau IIA
method has (classical) order 5 and has an excellent
constant hidden in the order notation of (11):

error in (8) for 3-stage Radau IIA

= CIIA3 · s6h5 + s6O(h6), CIIA3 ≈ 1

1300
. (12)

3. A family of modi�ed CQ

3.1. Motivation

Even though the Radau IIA based convolution
quadratures have proved to be extremely e�cient in
solving wave propagation problems, see [6], two points
can be raised:
(i) Since the kernel Wj(r) : R>0 → Rm×m is ma-

trix valued, it seems necessary to compute m2

integral operators at each time-step. Could this
be reduced to m?

(ii) In space we rarely use high order method for
boundary integral equations. Is the high order
in time really necessary?

A partial answer to the �rst point has been given in
[6], where via the use of discrete Fourier transforms
(DFT) an algorithm that needs to construct only m
integral operators per time-step has been described.
Nevertheless, at least for the �rst few time-steps one
would like to avoid the use of DFT. The second point
motivates another question which may contain an an-
swer to the �rst problem:
• Can we, by sacri�cing convergence orders, mod-

ify a Runge-Kutta method to obtain a single stage
method more e�cient at moderate accuracies?

3.2. A family of modi�ed RK CQ and its

properties

A possible answer to this question is the subject of
the present paper. Our solution consists of de�ning a
family of modi�ed Runge-Kutta convolution quadra-
tures:

e−s·r

4πr
≈ bTA−1 e

−∆(e−sh)/h·r

4πr
I(e−sh)

=

∞∑
j=0

wh
j (r)e

−sh·j , (13)

with the function I(ζ) satisfying the following prop-
erties.
Assumption 3.1. Given a vector c ∈ Rm×1, let the
function I(ζ) : C → Cm×1 satisfy:
(i) I(ζ) is analytic for |ζ| ≤ 1 and given by

I(ζ) =

∞∑
j=0

Ijζ
j , Ij ∈ Rm×1.

(ii) I(e−z) = e−z(c−1) +O(zp1), for z → 0.
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Figure 1. For s = 10i and r ∈ [1, 2], we plot e−sr/r and
its BDF2 (5), 3-stage Radau IIA (8), and the BDF6 mod-
i�cation of the latter. In the left plot h = 0.1 and in the
right h = 0.05.

From these assumptions we conclude, that wh
j (r) :

R>0 → R and that, for r = 1,

error in (13) = sp1O(hp1) + sp+1O(hp); (14)

see the proof of Theorem 3.2 below. The estimate (14)
shows that the additional error is controlled under
the sampling condition |sh| � 1, implying that the
modi�cation has not destroyed the good qualitative
properties of the Runge-Kutta approximation. Here
are some possible choices of I(ζ):

(i) I(ζ) = c+ (1− c)ζ, this choice giving p1 = 2.

(ii) IBDFp(ζ) = eδp(ζ)(c−1), where δp(ζ) is the gen-
erating function of the pth order BDF method;
this choice gives p1 = p+1. Notice that here we
are not restricted by A-stability therefore orders
until p1 = 6 + 1 = 7 are admissible.

In Figure 1 we compare the dispersion and dissipa-
tion properties of the highest order multistep CQ, the
3-stage Radau IIA CQ, and the highest order mod-
i�ed CQ of the latter Radau method. In these plots
dissipation can be seen by incorrect scaling of the spi-
ral and dispersion by incorrect phase of the start and
the end of the spiral. With both values of h in Fig-
ure 1, there is no di�erence to the naked eye between
the exact curve and Runge-Kutta approximation, for
the smaller h this becomes true also for the modi�ed
approximation, whereas the BDF2 approximation is
very poor with both choices of h.
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3.3. Convergence theory

We state the convergence theory in a more general
setting. For this we assume that a transfer function
K(s) is given which satis�es

K(s) is analytic and |K(s)| ≤ C(σ)
|s|µ

(Re s)ν
,(15)

for Re s > σ > 0. We are then interested in computing
the convolution

u(t) =

∫ t

0

k(t− τ)g(τ)dτ

= L −1 [K(s)L g(s)] (t).

