Applied Analysis and PDE 6. Scalar conservation laws

Lehel Banjai (Heriot-Watt University) based on lecture notes by Jack Carr

November 15, 2018

Conservation laws

- \triangleright u(x,t) density of material at location x and time t

$$\int_a^b u(x,t)dx - \text{The total amount of material in interval } [a,b].$$

- f(u) = f(u(x, t)) flux at location x and time t
 - Flux is the rate at which the material is passing the x at time t.
 - ► The flux is positive if the flow is in the positive *x*-direction.
- Conservation law (in integral form):

$$\frac{d}{dt}\int_a^b u(x,t)dx = f(u(a,t)) - f(u(b,t)).$$

▶ If u is differentiable

$$\int_a^b \frac{d}{dt} u(x,t) + (f(u(x,t)))_x dx = 0$$

since this holds for any interval [a, b] we obtain the conservation law in differential form:

$$u_t + f(u)_x = 0.$$

Remarks:

- The conservation law in integral form holds also for non-smooth solutions u
- ► A constitutive relation or equation of state is required to determine the system.

Constitutive relations

Fick's law:

$$f(u) = -u_x$$

giving the diffusion (heat) equation

$$u_t-u_{xx}=0.$$

Adding convection:

$$f(u) = -\epsilon u_x + u^2/2$$

gives Burgers' equation

$$u_t + uu_x = \epsilon u_{xx}$$

or with $\epsilon=0$ the inviscid Burgers' equation

$$u_t + uu_x = 0.$$

Traffic flow

Let us derive a simple constitutive relation for traffic flow.

- u(x,t) the density (cars per mile) of cars on a road moving from left to right.
- ▶ If n is the maximum density we could model the speed at which people drive, by

$$m(n-u)$$

where m is a constant.

The rate at which cars pass a given point is the product of their speeds and the density so

$$f(u) = um(n-u).$$

Conservation of cars leads to

$$\frac{d}{dt}\int_a^b u(x,t)dx = f(u(a,t)) - f(u(b,t)).$$

Characteristics and first order equations

Consider the linear advection equation

$$u_t + cu_x = 0,$$
 $u(x, 0) = u_0(x).$

Note that

$$\frac{d}{dt}u(x(t),t) = u_t(x(t),t) + x'(t)u_x(x(t),t) = (x'(t)-c)u_x(x(t),t).$$

Hence u is constant $(\frac{d}{dt}u = 0)$ along characteristics x(t) given by

$$x'(t) = c \implies x(t) = ct + x(0).$$

Denote y = x(0) and solve for y in

$$x = ct + y \implies y = x - ct$$

to obtain solution at (x, t):

$$u(x, t) = u(y, 0) = u_0(y) = u_0(x - ct).$$

Characteristics for the linear case

Non-homogeneous linear case

Consider

$$u_t(x,t) + cu_x(x,t) = g(u,x,t), \qquad u(x,0) = u_0(x).$$

Along characteristics x'(t) = c, u is the solution of an ODE:

$$\frac{d}{dt}u(x(t),t) = u_t(x(t),t) + x'(t)u_x(x(t),t) = g(u,x(t),t).$$

The nonlinear case

Let us consider

$$u_t + f(u)_x = 0,$$
 $x \in \mathbb{R}, t > 0,$
 $u(x,0) = u_0(x)$ $x \in \mathbb{R}.$

Note that the first equation can be written as

$$u_t + f'(u)u_x = 0.$$

Hence

$$\frac{d}{dt}u(x(t),t) = u_t(x,t) + x'u_x(x,t) = (x'-f'(u))u_x(x,t) = 0$$

along characteristics

$$\frac{d}{dt}x(t)=f'(u(x,t)).$$

Note that the characteristics are still straight lines.

Example

$$u_t + uu_x = 0,$$
 $x \in \mathbb{R}, t > 0,$
 $u(x,0) = x,$ $x \in \mathbb{R}.$

Nonlinear case ctd.

