
The Word Problem in the Chomsky Hierarchy

Sarah Rees,
,

University of Newcastle

Les Diablerets, March 8th-12th 2010

1

Abstract

I shall talk about the word problem for groups, and how hard it is to solve
it. I’ll view the word problem of G = 〈X〉 as the recognition of the set
WP(G,X) of words over X that represent the identity, and look to relate
properties of G to the complexity of WP(G,X) as a formal language, that
is to the complexity of the Turing machine (model of computation) needed
to recognise that set. I’ll start by introducing the basic formal language
theory that we need.

An elementary result identifies a group as finite precisely if its word problem
is a regular language (recognised by a finite state automaton). A well
known result of Muller and Schupp proves a group to be virtually free
precisely if its word problem is context-free (recognised by a pushdown
automaton), while Thomas and Herbst classify virtually cyclic groups using

one counter automata. So at this bottom end of the Chomsky hierarchy
we have complete classification results. I shall survey these briefly.

Many more groups are admitted if the word problem is allowed to be
co-context-free, such as abelian groups, but no nilpotent groups that are
not virtually abelian, various wreath product groups and the Houghton
groups. I shall report on various results by myself, Holt, Röver, Thomas,
Lehnert and Schweitzer, and the techniques used to achieve them.

Many groups can be shown to have word problem that is soluble in linear
space, and hence context-sensitive. In a second lecture I shall look at this
class of groups, and at the subclasses with word problem that is growing
context-sensitive or can be solved on a real-time Turing machine. In
particular I’ll examine Dehn’s linear time algorithm for hyperbolic groups,
which is growing context-sensitive, and can actually be programmed in real
time. And I’ll examine Cannon’s generalisation of Dehn’s algorithm, which

allows the word problem for nilpotent groups to be solved in real time.
I’ll illustrate with examples of groups in all these classes, and results that
separate the classes, referring to results of myself, Holt, Röver, Goodman,
Shapiro, Kambites and Otto.

Plan for the two lectures

Lecture I Lecture II
Introduction Context-sensitive word problem
Groups with regular word problem Dehn’s algorithm
Context-free word problem Real-time word problem
Indexed word problem Generalising Dehn - Cannon’s algorithm
Co-context-free word problem More on real-time
Co-indexed word problem Growing context-sensitive

The word problem

G = 〈X | R〉

The word problem (Dehn 1912) for G is soluble if there’s a terminating
algorithm that, for any input word w (i.e. any string over
X± := X ∪ X−1) can decide whether or not w =G 1.

w =G 1 ⇐⇒ w =F (X) u1r1u
−1
1 . . . ukrku

−1
k

, ri ∈ R, ui ∈ F (X).

But rhs may be arbitrarily longer than w, so recognition of

WP(G,X) := {w : w =G 1}

may not be easy, and is insoluble in general (Novikov, Boone, 1950’s),
even when R is finite (so G finitely presented).

Dehn solved the word problem for surface groups; his algorithm applies
more generally (to word hyperbolic groups).

How is the word problem solved?

• How much time do we need to solve it?

• How much space do we need to solve it?

• What kind of algorithm do we need?

• What kind of automaton (Turing machine) recognises WP(G,X)?

• What kind of grammar defines WP(G,X), ie what sort of production
rules ξ → η over X± ∪ V construct it from a start symbol s0 ∈ V ?

• How do the answers to these questions relate to the geometry of the
group, combinatorics of its presentation, etc?

NB: When the word problem is soluble, its complexity is independent of
choice of generators, and solution passes to fg subgroups, supergroups of
finite index (‘finite extensions’).

Languages, automata and grammars

A language over A is a set of strings over A. (A∗ for the set of all
strings, ǫ for the empty string.)

An automaton is a device that takes input strings from a tape, and
accepts some of them; the set of strings it accepts is its language, and
is recognised by the automaton.

An automaton might be a finite state automaton (fsa), pushdown au-
tomaton (pda), or some other type of Turing machine(tm).

