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Conservation laws

I u(x , t) – density of material at location x and time t
I ∫ b

a
u(x , t)dx – The total amount of material in interval [a, b].

I f (u) = f (u(x , t)) – flux at location x and time t
I Flux is the rate at which the material is passing the x at time t.
I The flux is positive if the flow is in the positive x-direction.

I Conservation law (in integral form):

d

dt

∫ b

a
u(x , t)dx = f (u(a, t))− f (u(b, t)).
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I If u is differentiable∫ b

a

d

dt
u(x , t) + (f (u(x , t)))x dx = 0

since this holds for any interval [a, b] we obtain the
conservation law in differential form:

ut + f (u)x = 0.

Remarks:

I The conservation law in integral form holds also for
non-smooth solutions u

I A constitutive relation or equation of state is required to
determine the system.
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Constitutive relations

I Fick’s law:
f (u) = −ux

giving the diffusion (heat) equation

ut − uxx = 0.

I Adding convection:

f (u) = −εux + u2/2

gives Burgers’ equation

ut + uux = εuxx

or with ε = 0 the inviscid Burgers’ equation

ut + uux = 0.
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Traffic flow
Let us derive a simple constitutive relation for traffic flow.

I u(x , t) – the density (cars per mile) of cars on a road moving
from left to right.

I If n is the maximum density we could model the speed at
which people drive, by

m(n − u)

where m is a constant.

I The rate at which cars pass a given point is the product of
their speeds and the density so

f (u) = um(n − u).

I Conservation of cars leads to

d

dt

∫ b

a
u(x , t)dx = f (u(a, t))− f (u(b, t)).
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Characteristics and first order equations
Consider the linear advection equation

ut + cux = 0, u(x , 0) = u0(x).

Note that

d

dt
u(x(t), t) = ut(x(t), t)+x ′(t)ux(x(t), t) = (x ′(t)−c)ux(x(t), t).

Hence u is constant ( d
dt u = 0) along characteristics x(t) given by

x ′(t) = c =⇒ x(t) = ct + x(0).

Denote y = x(0) and solve for y in

x = ct + y =⇒ y = x − ct

to obtain solution at (x , t):

u(x , t) = u(y , 0) = u0(y) = u0(x − ct).

6



Characteristics for the linear case

t

xy
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Non-homogeneous linear case

Consider

ut(x , t) + cux(x , t) = g(u, x , t), u(x , 0) = u0(x).

Along characteristics x ′(t) = c , u is the solution of an ODE:

d

dt
u(x(t), t) = ut(x(t), t) + x ′(t)ux(x(t), t) = g(u, x(t), t).
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The nonlinear case
Let us consider

ut + f (u)x = 0, x ∈ R, t > 0,

u(x , 0) = u0(x) x ∈ R.

Note that the first equation can be written as

ut + f ′(u)ux = 0.

Hence

d

dt
u(x(t), t) = ut(x , t) + x ′ux(x , t) = (x ′ − f ′(u))ux(x , t) = 0

along characteristics

d

dt
x(t) = f ′(u(x , t)).

Note that the characteristics are still straight lines.
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Example

ut + uux = 0, x ∈ R, t > 0,

u(x , 0) = x , x ∈ R.

10



Nonlinear case ctd.
We come back to

ut + f (u)x = 0, x ∈ R, t > 0,

u(x , 0) = u0(x) x ∈ R.

with extra assumption f ′′(u) > 0, ∀u, (so truly nonlinear). Recall

d

dt
x(t) = f ′(u(x , t)) = const =⇒ x(t)− f ′(u)t = x(0).

are the characteristics along which u(x(t), t) is constant. Hence

u(x , t) = u(y , 0) = u0(y)

where

y = x − f ′(u0(y))t =⇒ yx = 1− yxu
′
0(y)f ′′(u0(y))t

=⇒ yx =
1

1 + u′0(y)f ′′(u0(y))t
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Further

ux = yxu
′
0(y) =

u′0(y)

1 + u′0(y)f ′′(u0(y))t
.

Remarks:

I If u′0 > 0 (recall f ′′ > 0) then solution exists for all t > 0.