We come back to

$$u_t + f(u)_x = 0, x \in \mathbb{R}, t > 0,$$

 $u(x, 0) = u_0(x) x \in \mathbb{R}.$

with extra assumption f''(u) > 0, $\forall u$, (so truly nonlinear). Recall

$$\frac{d}{dt}x(t) = f'(u(x,t)) = const \implies x(t) - f'(u)t = x(0).$$

are the characteristics along which u(x(t), t) is constant. Hence

$$u(x,t)=u(y,0)=u_0(y)$$

where

$$y = x - f'(u_0(y))t \implies y_x = 1 - y_x u_0'(y)f''(u_0(y))t$$
$$\implies y_x = \frac{1}{1 + u_0'(y)f''(u_0(y))t}$$

Further

$$u_{x} = y_{x}u'_{0}(y) = \frac{u'_{0}(y)}{1 + u'_{0}(y)f''(u_{0}(y))t}.$$

Remarks:

- ▶ If $u'_0 > 0$ (recall f'' > 0) then solution exists for all t > 0.
- ▶ If $u'_0(y) < 0$ for some y, the characteristics intersect. This will happen at the earliest time t > 0 such that

$$1 + u_0'(y)f''(u_0(y))t = 0.$$

Example:

$$u_t + uu_x = 0$$
 $x \in \mathbb{R}, \ t > 0$
 $u(x,0) = u_0(x) = e^{-x^2}.$

Burgers' equation: shock development

Example:

$$u_t + uu_x = 0 x \in \mathbb{R}, t > 0$$

$$u(x,0) = u_0(x) = \begin{cases} 1 & x \le 0 \\ 1 - k^{-1}x & 0 < x < k \\ 0 & x \ge k \end{cases}$$

Solution:

Note: characteristics all intersect at (k, k) so a smooth solution cannot exist for t > k.

It's clear that u(x,t)=1 for $x \le t \le k$ and u(x,t)=0 for $x \ge k$ and $t \le k$.

In the triangle t < x < k we have

$$x = t(1 - k^{-1}y) + y \implies y = \frac{x - t}{1 - k^{-1}t}.$$

Hence

$$u(x,t) = u_0(y) = 1 - k^{-1}y = \frac{x-k}{t-k},$$
 for $t < x < k$.

So finally (for $t \leq k$)

$$u(x,t) = \begin{cases} 1 & x \le t \\ \frac{x-k}{t-k} & t < x < k \\ 0 & x \ge k \end{cases}$$

Example:

$$u_t + uu_x = 0, \qquad x \in \mathbb{R}, \ t > 0$$

$$u(x,0) = u_0(x) = \begin{cases} 0 & x \le 0 \\ k^{-1}x & 0 < x < k \\ 1 & x \ge k \end{cases}$$

where k > 0.

Since $u_0(x)$ is an increasing function we have a solution for all t > 0:

$$u(x,t) = \begin{cases} 0 & x \le 0\\ \frac{x}{t+k} & 0 < x < k+t\\ 1 & x \ge k+t \end{cases}$$

Discontinuous solutions

Example:

$$u_t + uu_x = 0$$
 $x \in \mathbb{R}, \ t > 0$
 $u(x,0) = u_0(x) = \begin{cases} 1 & x < 0 \\ 0 & x > 0 \end{cases}$

Characteristics:

To determine the curve x=y(t) across which u is discontinuous we will again make use of the conservation law.

Consider again a general flux f(u) and set

$$I(t) = \int_{a}^{b} u(x, t) dx = \int_{a}^{y(t)} u(x, t) dx + \int_{y(t)}^{b} u(x, t) dx$$

Then

$$\frac{dI(t)}{dt} = \int_a^{y(t)} u_t(x,t) dx + su_\ell + \int_{y(t)}^b u_t(x,t) dx - su_r$$
 where the notation $s = y'(t)$ is used.

Since u(x, t) is smooth for x < y(t) and x > y(t) we have

$$\int_a^{y(t)} u_t(x,t) dx = f_a - f_\ell \quad \text{and} \quad \int_{y(t)}^b u_t(x,t) dx = -f_b + f_r$$
 where we use the notation
$$f(u_\ell) = f_\ell \,, \quad f(u_r) = f_r \,, \quad f(u(a)) = f_a \,, \quad f(u(b)) = f_b$$

Hence we obtain

$$\frac{dI(t)}{dt} = f_a - f_\ell + su_\ell - f_b + f_r - su_r$$

The conservation law is

$$\frac{dI(t)}{dt} = f_a - f_b$$

and combining all this we obtain

$$s[u] = [f]$$

where

$$[u] = u_r - u_\ell$$
 and $[f] = f_r - f_\ell$

This is called the **jump condition** (or Rankine-Hugoniot condition in fluid mechanics). The curve y = x(t) is called the shock and the discontinuity is called a shock wave.