In [5] it has been shown that the Runge-Kutta convo-
lution quadrature of the above integral converges at
the rate O(hp+hq+1−µ+ν), where p is the classical or-
der of the Runge-Kutta method, q is the stage order,
and the Runge-Kutta method has to satisfy certain
assumptions including A-stability. We state next the
extension of this result to the above described modi-
�ed scheme.
Theorem 3.2. Let an A-stable Runge-Kutta method
of order p and stage order q be given by its Butcher
tableau and let it satisfy Assumption 2 in [5]. Fur-
ther let K(s) satisfy (15), g be su�ciently smooth and
compatible, and I(ζ) satisfy Assumption 3.1. Then for
su�ciently small h > 0 and t ∈ [0, T ],

|uh(t)− u(t)| = O(hp1−max(µ−ν,0)

+ hq+1−µ+ν + hp),

where

uh(t) :=

btc∑
j=0

wh
j g(t− tj),

and

bTA−1K(∆(ζ)/h)I(ζ) =
∞∑
j=0

wh
j ζ

j .

The constants hidden in the O-notation, depend on T ,
g, I(ζ), and the choice of the Runge-Kutta method,
but not on h.

Proof. The proof can be done using the same line of
reasoning as in [5], here we just give the main steps.
The following auxiliary result is needed: There exists
c0 > 0 such that for |sh| < c0

bTA−1K

(
∆(e−sh)

h

)
= O(h−µ+ν + sµ),

which can be shown using the techniques of [5,
Lemma 4]. Combining this estimate with [5, Lemma 4]
gives, for |sh| < c0,

bTA−1K

(
∆(e−sh)

h

)
I(e−sh) = K(s)

+ sp1 O(hp1−µ+ν) + sp1+µ O(hp1)

+ sµ+1+p O(hp) + sq+1 O(hq+1−µ+ν).
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Figure 2. The weights wh
j (r) with j = 120, h = 5×10−3, of

the BDF3 and BDF5 modi�cations of the 3-stage Radau
IIA method.

Taking the inverse Laplace transform of the error ex-
pression and bounding the two cases |sh| < c0 and
|sh| > c0 separately as in [5, Theorem 3], gives the
required result.

Remark 3.3. By su�ciently smooth and compatible,
we mean that g(t) is su�ciently many times continu-
ously di�erentiable and that su�ciently many deriva-
tives of g vanish at t = 0.
Remark 3.4. The Laplace domain single layer oper-
ator V (s) : H−1/2(Γ) → H1/2(Γ), see (3),

V (s)ϕ̂(x) :=

∫
Γ

e−s|x−y|

4π|x− y|
ϕ̂(y)dΓy,

satis�es (15) with µ = ν = 1 [8]. Therefore we expect
orders of convergence O(hq+1+hp1). In particular for
the 3-stage Radua IIA method, which has stage order
q = 3 and modi�ed method based on BDF of order
p ≥ 3, we expect the convergence order to be 4. A
lower order BDF formula would reduce the conver-
gence order.

3.4. Implementation

A detailed description of algorithms for implementa-
tion of standard convolution quadratures is given in
[6] and [7]. The same algorithms are applicable to the
modi�ed version. These algorithms all make use of the
fast Fourier transform, do not involve explicit evalua-
tions of the kernel functions ωh

j (r), W
h
j (r), or in our

case wh
j (r), but only of the Laplace domain approxi-

mations (5), (8), and (13) respectively.
A closely related, but rarely discussed method in

the literature is to pre-compute a certain numerical
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representation of the functions wh
j (r) and work di-

rectly with this. From the de�nition of the weights
(13) and the Cauchy integral formula we have

wh
j (r) =

bTA−1

2πi

∮
C

e−∆(ζ)/h·r

4πr
I(ζ)ζ−j−1dζ,

where the integration contour C can be chosen as a
circle in the complex plane centred at the origin. This
integral can be very e�ciently and accurately com-
puted using the trapezoid rule accelerated by FFT
[1, 7]. Since the kernel is only needed in the in-
terval r ∈ [0,diam(Γ)], a precomputation of wh

j (r),
j = 0, 1, . . . , N can be stored as, e.g., piecewise poly-
nomial functions.

The shapes of function wh
j (r), with j = 120 and

h = 5× 10−3 are plotted in Figure 2 in the range of r
for which the functions signi�cantly di�er from zero.
Two types of modi�ed weights are shown: BDF3 and
BDF5 modi�ed 3-stage Radau IIA method. Note that
both functions have a peak near r ≈ jh = 0.6, but
that the BDF5 modi�cation also has a long oscillatory
tail, the latter is a negative property with regards to
the e�cient implementation; see the following remark.

Remark 3.5. To construct a completely discrete sys-
tem the operators with kernels wh

j (|x− y|) need to be
discretized. When using, e.g., Galerkin discretization
in space, matrices of the type

An
ij =

∫
Γ

∫
Γ

wh
n(|x− y|)ϕi(y)ϕj(x)dΓydΓx

need to be constructed, where ϕj(·) are the usual piece-
wise polynomial functions. Because of the shape of the
kernels, see Figure 2, these matrices are considerably
sparse. The sparsity can even be increased with the
use of higher-order Runge-Kutta methods and lower
order modi�cations.