I If u′0(y) < 0 for some y , the characteristics intersect. This will
happen at the earliest time t > 0 such that

1 + u′0(y)f ′′(u0(y))t = 0.
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Example:

ut + uux = 0 x ∈ R, t > 0

u(x , 0) = u0(x) = e−x
2
.
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Burgers’ equation: shock development
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Example:

ut + uux = 0 x ∈ R, t > 0

u(x , 0) = u0(x) =


1 x ≤ 0

1− k−1x 0 < x < k
0 x ≥ k

Solution:

Note: characteristics all intersect at (k , k) so a smooth solution
cannot exist for t > k . 15



It’s clear that u(x , t) = 1 for x ≤ t ≤ k and u(x , t) = 0 for x ≥ k
and t ≤ k .

In the triangle t < x < k we have

x = t(1− k−1y) + y =⇒ y =
x − t

1− k−1t
.

Hence

u(x , t) = u0(y) = 1− k−1y =
x − k

t − k
, for t < x < k .

So finally (for t ≤ k)

u(x , t) =


1 x ≤ t

x−k
t−k t < x < k

0 x ≥ k
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Example:

ut + uux = 0 , x ∈ R , t > 0

u(x , 0) = u0(x) =


0 x ≤ 0

k−1x 0 < x < k
1 x ≥ k

where k > 0.
Since u0(x) is an increasing function we have a solution for all
t > 0:

u(x , t) =


0 x ≤ 0

x
t+k 0 < x < k + t

1 x ≥ k + t
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Discontinuous solutions
Example:

ut + uux = 0 x ∈ R, t > 0

u(x , 0) = u0(x) =

{
1 x < 0
0 x > 0

Characteristics:

To determine the curve x = y(t) across which u is discontinuous
we will again make use of the conservation law.
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Consider again a general flux f (u) and set

I (t) =

∫ b

a
u(x , t) dx =

∫ y(t)

a
u(x , t) dx +

∫ b

y(t)
u(x , t) dx

Then

dI (t)

dt
=

∫ y(t)

a
ut(x , t) dx + su` +

∫ b

y(t)
ut(x , t) dx − sur

where the notation s = y ′(t) is used.

Since u(x , t) is smooth for x < y(t) and x > y(t) we have

∫ y(t)

a
ut(x , t) dx = fa − f` and

∫ b

y(t)
ut(x , t) dx = −fb + fr

where we use the notation

f (u`) = f` , f (ur ) = fr , f (u(a)) = fa , f (u(b)) = fb
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Hence we obtain

dI (t)

dt
= fa − f` + su` − fb + fr − sur

The conservation law is

dI (t)

dt
= fa − fb

and combining all this we obtain

s[u] = [f ]

where

[u] = ur − u` and [f ] = fr − f`

This is called the jump condition (or Rankine-Hugoniot condition
in fluid mechanics). The curve y = x(t) is called the shock and
the discontinuity is called a shock wave.
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For Burgers’ equation f (u) = u2/2 the jump condition is

s(ur − u`) =
u2r − u2`

2
=⇒ s = y ′ =

ur + u`
2

Back to the initial example with

u(x , 0) = u0(x) =

{
1 x < 0
0 x > 0

Hence y(t) = st = 1
2 t and the discontinuous solution is

u(x , t) =

{
1 x < st
0 x > st

.
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Example: Consider Burgers’ equation with initial data

u(x , 0) = u0(x) =


1 x ≤ 0

1− k−1x 0 < x < k
0 x ≥ k

We have already shown that for t < k

u(x , t) =


1 x ≤ t

x−k
t−k t < x < k

0 x ≥ k

and that u developed a singularity at t = k .

For t = k we have that

u(x , k) =

{
1 x < k
0 x > k

so we take u` = 1 and ur = 0 in the jump condition to get
y ′ = 1/2 . Hence

y(t) =
t + k

2
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So the solution for t ≥ k is

u(x , t) =

{
1 x < (t + k)/2
0 x > (t + k)/2

,

i.e., the step function continues to travel to the right.
Example: If u is a smooth solution of

ut +

(
u2

2

)
x

= 0

and w = u2 , then

wt +

(
2w3/2

3

)
x

= 0

These equations have different discontinuous solutions, for example
for

u(x , 0) = w(x , 0) =

{
1 x < 0
0 x > 0

the jump conditions give s = 1/2 and s = 2/3 respectively.
It is crucial to know the underlying conservation law!
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Non-uniqueness
Example: Consider again Burgers’ equation

ut + uux = 0 x ∈ R, t > 0

u(x , 0) = u0(x) =

{
0 x < 0
1 x > 0

The method of characteristics determines the solution for all t > 0
except in the region 0 < x < t.
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An infinite number of solutions satisfying the jump conditions exist:

uα(x , t) =


0 x < αt/2
α αt/2 < x < (1 + α)t/2
1 x > (1 + α)t/2

for any α ∈ (0, 1).

However, we can also fill the “empty” triangle by a smooth
function.

Suppose we smooth out the initial data in order to fill the empty
triangle with characteristics:
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This suggests to look for solutions of the form u(x , t) = g(x/t) for
0 < x < t. Then

0 = ut + uux = − x
t2
g ′ + 1

t gg
′ = (− x

t2
+ 1

t g)g ′.

So either

I g = const giving a discontinuous solution, but not the one
given by the jump condition.

I or g(z) = z .

So a smooth solution (the so-called rarefaction wave) is given by

u2(x , t) =


0 x < 0

x/t 0 < x < t
1 x > t
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For this problem the rarefaction solution can also be obtained
directly:

Take initial data

u(x , 0) = u0(x) =


0 x ≤ 0

k−1x 0 < x < k
1 x ≥ k

As k → 0 the initial data converges to the step function and the
solution

u(x , t) =


0 x < 0

x
k+t 0 < x < t + k

1 x > t + k

converges to u2.
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Entropy condition
Which solution should we choose!?

I Discontinuities were introduced because of colliding
characteristics.

I Therefore we only accept discontinuities that separate two
characteristics that otherwise would inpinge on each other.

I For Burgers’ equation this means that a discontinuity needs to
satisfy the entropy condition

u` > s > ur .

I For the general conservation law

ut + f (u)x = 0

the entropy condition is

f ′(u`) > s > f ′(ur ).

If f ′′ > 0, this again implies

u` > ur .
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Summary: Riemann problem

ut + f (u)x = 0, u(x , 0) = u0(x) =

{
u` x < 0
ur x > 0

and f ′′ > 0.

1. If u` > ur the admissible solution is

u(x , t) =

{
u` x < st
ur x > st

where the shock speed s satisfies s = f (ur )−f (u`)
ur−u` .

2. If u` < ur , we look for a rarefaction wave

u(x , t) = ū(x/t) = ū(z) , z = x/t.

A calculation shows that f ′(ū) = z and

u(x , t) =


u` x < f ′(u`)t

ū(x/t) f ′(u`)t < x < f ′(ur )t
ur x > f ′(ur )t
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Viscosity solution

We say that u is a viscosity solution if it is the limit as ε→ 0+ of
the solution v = v ε of the parabolic problem

vt + f (v )x = εvxx , x ∈ R , t > 0

v (x , 0) = u0(x)

The fact that v ε converges to the admissible solution is proved by
Bianchini and Bressan in 2005.

We will give a heuristic argument that the viscosity solution is
admissible, i.e., that

f ′(u`) > s > f ′(ur );

and that the jump condition s[u] = [f ] is satisfied at a
discontinuity.
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Suppose that u(x , t) has a singularity of the type

u(x , t) =

{
u` x < st
ur x > st

It is natural to assume that near the singularity

v(x , t) ≈ v̄

(
x − st

ε

)
Substituting this into the original equation gives

−sv̄ ′ + f (v̄)′ = v̄ ′′

Integrating gives
v̄ ′ = −sv̄ + f (v̄) + C (1)

where C is a constant.

Note for v ε → u to hold we need

lim
z→−∞

v̄(z) = u` and lim
z→∞

v̄(z) = ur .
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Hence u` and ur are equilibria of the ODE (1) and

C = su` − f (u`) = sur − f (ur )

In particular, this implies the jump condition

s(ur − u`) = f (ur )− f (u`).