For Burgers' equation $f(u) = u^2/2$ the jump condition is

$$s(u_r - u_\ell) = \frac{u_r^2 - u_\ell^2}{2} \implies s = y' = \frac{u_r + u_\ell}{2}$$

Back to the initial example with

$$u(x,0) = u_0(x) = \begin{cases} 1 & x < 0 \\ 0 & x > 0 \end{cases}$$

Hence $y(t) = st = \frac{1}{2}t$ and the discontinuous solution is

$$u(x,t) = \begin{cases} 1 & x < st \\ 0 & x > st \end{cases}.$$

Example: Consider Burgers' equation with initial data

$$u(x,0) = u_0(x) = \begin{cases} 1 & x \le 0 \\ 1 - k^{-1}x & 0 < x < k \\ 0 & x \ge k \end{cases}$$

We have already shown that for t < k

$$u(x,t) = \begin{cases} 1 & x \le t \\ \frac{x-k}{t-k} & t < x < k \\ 0 & x \ge k \end{cases}$$

and that u developed a singularity at t = k.

For t = k we have that

$$u(x,k) = \begin{cases} 1 & x < k \\ 0 & x > k \end{cases}$$

so we take $u_\ell=1$ and $u_r=0$ in the jump condition to get y'=1/2 . Hence

$$y(t) = \frac{t+k}{2}$$

So the solution for $t \ge k$ is

$$u(x,t) = \begin{cases} 1 & x < (t+k)/2 \\ 0 & x > (t+k)/2 \end{cases}$$

i.e., the step function continues to travel to the right.

Example: If u is a smooth solution of

$$u_t + \left(\frac{u^2}{2}\right)_x = 0$$

and $w = u^2$, then

$$w_t + \left(\frac{2w^{3/2}}{3}\right) = 0$$

These equations have different discontinuous solutions, for example for

$$u(x,0) = w(x,0) = \begin{cases} 1 & x < 0 \\ 0 & x > 0 \end{cases}$$

the jump conditions give s = 1/2 and s = 2/3 respectively. It is crucial to know the underlying conservation law!

Non-uniqueness

Example: Consider again Burgers' equation

$$u_t + uu_x = 0$$
 $x \in \mathbb{R}, \ t > 0$
 $u(x,0) = u_0(x) = \begin{cases} 0 & x < 0 \\ 1 & x > 0 \end{cases}$

The method of characteristics determines the solution for all t > 0 except in the region 0 < x < t.

An infinite number of solutions satisfying the jump conditions exist:

$$u_{lpha}(x,t) = \left\{ egin{array}{ll} 0 & x < lpha t/2 \ lpha & lpha t/2 < x < (1+lpha)t/2 \ 1 & x > (1+lpha)t/2 \end{array}
ight. \qquad ext{for any } lpha \in (0,1).$$

However, we can also fill the "empty" triangle by a smooth function.

Suppose we smooth out the initial data in order to fill the empty triangle with characteristics:

This suggests to look for solutions of the form u(x,t) = g(x/t) for 0 < x < t. Then

$$0 = u_t + uu_x = -\frac{x}{t^2}g' + \frac{1}{t}gg' = (-\frac{x}{t^2} + \frac{1}{t}g)g'.$$

So either

- ightharpoonup g = const giving a discontinuous solution, but not the one given by the jump condition.
- ightharpoonup or g(z)=z.

So a smooth solution (the so-called rarefaction wave) is given by

$$u_2(x,t) = \begin{cases} 0 & x < 0 \\ x/t & 0 < x < t \\ 1 & x > t \end{cases}$$

For this problem the rarefaction solution can also be obtained directly:

Take initial data

$$u(x,0) = u_0(x) = \begin{cases} 0 & x \le 0 \\ k^{-1}x & 0 < x < k \\ 1 & x \ge k \end{cases}$$

As $k \to 0$ the initial data converges to the step function and the solution

$$u(x,t) = \begin{cases} 0 & x < 0 \\ \frac{x}{k+t} & 0 < x < t+k \\ 1 & x > t+k \end{cases}$$

converges to u_2 .

Entropy condition

Which solution should we choose!?

- Discontinuities were introduced because of colliding characteristics.
- Therefore we only accept discontinuities that separate two characteristics that otherwise would inpinge on each other.
- For Burgers' equation this means that a discontinuity needs to satisfy the entropy condition

$$u_{\ell} > s > u_r$$
.

For the general conservation law

$$u_t + f(u)_x = 0$$

the entropy condition is

$$f'(u_\ell) > s > f'(u_r)$$
.