4. Numerical experiments

4.1. Illustrative experiment

To illustrate the results of Theorem 3.2, we compute
the convolution integral

u(t) =

∫ t

0

k(t− τ)g(τ)dτ (16)

= L −1{K(s)L g(s)}(t)

on the interval t ∈ [0, T ]. We consider the two exam-
ples:

1. K(s) = 1
s − e−2s

s , i.e., (15) holds with µ = −1 and

ν = 0, g(t) = e−0.2t sin8 t, T = 1.

2. K(s) = se−s, i.e., (15) holds with µ = 1 and any
ν ∈ R, g(t) = e−0.5t sin7 t, T = 2.

Table I. Convergence of the modi�ed 3-stage Radau IIA
based convolution quadrature of (16).

example 1. example 2.

N error rate error rate

4 2.7e− 3 0 1.8e− 1 0

8 5.8e− 4 2.3 2.5e− 2 2.9

16 1.3e− 4 2.2 4.8e− 3 2.4

32 3.1e− 5 2.1 1.1e− 3 2.1

64 7.5e− 6 2.0 2.6e− 4 2.1

128 1.8e− 6 2.0 6.4e− 5 2.0

In both examples we choose I(ζ) = c+(1−c)ζ, i.e.,
p1 = 2. The exact solution for both examples can be
obtained by inverse Laplace transform, e.g., for the
second example the exact solution is u(t) = g′(t− 1).
The error is computed as

error =

√√√√h
N∑
j=0

(uh(tj)− u(tj))2,

with tj = jh and h = T/N . The results are displayed
in Table I and are consistent with Theorem 3.2.

4.2. Scattering by a unit sphere

We consider (4) with Γ = S2 = {x ∈ R3 ; |x| = 1}
and let ϕ(x, t) = ψ(t)Y m

` (x), where Y m
` is a spher-

ical harmonics [9]. The spherical harmonics Y m
` are

eigenfunctions of the single layer potential for the
Helmholtz equation:∫

S2

e−s|x−y|

4π|x− y|
Y m
` (y)dΓy = λ`(s)Y

m
` (x),

the expressions for the eigenvalues λ`(s) can be found
in [9]. Therefore, see also [6] and [10],∫ t

0

∫
S2

δ(t− τ − |x− y|)
4π|x− y|

ψ(t)Y m
` (y)dΓydτ

= g(t)Y m
` (x),

where

g(t) = L −1{λ`(s)Lψ(s)}(t).

In this section we investigate the computation of g(t)
with ` = 2, ψ(t) = e−0.4t sin5(4πt), and T = 10. In
Figure 3, we show the convergence of

error =

√√√√h
N∑
j=0

(g(tj)− gh(tj))2

against the number of time steps N = Th on the
interval [0, T ] for di�erent methods; note that for the
3-stage Runge-Kutta method we plot the error against
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Figure 3. The convergence of the methods BDF2, 3-stage
Radau IIA, 3-stage Radau IIA based on modi�ed convolu-

tion quadrature with the choice of I(e−sh) = eδ(e
−sh)(c−1),

δ(e−sh) is the generating function of BDF3 and BDF5, re-
spectively.

3N since at least 3N integral operators need to be
constructed in this case compared to N for the other
methods. The results show that both modi�cations
perform very well: even up to high accuracies they
are signi�cantly better than the original Runge-Kutta
method and show overwhelmingly better convergence
than the BDF2 scheme.

5. CONCLUSIONS

We have described a new class of modi�ed Runge-
Kutta convolution quadratures and discussed their
potential as time-discretization methods of time-
domain boundary integral equations of acoustic scat-
tering. Further, we have proved a convergence the-
orem for the new method, discussed its qualitative
properties, and performed a number of numerical ex-
periments on academic problems. These numerical ex-
periments have shown that the new method has good
potential for acoustic scattering problems. This gives
us motivation to further investigate this new family
of quadratures.

The most important omission in the current work
is that we have discussed only the evaluation of the
time domain integrals (4) and not the solution of the
integral equation. The di�culty here is both to prove
that the time-discretized system has a unique solu-
tion and that it is bounded. What gives us hope that
this problem can be analysed is that in most applica-
tions we only need backward stability. That is, once
an approximate density ϕh(x, t) is found, often it is

itself not of independent interest, but one is rather in-
terested in the solution uh(x, t) obtained by applying
the boundary integral operator to ϕh, see (4). Investi-
gation of these questions will be the subject of future
work.
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