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Conservation laws

» u(x,t) — density of material at location x and time t
>

b
/ u(x, t)dx — The total amount of material in interval [a, b].
a
» f(u) = f(u(x,t)) — flux at location x and time t

» Flux is the rate at which the material is passing the x at time t.
» The flux is positive if the flow is in the positive x-direction.

» Conservation law (in integral form):

/ u(x, t)dx = F(u(a, t)) — F(u(b, ).



» If u is differentiable

b d
/a EU(X’ t) + (f(u(x,t))),dx =0

since this holds for any interval [a, b] we obtain the
conservation law in differential form:

us + f(u)x = 0.

Remarks:

» The conservation law in integral form holds also for
non-smooth solutions u

» A constitutive relation or equation of state is required to
determine the system.



Constitutive relations

> Fick's law:
f(u) = —ux

giving the diffusion (heat) equation
Uy — Uy = 0.
» Adding convection:
f(u) = —euy + u?/2
gives Burgers’ equation
Up + Uy = €lUxy
or with € = 0 the inviscid Burgers' equation

us + uuy, = 0.



Traffic flow

Let us derive a simple constitutive relation for traffic flow.

» u(x,t) — the density (cars per mile) of cars on a road moving
from left to right.

P If nis the maximum density we could model the speed at
which people drive, by

m(n— u)

where m is a constant.
» The rate at which cars pass a given point is the product of
their speeds and the density so

f(u) = um(n— u).

» Conservation of cars leads to

b
2 / u(x, t)dx = F(u(a, £)) — F(u(b, 1)).



Characteristics and first order equations
Consider the linear advection equation

usr + cux =0, u(x,0) = uo(x).

Note that

%u(x(t), t) = ue(x(t), £)+x'(t)ux(x(t), t) = (X' (t)—c)ux(x(2), t).

Hence u is constant (%u = 0) along characteristics x(t) given by
X'(t) =c = x(t) = ct+ x(0).
Denote y = x(0) and solve for y in
X=ct+y — y=x-—ct
to obtain solution at (x, t):

u(x,t) = u(y,0) = uo(y) = uo(x — ct).



Characteristics for the linear case




Non-homogeneous linear case

Consider
ur(x, t) + cux(x, t) = g(u, x, t), u(x,0) = up(x).
Along characteristics x'(t) = ¢, u is the solution of an ODE:

%u(x(t), t) = ur(x(t), t) + X' (t)ux(x(t), t) = g(u, x(t), ).



The nonlinear case
Let us consider

ur + f(u)x =0, xeR,t>0,
u(x,0) = up(x) x eR.

Note that the first equation can be written as
ur + f'(u)ux = 0.
Hence
d / / !
Eu(x(t), t) = ur(x, t) + X ux(x, t) = (x' — f'(v))ux(x,t) =0

along characteristics

d /
Ex(t) = f'(u(x, t)).

Note that the characteristics are still straight lines.



Example

us + uuy =0,

u(x,0) = x,

xeR,t >0,
x € R.
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Nonlinear case ctd.
We come back to

ur + f(u)x =0, x€R,t>0,
u(x,0) = up(x) x eR.
with extra assumption f”(u) > 0, Vu, (so truly nonlinear). Recall

d / _ ()t —
ax(t) = f'(u(x,t)) = const = x(t) — f'(u)t = x(0).

are the characteristics along which u(x(t), t) is constant. Hence
U(X7 t) - U(y, 0) = UO(.y)

where
y = x— f(uo())t = yx = 1= yeth(y)F"(o(y))t
1
1+ ug(y)f"(uo(y))t

=>sz
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Further

L up(y)
ux = yxup(y) = 14 ué(y[))f”(uo(}/))t.

Remarks:
> If uj > 0 (recall f” > 0) then solution exists for all t > 0.

> If uj(y) < 0 for some y, the characteristics intersect. This will
happen at the earliest time t > 0 such that

1+ ug(y)f"(uo(y))t = 0.
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Example:

us 4+ uuy =0 xeR, t>0

—x2

u(x,0) = up(x)=e
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Burgers' equation: shock development

t=0 t=0.32
1 1
0.5 0.5
0 0
-0.5 -0.5
-2 0 2 -2 0 2
t=0.72 t=1.08
1 1
0.5 0.5
0 0
-0.5 -0.5
-2 0 2 -2 0 2
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Example:

uy + uuy =0 xeR, t>0

1 x <0
u(x,0) = up(x) = ¢ 1— k7 1x 0<x<k
0 x>k

Solution:

Note: characteristics all intersect at (k, k) so a smooth solution
cannot exist for t > k.
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It's clear that u(x,t) =1 for x < t < k and u(x, t) =0 for x > k

and t < k.

In the triangle t < x < k we have
x—1t

—t(1— k! =
x = t( )ty = ¥y =1

Hence
—k
X=X for t < x < k.

u(x,t) = uo(y) = 1= kty = T

So finally (for t < k)

1 x <t
u(x,t) =4 % t<x<k
0 x>k



X,t)

O<t<k

o

(x.k)

t=k

17



Example:

ur + uuy =0, xeER, t>0
0 x<0

u(x,0) =up(x) =< k7 Ix 0<x<k
1 x> k

where k > 0.
Since wup(x) is an increasing function we have a solution for all
t>0:

0 x<0
ulx,t) = ¢ % O<x<k+t
1 x> k+t
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Discontinuous solutions

Example:
us +uux =0 xeR, t>0
1 x <0
U(X,O)—Uo(X)—{ 0 x>0
Characteristics:

To determine the curve x = y(t) across which v is discontinuous
we will again make use of the conservation law.



Consider again a general flux f(u) and set
b y(t) b
I(t) = / u(x,t)dx = / u(x,t)dx + / u(x,t) dx
a a y(t)
Then
di(t y(t) b
di(t) = / ur(x, t) dx + suy + / ut(x, t) dx — su,
at ,
where the notation s = y/(t) is used.

Since u(x, t) is smooth for x < y(t) and x > y(t) we have

y(t) b
/ ur(x,t)dx =f,—f and / ur(x, t)dx = —fp + £,
a y(t)

where we use the notation

Flu) =fe, o) =1, fu(a))="f, f(u(b))="1



Hence we obtain
dl(t)
dt

The conservation law is

=f—fi+su —f,+f —su,

dl(t)
——=f,—f
dt a b
and combining all this we obtain
s[u] = [f]

where

[u] = ur — up and [fl=1Ff—-1

This is called the jump condition (or Rankine-Hugoniot condition
in fluid mechanics). The curve y = x(t) is called the shock and
the discontinuity is called a shock wave.



For Burgers' equation f(u) = u?/2 the jump condition is

2 2
Ur—Ug

2

ur+ uyg
2

s(u, — up) = = s=y =

Back to the initial example with

1 x <0
U(X,O)ZUO(X):{ 0 >0

Hence y(t) = st = 3t and the discontinuous solution is

1 x < st
“(X’t):{o X > st
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Example: Consider Burgers' equation with initial data

1 x <0

u(x,0) = up(x) = ¢ 1— k™ Ix 0<x<k
0 x>k
We have already shown that for t < k
1 x <t
u(x,t) =4 % t<x<k
0 x> k

and that u developed a singularity at t = k.
For t = k we have that

1 x < k
“(X’k):{ 0 x>k

so we take up =1 and u, = 0 in the jump condition to get
y'=1/2. Hence

t+ k
t) = —
y(t) 5
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So the solution for t > k is
(1 x < (t+k)/2
”(X’t)_{o x> (t+k)/2 "

i.e., the step function continues to travel to the right.
Example: If v is a smooth solution of

2
Ut+<UQ) =0
o2w3/2

These equations have different discontinuous solutions, for example
for

and w = u?, then

1 x <0
u(X,O):W(x,O):{0 >0

the jump conditions give s = 1/2 and s = 2/3 respectively.
It is crucial to know the underlying conservation law!



Non-uniqueness

Example: Consider again Burgers' equation

us +uuy =0 xeER, t>0

0 x <0
u(x,O):uo(x):{ 1 >0

The method of characteristics determines the solution for all t > 0
except in the region 0 < x < t.
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An infinite number of solutions satisfying the jump conditions exist:

0 x < at/2

Up(x,t) =< a  at/2<x<(1+a)t/2 for any ac € (0, 1).

1 x> (1+a)t/2

However, we can also fill the “empty” triangle by a smooth
function.

Suppose we smooth out the initial data in order to fill the empty
triangle with characteristics:
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This suggests to look for solutions of the form u(x,t) = g(x/t) for
0<x <t Then

0=u+uu, =—%g" + g8’ = (—% + 18)g’.

So either
P> g = const giving a discontinuous solution, but not the one
given by the jump condition.
> or g(z) = z.
So a smooth solution (the so-called rarefaction wave) is given by

0 x <0
w(x,t) =< x/t O<x<t
1 x>t
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For this problem the rarefaction solution can also be obtained
directly:

Take initial data

0 x<0
u(x,0) = up(x) = { k=x 0<x<k
1 x>k

As k — 0 the initial data converges to the step function and the
solution

0 x <0
ulx,t) =4 &+ O<x<t+k
1 x>t+k

converges to uo.

28



Entropy condition
Which solution should we choose!?

» Discontinuities were introduced because of colliding
characteristics.

» Therefore we only accept discontinuities that separate two
characteristics that otherwise would inpinge on each other.

» For Burgers' equation this means that a discontinuity needs to
satisfy the entropy condition

Up > s > Uy.
» For the general conservation law
ur+ f(u)x =0
the entropy condition is
f'(ug) > s> f'(u).
If 7 > 0, this again implies
up > uy.
29



Summary: Riemann problem

- - ) ow x <0
ur+ f(u)x =0, u(x,0) = up(x) = { b x>0
and 7 > 0.
1. If up > u, the admissible solution is

u(x,t) = {

Uy x < st

uy X > st
where the shock speed s satisfies s = %ﬁim
2. If up < u,, we look for a rarefaction wave

u(x,t) = a(x/t) =u(z), z=x/t.
A calculation shows that f'(&) = z and

ug x < f'(up)t
u(x,t) =< a(x/t) f(up)t < x < f'(u,)t
u, x > f'(u,)t
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Viscosity solution

We say that u is a viscosity solution if it is the limit as € — 0" of
the solution v = v¢ of the parabolic problem

Vt+f(V)X:6Vxxa XER7t>O
V(Xa O) = UO(X)

The fact that v converges to the admissible solution is proved by
Bianchini and Bressan in 2005.

We will give a heuristic argument that the viscosity solution is
admissible, i.e., that

f'(ug) > s > f'(u,);

and that the jump condition s[u] = [f] is satisfied at a
discontinuity.
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Suppose that u(x, t) has a singularity of the type

iy x < st
U(X’t):{ ur X > st

It is natural to assume that near the singularity

V(x,t) ~ 7 (X - “)

Substituting this into the original equation gives

—sv' +f(v) =V"

Integrating gives
—/

V=-sv+f(v)+C
where C is a constant.

Note for v¢ — u to hold we need

lim v(z) = uw and lim v(z) = u,.

Z——00 Z—00
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Hence uy and u, are equilibria of the ODE (1) and
C = sup — f(up) = su, — f(u,)
In particular, this implies the jump condition

s(ur — ug) = f(uy) — f(up).

Coming back to
V' = —s(v—up)+ f(v) — f(u) = H(V)

with V(—00) = uy and V(00) = u,. Assuming first up > u, the
phase portrait is

R |
R L
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It follows that H(V) < 0 for u, < Vv < uy and

H'(ue) >0, H'(u) <0

Since H'(V) = f'(v) — s we obtain the entropy condition.
If uy < u, then the phase portrait is
| -==————- >-—m—m——- |
L R
giving H(v) > 0 for uy < v < u, and again the entropy condition.

For the special case f(u) = u?/2, ¥V can be found analytically: For
up=2and u, =0
2
7t =V e —
08 = 72) =
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The approximation to the solution v¢ with ¢ = 0.05 at time t =1

0.8

0.6

0.4

0.2r
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The Cole-Hopf Transformation
We study again the viscous Burgers' equation:
Vi + Wy = Vi, xeR, t>0
v(x,0) = vp(x)
Cole and Hopf in the early 1950s found the analytic solution. They
did this by showing that the change of variables

—2ewy
Vv =

w
shows that w is the solution of a 1-D heat equation.

We do the change of variables in two steps: First set

vV =2z

zZ
Zix + = €Zxxx
2 X

which can be integrated to

Then

2
X
Zr + = = €Zxx
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Now set z = —2¢e¢logw. Then

26w, 2eWy 2ewy  2eWik
Zt = — ’ Zx = — ’ Zyx = >
w w w

and a calculation shows that
Wi = €Wyx.
To find the initial condition w(x,0) = wp(x) we solve
—2ew(x) = vo(x)wo(x)

wo(x) = exp (—21 [ ) dy) |

to get
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Analytic solution of the 1D heat equation is given by the formula

w(x, t) = <47:6t>1/2 /_Z wo(y) exp <—(X4_6§/)2) dy.

Hence the solution to the original problem is

oI () eCtnrgy
v(x,t) = I e G2 gy

where ) y
(thy)—i-/o vo(s) ds.
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Example: Solution of inviscid Burgers' equation with initial data

2 x <0
W) =919 x>0

2 x <t
Wt =10 x>t

In the previous section we approximated the corresponding v¢ by

2
€ ~
ve(x,t) =~ o (X;t).

Now we can use the exact solution
2
14 Q(x,t)exp (%)

€

ve(x,t) =

where Q = q1/¢2 and

qL= / e’ ds, g = / e ds.
—x/\/4et (x—2t)/V4et
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Traffic flow

See the Models stream for more detail on the model.
> p(x, t) — traffic density
» q(x,t) — flux, i.e., number of cars passing x at time t

» The conservation law is
b

@t |, p(x, t) dx = q(a, t) — q(b, t)
or in differential form
p(x, ) + q(x, t)x = 0.
> |t's reasonable to assume the
q="Vip)p

where V/(p) is the local traffic speed.
» V(p) is a decreasing function, the simplest choice being

V(p)p = mp(n - p)

where m and n are constants.
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By scaling p and x we obtain the normalised conservation law
ur+ f(u)x =0

where
f(u) =u(l— u).

Hence f"(u) = -2 <0, so
f'(ug) > f'(uy)
implies that at an admissible discontinuity

up < Uy.
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Example: Consider the traffic flow problem with

{750

Then the admissible solution is
3/4 x < —t/2

u(x,t) =< 1/2 —x/2t —t/2<x < t/2
1/4 x>t/2
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Some comments on the traffic problem
» Flux is maximum at density u = 1/2.
P> At density u = 1 no movement.

Suppose we have uniform density, but then the flow hits a red
light:
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