If f'' > 0, this again implies

$$u_{\ell} > u_{r}$$
.

Summary: Riemann problem

$$u_t + f(u)_x = 0, \quad u(x,0) = u_0(x) = \begin{cases} u_\ell & x < 0 \\ u_r & x > 0 \end{cases}$$
 and $f'' > 0$.

1. If $u_{\ell} > u_r$ the admissible solution is

$$u(x,t) = \begin{cases} u_{\ell} & x < st \\ u_{r} & x > st \end{cases}$$

where the shock speed s satisfies $s = \frac{f(u_r) - f(u_\ell)}{u_r - u_\ell}$.

2. If $u_{\ell} < u_r$, we look for a rarefaction wave

$$u(x,t) = \overline{u}(x/t) = \overline{u}(z), \quad z = x/t.$$

A calculation shows that $f'(\bar{u}) = z$ and

$$u(x,t) = \left\{ egin{array}{ll} u_\ell & x < f'(u_\ell)t \ ar{u}(x/t) & f'(u_\ell)t < x < f'(u_r)t \ u_r & x > f'(u_r)t \end{array}
ight.$$

Viscosity solution

We say that u is a viscosity solution if it is the limit as $\epsilon \to 0^+$ of the solution $v=v^\epsilon$ of the parabolic problem

$$v_t + f(v)_x = \epsilon v_{xx}, \qquad x \in \mathbb{R}, \ t > 0$$
$$v(x, 0) = u_0(x)$$

The fact that v^{ϵ} converges to the admissible solution is proved by Bianchini and Bressan in 2005.

We will give a heuristic argument that the viscosity solution is admissible, i.e., that

$$f'(u_\ell) > s > f'(u_r);$$

and that the jump condition s[u] = [f] is satisfied at a discontinuity.

Suppose that u(x, t) has a singularity of the type

$$u(x,t) = \begin{cases} u_{\ell} & x < st \\ u_{r} & x > st \end{cases}$$

It is natural to assume that near the singularity

$$v(x,t) \approx \bar{v}\left(\frac{x-st}{\epsilon}\right)$$

Substituting this into the original equation gives

$$-s\bar{v}'+f(\bar{v})'=\bar{v}''$$

Integrating gives

$$\bar{v}' = -s\bar{v} + f(\bar{v}) + C \tag{1}$$

where C is a constant.

Note for $v^{\epsilon} \rightarrow u$ to hold we need

$$\lim_{z\to -\infty} \bar{v}(z) = u_\ell$$
 and $\lim_{z\to \infty} \bar{v}(z) = u_r$.

Hence u_{ℓ} and u_r are equilibria of the ODE (1) and

$$C = su_{\ell} - f(u_{\ell}) = su_r - f(u_r)$$

In particular, this implies the jump condition

$$s(u_r-u_\ell)=f(u_r)-f(u_\ell).$$

Coming back to

$$ar{v}' = -s(ar{v} - u_\ell) + f(ar{v}) - f(u_\ell) \equiv H(ar{v})$$

with $\bar{v}(-\infty) = u_{\ell}$ and $\bar{v}(\infty) = u_r$. Assuming first $u_{\ell} > u_r$ the phase portrait is

It follows that $H(\bar{v}) < 0$ for $u_r < \bar{v} < u_\ell$ and

$$H'(u_\ell) \geq 0 \,, \quad H'(u_r) \leq 0$$

Since $H'(\bar{v}) = f'(\bar{v}) - s$ we obtain the entropy condition.

If $u_{\ell} < u_r$ then the phase portrait is

giving $H(\bar{v}) > 0$ for $u_{\ell} < \bar{v} < u_r$ and again the entropy condition.

For the special case $f(u)=u^2/2$, \bar{v} can be found analytically: For $u_\ell=2$ and $u_r=0$

$$v(x,t) = \bar{v}(z) = \frac{2}{1 + \exp\left(\frac{x-t}{\epsilon}\right)}$$

The approximation to the solution v^{ϵ} with $\epsilon=0.05$ at time t=1

The Cole-Hopf Transformation

We study again the viscous Burgers' equation:

$$v_t + vv_x = \epsilon v_{xx}, \qquad x \in \mathbb{R}, \ t > 0$$

 $v(x,0) = v_0(x)$

Cole and Hopf in the early 1950s found the analytic solution. They did this by showing that the change of variables

$$v = \frac{-2\epsilon w_x}{w}$$

shows that w is the solution of a 1-D heat equation.