A grammar over A uses a set P of productions ξ → η, for ξ, η strings
over A ∪ V to construct its language, the set of all strings over A

derivable using P from a start symbol s0 ∈ V .

Correspondences link the types of languages, automata and grammars.

Hierarchy of formal languages

regular
XXXXXXX

�
�

�
�

�
�

�
�

�
��

det. context-free
�

�
��context-free

growing context-sens.
����

indexed
�����������

co-context-free

co-indexed
real-time
@

@
@

@
@@

context-sensitive

recursive

recursively enumerable

Finite state automata�

Nested stack automata -

Pushdown automata -
Det. real-time TM

6

-

Linearly bounded (space) TM -

Halting TM�

Turing machines�

Fitting WP(G,X) into the formal language hierarchy

regular
XXXXXXX

�
�

�
�

�
�

�
�

�
��

det. context-free
�

�
��context-free

growing context-sens.
����

indexed
�����������

co-context-free

co-indexed
real-time
@

@
@

@
@@

context-sensitive

recursive

recursively enumerable

Finite groups�

Virtually free groups -PPPPPPPq

Nondet. Cannon’s alg,

e.g. nilpotent groups,

hyperbolic groups -

e.g. Nilpotent groups,
hyperbolic groups

�

e.g. Abelian gps, ZwrZ, QAut(T2),

Higman-Thompson and Houghton gps
HHHHY

e.g. Grigorchuk group�

e.g. Async. automatic groups�

Soluble word problem�

e.g. Finitely presented groups,
recursively presented groups

�

fsa, regular languages and grammars

A language is regular iff accepted by a finite state automaton (fsa) iff
generated by a regular grammar.

An fsa over A is a finite, directed graph, edges labelled by elements of
A, with a start vertex and some accepting vertices. A word over A is
accepted if it labels a path from the start vertex to an accepting vertex.

A grammar over A is (right)-regular if all of its productions have the form
x → αy or x → α, where x, y ∈ V, α ∈ A∗.

Example:

The set EvenWt of all binary strings containing an even number of
1’s is regular. It’s recognised by an automaton with 2 states. And it’s

�
�

�

z
��
�� z

@@

��

1

��

@@1

��@@
0

��@@0

generated by a grammar with variables s0, s1 and production rules:

s0 → ǫ, s0 → 0s0, s0 → 1s1

s1 → 0s1, s1 → 1s0

Regular word problem

WP(G,X) is regular ⇐⇒ G is finite (Anisimov).

When G is finite, the Cayley graph Γ(G,X) is an fsa over X± accepting
WP(G,X), with 1 as the start and sole accepting vertex.

The corresponding grammar over X± has V = G, s0 = 1, and produc-
tions

x → x, g → x(x−1g)

for each x ∈ X±, and each g ∈ G, g 6= x,
where w denotes the element of G represented by w.

Example:
S3 = 〈a, b | a3 = b2 = 1, ba = a3b〉

a

a

aa
aa

b

b b

pda, context-free languages and grammars

A language is context-free (cf) iff accepted by a pushdown automaton
(pda) iff generated by a context-free grammar.

A pda over A consists of a fsa with attached stack as additional memory.
A move is determined by symbols read from both input string and top of
stack. Then a string of any length may be added at the top of the stack.

Example:

The set Balanced of all binary strings with equal numbers of 0’s and
1’s is context-free.

It’s recognised by a pda with 3 states that record whether more 0’s, more
1’s or equal numbers of 0’s and 1’s have been read. The stack counts the
difference.

A grammar over A is context-free if all of its productions have the form
x → ξ, x ∈ V, ξ ∈ (A ∪ V)∗.

Balanced is defined by a grammar with one variable s0, and production
rules

s0 → ǫ s0 → s001 s0 → s010

s0 → 0s01 s0 → 1s00

s0 → 01s0 s0 → 10s0

A context-free grammar is in Chomsky form if all productions have the
form x → yz or x → a, where x, y, z ∈ V , a ∈ A. Additionally s0 → ǫ

is allowed if s0 is never in a rhs. Every cf language can be generated
(inefficiently) by a grammar in Chomsky form.

