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Traffic problem



Traffic flow
Recall the traffic flow problem:
us+ f(u)x =0 where f(u) = u(1 — u).
Uniform flow being stopped at x = 0 and t > 0 by a red light leads

to IVP/BVP:
u(0,t) =1, u(x,0) = uy.
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Traffic continued

Now suppose light turns green at ty > 0 giving initial value
problem for t > ty and x € R with

up  if x < ag
u(x,tp) =9 1 ifag<x<0
0 ifx>0,

where ag is the position of the shock on previous slide at time tg.
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Weak solutions



Classical solutions

v

A more formal approach to the concept of discontinuous
solutions leads to weak solutions.

v

Consider again the conservation law

ur + f(u)x =0, xeR,t>0,

u(x,0) = up(x), x € R. (1)

v

A smooth solution u satisfying the above equation is called a
classical solution.

We show next how to obtain weak solutions of the above
equations.

v



Test functions

Let v € CFnn(R, [0,00)) where C50(R, [0, 00)) is the set of

comp comp
infinitely smooth functions with compact support, i.e.

suppv C {(x,t) : t € [0, T],x € (a, b), a, b € R}.
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infinitely smooth functions with compact support, i.e.
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Testing (1) with v and integrating by parts gives

0:/ /utv—i—f(u)xvdxdt
o JR

:_/Ruo(x)v(x,O)dx—/ooo /R(uvt—i—f(u)vx)dxdt.
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We say that u is a weak solution of (1) if
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Weak solutions

We say that u is a weak solution of (1) if

/000 /R(uvt—kf(u)vx)dxdt = —/Ruo(x)v(x,O)dx7 Vv € Comp:
(2)

» Any classical solution of (1) also satisfies (2).

> Any solution of (2) that's sufficiently smooth is a classical
solution of (1).

» However, a weak solution can be much less smooth and in
that sense generalises the notion of a solution.

» Does the weak solution satisfy the jump condition?



Jump condition
Consider the situation (x-t space):

A

with the curve separating D1 and Dy given by

x = y(t)
and hence the exterior normal to D; on y(t) by
_ (_lay/(t))

V1i+ty (6?2



Jump condition ctd.

We assume that v is smooth except with a jump across the
boundary I' = y(t) separating D; and D5.
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Jump condition ctd.

We assume that v is smooth except with a jump across the
boundary I' = y(t) separating D; and D5.

Let v be compactly supported in D, then using the divergence
theorem and since u is a solution inside Dy and D;:

0://D(uvt+f(u)vx)dxdt
://Dl(UVt+ f(u)vx)dxdt—l—//D2(uvt+f(u)vx)dxdt
_ //Dl(utJrf(u)X)v)dxdt//D2(ut+f(u)x)vdxdt
+ [ vty (0) = Pl — [ vury'(6) = F(u)e
~ [ vy ) - (et

Hence

0= [uly'(t) = [f(v)] = sl[u] =[f(u)].
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Equal-Area Principle
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Equal-Area Principle

Equal-area principle gives a simple two-step recipe for constructing
a shock path.
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Equal-Area Principle

Equal-area principle gives a simple two-step recipe for constructing
a shock path.

> First follow the characteristics allowing for multivalued
solutions (all figures taken from Logan):

Timet=0 Time ¢ profite

wglx}
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Equal-Area Principle ctd.

» The location of the shock z = y(t) at time t is the position at

which a vertical line cuts off equal area lobes of the
multivalued wavelet:

uglx)

Multivalued
wave form
att>e,
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Equal-Area Principle ctd.
» Why does this work?
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Equal-Area Principle ctd.

» Why does this work?
» Any horizontal line segment PQ at t = 0 has the same length
as P'Q’ at time t because points on the wave at the same

height u move at the same speed c(u) = f’(u) so that the
area under a curve segment remains constant:

feq

[ L A -—=d
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Exercise

As a trivial example of the principle consider

1 x<0

us + uuy =0, u(X,O):{0 >0

and compute the solution at t = 1.
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