We do the change of variables in two steps: First set

$$v = z_{\mathsf{v}}$$

Then

$$z_{tx} + \left(\frac{z_x^2}{2}\right)_x = \epsilon z_{xxx}$$

which can be integrated to

$$z_t + \frac{z_x^2}{2} = \epsilon z_{xx}$$

Now set $z = -2\epsilon \log w$. Then

$$z_t = -\frac{2\epsilon w_t}{w}, \qquad z_x = -\frac{2\epsilon w_x}{w}, \qquad z_{xx} = \frac{2\epsilon w_x^2}{w^2} - \frac{2\epsilon w_{xx}}{w}$$

and a calculation shows that

$$w_t = \epsilon w_{xx}$$
.

To find the initial condition $w(x,0) = w_0(x)$ we solve

$$-2\epsilon w_0'(x) = v_0(x)w_0(x)$$

to get

$$w_0(x) = \exp\left(-\frac{1}{2\epsilon} \int_0^x v_0(y) \, dy\right).$$

Analytic solution of the 1D heat equation is given by the formula

$$w(x,t) = \left(\frac{1}{4\pi\epsilon t}\right)^{1/2} \int_{-\infty}^{\infty} w_0(y) \exp\left(-\frac{(x-y)^2}{4\epsilon t}\right) dy.$$

Hence the solution to the original problem is

$$v(x,t) = \frac{\int_{-\infty}^{\infty} \left(\frac{x-y}{t}\right) e^{-G(y,x,t)/2\epsilon} dy}{\int_{-\infty}^{\infty} e^{-G(y,x,t)/2\epsilon} dy}$$

where

$$G(y,x,t) = \frac{(x-y)^2}{2t} + \int_0^y v_0(s) ds.$$

Example: Solution of inviscid Burgers' equation with initial data

$$u_0(x) = \begin{cases} 2 & x < 0 \\ 0 & x > 0 \end{cases}$$

is

$$u(x,t) = \left\{ \begin{array}{ll} 2 & x < t \\ 0 & x > t \end{array} \right..$$

In the previous section we approximated the corresponding v^ϵ by

$$v^{\epsilon}(x,t) pprox rac{2}{1+\exp\left(rac{x-t}{\epsilon}
ight)}.$$

Now we can use the exact solution

$$v^{\epsilon}(x,t) = \frac{2}{1 + Q(x,t) \exp\left(\frac{x-t}{2}\right)}$$

where $Q = q_1/q_2$ and

$$q_1 = \int_{-\infty/\sqrt{4\epsilon t}}^{\infty} e^{-s^2} ds$$
, $q_2 = \int_{(\infty-2t)/\sqrt{4\epsilon t}}^{\infty} e^{-s^2} ds$.

Traffic flow

See the Models stream for more detail on the model.

- ightharpoonup
 ho(x,t) traffic density
- ightharpoonup q(x,t) flux, i.e., number of cars passing x at time t
- ► The conservation law is

$$\frac{d}{dt}\int_a^b \rho(x,t)\,dx = q(a,t) - q(b,t)$$

or in differential form

$$\rho(x,t)_t+q(x,t)_x=0.$$

▶ It's reasonable to assume the

$$q = V(\rho)\rho$$

where $V(\rho)$ is the local traffic speed.

 \triangleright $V(\rho)$ is a decreasing function, the simplest choice being

$$V(\rho)\rho = m\rho(n-\rho)$$

where m and n are constants.

By scaling ρ and x we obtain the normalised conservation law

$$u_t + f(u)_{\times} = 0$$

where

$$f(u)=u(1-u).$$

Hence f''(u) = -2 < 0, so

$$f'(u_\ell) > f'(u_r)$$

implies that at an admissible discontinuity

$$u_{\ell} < u_{r}$$
.

Example: Consider the traffic flow problem with

$$u(x,0) = u_0(x) = \begin{cases} 3/4 & x < 0 \\ 1/4 & x > 0 \end{cases}$$

Then the admissible solution is

$$u(x,t) = \begin{cases} 3/4 & x \le -t/2 \\ 1/2 - x/2t & -t/2 < x < t/2 \\ 1/4 & x \ge t/2 \end{cases}$$

Some comments on the traffic problem

- Flux is maximum at density u = 1/2.
- At density u = 1 no movement.

Suppose we have uniform density, but then the flow hits a red light: