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Traffic flow
Recall the traffic flow problem:

ut + f (u)x = 0 where f (u) = u(1− u).

Uniform flow being stopped at x = 0 and t > 0 by a red light leads
to IVP/BVP:

u(0, t) = 1, u(x , 0) = u`.
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Traffic continued
Now suppose light turns green at t0 > 0 giving initial value
problem for t > t0 and x ∈ R with

u(x , t0) =


u` if x < a0

1 if a0 < x < 0
0 if x > 0,

where a0 is the position of the shock on previous slide at time t0.
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Classical solutions

I A more formal approach to the concept of discontinuous
solutions leads to weak solutions.

I Consider again the conservation law

ut + f (u)x = 0, x ∈ R, t > 0,

u(x , 0) = u0(x), x ∈ R.
(1)

I A smooth solution u satisfying the above equation is called a
classical solution.

I We show next how to obtain weak solutions of the above
equations.
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Test functions

Let v ∈ C∞
comp(R, [0,∞)) where C∞

comp(R, [0,∞)) is the set of
infinitely smooth functions with compact support, i.e.

supp v ⊂ {(x , t) : t ∈ [0,T ], x ∈ (a, b), a, b ∈ R}.

Testing (1) with v and integrating by parts gives

0 =

∫ ∞

0

∫
R
utv + f (u)xvdxdt

= −
∫
R
u0(x)v(x , 0)dx −

∫ ∞

0

∫
R

(uvt + f (u)vx)dxdt.
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Weak solutions

We say that u is a weak solution of (1) if∫ ∞

0

∫
R

(uvt+f (u)vx)dxdt = −
∫
R
u0(x)v(x , 0)dx , ∀v ∈ C∞

comp.

(2)

I Any classical solution of (1) also satisfies (2).

I Any solution of (2) that’s sufficiently smooth is a classical
solution of (1).

I However, a weak solution can be much less smooth and in
that sense generalises the notion of a solution.

I Does the weak solution satisfy the jump condition?

8



Weak solutions

We say that u is a weak solution of (1) if∫ ∞

0

∫
R

(uvt+f (u)vx)dxdt = −
∫
R
u0(x)v(x , 0)dx , ∀v ∈ C∞

comp.

(2)

I Any classical solution of (1) also satisfies (2).

I Any solution of (2) that’s sufficiently smooth is a classical
solution of (1).

I However, a weak solution can be much less smooth and in
that sense generalises the notion of a solution.

I Does the weak solution satisfy the jump condition?

8



Weak solutions

We say that u is a weak solution of (1) if∫ ∞

0

∫
R

(uvt+f (u)vx)dxdt = −
∫
R
u0(x)v(x , 0)dx , ∀v ∈ C∞

comp.

(2)

I Any classical solution of (1) also satisfies (2).

I Any solution of (2) that’s sufficiently smooth is a classical
solution of (1).

I However, a weak solution can be much less smooth and in
that sense generalises the notion of a solution.

I Does the weak solution satisfy the jump condition?

8



Weak solutions

We say that u is a weak solution of (1) if∫ ∞

0

∫
R

(uvt+f (u)vx)dxdt = −
∫
R
u0(x)v(x , 0)dx , ∀v ∈ C∞

comp.

(2)

I Any classical solution of (1) also satisfies (2).

I Any solution of (2) that’s sufficiently smooth is a classical
solution of (1).

I However, a weak solution can be much less smooth and in
that sense generalises the notion of a solution.

I Does the weak solution satisfy the jump condition?

8



Weak solutions

We say that u is a weak solution of (1) if∫ ∞

0

∫
R

(uvt+f (u)vx)dxdt = −
∫
R
u0(x)v(x , 0)dx , ∀v ∈ C∞

comp.

(2)

I Any classical solution of (1) also satisfies (2).

I Any solution of (2) that’s sufficiently smooth is a classical
solution of (1).

I However, a weak solution can be much less smooth and in
that sense generalises the notion of a solution.

I Does the weak solution satisfy the jump condition?

8



Jump condition
Consider the situation (x-t space):

D
D

D

1
2

with the curve separating D1 and D2 given by

x = y(t)

and hence the exterior normal to D1 on y(t) by

ν =
(−1, y ′(t))√

1 + y ′(t)2
.
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Jump condition ctd.
We assume that u is smooth except with a jump across the
boundary Γ = y(t) separating D1 and D2.

Let v be compactly supported in D, then using the divergence
theorem and since u is a solution inside D1 and D2:

0 =

∫ ∫
D

(uvt + f (u)vx)dxdt

=

∫ ∫
D1

(uvt + f (u)vx)dxdt +

∫ ∫
D2

(uvt + f (u)vx)dxdt

= −
∫ ∫

D1

(ut + f (u)x)v)dxdt −
∫ ∫

D2

(ut + f (u)x)vdxdt

+

∫
Γ
v(u`y

′(t)− f (u`))dt −
∫

Γ
v(ury

′(t)− f (ur ))dt

=

∫
Γ
v([u]y ′(t)− [f (u)])dt.

Hence
0 = [u]y ′(t)− [f (u)] =⇒ s[u] = [f (u)].
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Equal-Area Principle

Equal-area principle gives a simple two-step recipe for constructing
a shock path.

I First follow the characteristics allowing for multivalued
solutions (all figures taken from Logan):
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Equal-Area Principle ctd.

I The location of the shock z = y(t) at time t is the position at
which a vertical line cuts off equal area lobes of the
multivalued wavelet:
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Equal-Area Principle ctd.
I Why does this work?

I Any horizontal line segment PQ at t = 0 has the same length
as P ′Q ′ at time t because points on the wave at the same
height u move at the same speed c(u) = f ′(u) so that the
area under a curve segment remains constant:
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Exercise

As a trivial example of the principle consider

ut + uux = 0, u(x , 0) =

{
1 x < 0
0 x > 0

and compute the solution at t = 1.
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