Coming back to

v̄ ′ = −s(v̄ − u`) + f (v̄)− f (u`) ≡ H(v̄)

with v̄(−∞) = u` and v̄(∞) = ur . Assuming first u` > ur the
phase portrait is

|--------<--------|

R L
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It follows that H(v̄) < 0 for ur < v̄ < u` and

H ′(u`) ≥ 0 , H ′(ur ) ≤ 0

Since H ′(v̄) = f ′(v̄)− s we obtain the entropy condition.

If u` < ur then the phase portrait is

|-------->--------|

L R

giving H(v̄) > 0 for u` < v̄ < ur and again the entropy condition.

For the special case f (u) = u2/2 , v̄ can be found analytically: For
u` = 2 and ur = 0

v(x , t) = v̄(z) =
2

1 + exp
(
x−t
ε

)
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The approximation to the solution v ε with ε = 0.05 at time t = 1
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The Cole-Hopf Transformation
We study again the viscous Burgers’ equation:

vt + vvx = εvxx , x ∈ R, t > 0

v(x , 0) = v0(x)

Cole and Hopf in the early 1950s found the analytic solution. They
did this by showing that the change of variables

v =
−2εwx

w
shows that w is the solution of a 1-D heat equation.

We do the change of variables in two steps: First set

v = zx

Then

ztx +

(
z2x
2

)
x

= εzxxx

which can be integrated to

zt +
z2x
2

= εzxx 36



Now set z = −2ε logw . Then

zt = −2εwt

w
, zx = −2εwx

w
, zxx =

2εw2
x

w2
− 2εwxx

w

and a calculation shows that

wt = εwxx .

To find the initial condition w(x , 0) = w0(x) we solve

−2εw ′0(x) = v0(x)w0(x)

to get

w0(x) = exp

(
− 1

2ε

∫ x

0
v0(y) dy

)
.
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Analytic solution of the 1D heat equation is given by the formula

w(x , t) =

(
1

4πεt

)1/2 ∫ ∞
−∞

w0(y) exp

(
−(x − y)2

4εt

)
dy .

Hence the solution to the original problem is

v(x , t) =

∫∞
−∞

( x−y
t

)
e−G(y ,x ,t)/2ε dy∫∞

−∞ e−G(y ,x ,t)/2ε dy

where

G (y , x , t) =
(x − y)2

2t
+

∫ y

0
v0(s) ds.
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Example: Solution of inviscid Burgers’ equation with initial data

u0(x) =

{
2 x < 0
0 x > 0

is

u(x , t) =

{
2 x < t
0 x > t

.

In the previous section we approximated the corresponding v ε by

v ε(x , t) ≈ 2

1 + exp
(
x−t
ε

) .
Now we can use the exact solution

v ε(x , t) =
2

1 + Q(x , t) exp
(
x−t
ε

)
where Q = q1/q2 and

q1 =

∫ ∞
−x/
√
4εt

e−s
2
ds , q2 =

∫ ∞
(x−2t)/

√
4εt

e−s
2
ds.
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Traffic flow
See the Models stream for more detail on the model.
I ρ(x , t) – traffic density
I q(x , t) – flux, i.e., number of cars passing x at time t
I The conservation law is

d

dt

∫ b

a
ρ(x , t) dx = q(a, t)− q(b, t)

or in differential form

ρ(x , t)t + q(x , t)x = 0.

I It’s reasonable to assume the

q = V (ρ)ρ

where V (ρ) is the local traffic speed.
I V (ρ) is a decreasing function, the simplest choice being

V (ρ)ρ = mρ(n − ρ)

where m and n are constants.
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By scaling ρ and x we obtain the normalised conservation law

ut + f (u)x = 0

where
f (u) = u(1− u).

Hence f ′′(u) = −2 < 0 , so

f ′(u`) > f ′(ur )

implies that at an admissible discontinuity

u` < ur .
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Example: Consider the traffic flow problem with

u(x , 0) = u0(x) =

{
3/4 x < 0
1/4 x > 0

Then the admissible solution is

u(x , t) =


3/4 x ≤ −t/2

1/2− x/2t −t/2 < x < t/2
1/4 x ≥ t/2
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Some comments on the traffic problem

I Flux is maximum at density u = 1/2.

I At density u = 1 no movement.

Suppose we have uniform density, but then the flow hits a red
light:
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