Solving WP(G) on a pda for G virtually free

Free reduction of a word over free generators in Fn can be done on a
pda. For virtually free groups, we need states too.

Where G = 〈X〉 contains 〈Y 〉, free on Y , with T a finite transversal for
that containing 1, the Reidemeister Schreier process provides rewrite rules

txδ → ut′, x ∈ X, δ = ±1, t, t′ ∈ T, u ∈ (Y ±)∗

Using these rules any input word w over X can be rewritten from the left
to the form vt, v a word over Y , t ∈ T .

During the rewrite process, we can use the states of a pda to keep track
of the transversal element, a stack to ensure that the word over Y is freely
reduced. In that case

w =G 1 ⇐⇒ (v = ǫ and t = 1)

a
a��

a��a a aHHa
A
Aa
a

a
A
AaHHa a a��a��

a

Theorem (Muller,Schupp,1983)
WP(G,X) is context-free ⇐⇒ G is virtually free.

Proof:

(1) WP(G,X) is generated by grammar in Chomsky form, where each rule
has the form α → βγ, α → a, or s0 → ǫ. So any loop in the Cayley
graph has a diagonal triangulation whose chords have bounded length. (In
particular this implies G is finitely presented.)

(2) If infinite, the Cayley graph is disconnected by deletion of a ball of
bounded radius, and so has more than one end.

(3) Stallings’ ends theorem allows decomposition of G.

If G is torsion-free, then
either G ∼= Z

or G ∼= H ∗ K, H,K f.g., and of lower rank (Gruschko). In this case
H,K ∈ CF , so we finish by induction.

If G has torsion, then
G ∼= H ∗A K or H∗A,φ, with finite subgroup A; then we can finish proof
by induction, using accessibility of fp groups (Dunwoody, 1985).

Adding non-determinisism to a pda

Allowing non-determinism (a choice of moves for some input strings) in-
creases the power of a pda, i.e. dcf (cf.

Example: the set of all palindromes can only be accepted by a non-
deterministic pda.

We’ll call the classes of groups with context-free and deterministic context-
free word problems CF and DCF .

Since the pda described above to solve WP(G) for G virtually free is
deterministic, Muller and Schupp’s result proves that

CF = DCF ,

i.e. for pda recognising the word problem, non-determinism doesn’t add
any power.

One-counter languages and automata

A pda is a one-counter automaton if the stack alphabet contains just one
element. The language it accepts is called a one-counter language.

Theorem (Thomas, Herbst)
WP(G) is a one-counter language ⇐⇒ G is virtually cyclic.

We see that the classification of the word problem for regular, context-free
and one-counter languages is complete.

Beyond context-free languages we know much less!

Indexed languages and nested stack automata

A language is indexed iff accepted by a nested stack automaton iff
generated by an indexed grammar.

A nested stack automaton is an fsa with attached nested stack.

• Reading is allowed throughout a stack, writing only at the top.

• A new stack may be created, and entered, anywhere, in any stack. But
once a stack is exited to move back to its parent, its contents are lost.

The set {anbncn : n ∈ N} is indexed. So is the set of paths in Z2 closest
to the straight line in R2 from 0 to x ∈ Z2 (Bridson,Gilman,1996).

It is conjectured that there are no groups in Ind \ CF .
Evidence: WP(G) accepted by a deterministic nested stack automaton
with limited erasing + G accessible ⇒ G ∈ CF (Gilman,Shapiro,preprint).

Complementing context-free languages

The set of deterministic context-free languages is closed under comple-
mentation (dcf=co-dcf). But the set of context-free languages is not.

We’ll call a group co-context-free (coCF) if the complement of its word
problem (its coword problem, coWP) is context-free.

Qn: Which groups are in coCF ?

What follows is joint work of myself with Holt, Röver and Thomas (2005).

Elementary results for coCF groups

dcf=co-dcf ⇒ DCF= coDCF . Combining this with DCF= CF gives

CF ⊆ coCF

NB: If G ∈ coCF \ CF then coWP(G) must be non-deterministically cf.

The following shows that coCF \ CF 6= ∅.

Example:
Z2 = 〈a, b | ab = ba〉 ∈ coCF \ CF .

w = w(a, b) is non-trivial ⇐⇒ either (or both) of its projections onto
〈a〉 or 〈b〉 is non-trivial.

Hence coWP(Z2) is solved by a non-deterministic automaton that first
chooses which of a and b to project onto and then decides using a pda

whether or not that projection is non-trivial.

The same argument as for Z2 shows that

• a direct product of any finite number of coCF groups is coCF .

Using standard arguments we show that

• membership of a group in coCF is independent of the choice of gener-
ating set,

• coCF is closed under passage to finitely generated subgroups, finite ex-
tension.

In particular we notice that finitely generated subgroups of direct products
of free and virtually free groups are in coCF .

We conjecture that coCF is not closed under free products, and that Z2∗Z

is outside coCF .

Decision problems in coCF

We can solve the word problem in cubic time in any coCF group (standard
result for membership of context-free languages).

By Miller, ∃ f.g. H ⊆ F2 × F2 with insoluble conjugacy problem and
insoluble generalised word problem.

We know that H ∈ coCF .

Hence we see that the conjugacy problem and generalised word problem
are not in general soluble within coCF .

Another operation within coCF

Theorem (Röver,2005) For G ∈ coCF , H ∈ CF the standard re-
stricted wreath product G ≀ H is in coCF .

Proof: Let w = v1u1v2u2 . . . unvn+1 be input, where G = 〈X〉, H =
〈Y 〉, ui, vi words over X,Y .
W = G ≀ H can be expressed as a semidirect product

(
∏

h∈H

Gh) >�H

So any element has a unique representation as a product
m∏

j=1

(g
hj

hj
)h, each gj ∈ G, hj, h ∈ H,

We test w 6=W 1 by identifying and checking its components in this rep.

We test non-deterministically.

Either (1) we check if h 6=H 1,
or (2) we randomly select v ∈ (Y ±)∗, and check if gv 6=G 1.

Within the free group F (X ∪ Y), w can be collected into the form

u
z1
1 . . . uzn

n v′, where z−1
1 =F v1, z

−1
2 =F v1v2, . . . , z

−1
n =F v1 . . . vn

and we can identify h as the element of H represented by v′, and for each
v ∈ H , gv

v as the product of those conjugates u
zj

j for which zj =H v.

We use a pda M that functions variously as the pda for WP(H), coWP(H)
and coWP(G).

M combines the states and transitions functions of 3 pda.

To test (1) that h 6=H 1,

• M reads w ignoring symbols from X, and passes the symbols it reads
from Y to M

coWP(H).

To test (2) that gv 6= 1, for randomly selected v:

• Initially M passes randomly selected v to M
WP(H).

• Symbols from Y are input to M acting as M
WP(H) as they are read.

• Symbols from X are input to M operating as M
coWP(G) provided that

last report from M
WP(H) was ‘identity input’, but are otherwise ignored.

The X-word that is processed is the product of those ui with zi =F v.

coCF contains groups outside fp

Röver’s result shows that coCF contains Z ≀ Z, which is not in fp.

For a while we conjectured that coCF consisted only of finite generated
subgroups of groups virtually built using direct products, restricted wreath
products.

But we were wrong

Some new examples

Theorem (Lehnert, Schweitzer, 2007) The Higman-Thompson
groups Gn,r are in coCF .

Theorem (Lehnert, Schweitzer, 2007) The Houghton groups Hn

are in coCF for n ≥ 2.

Theorem (Lehnert, 2008 thesis) The group QAut(T2) of quasi-
automorphisms of the rooted edge-labelled binary tree is in coCF .

These groups are outside the class of groups built from free groups by
the operations we have so far shown keep us in coCF . But the set of fg
subgroups of QAut(T2) is closed under all these operations.

Conjecture (Lehnert, Schweitzer) coCF is the set of all fg sub-
groups of QAut(T2).

More on these new examples

A quasi-automorphism of a graph Γ = (V,E) is a permutation of V that
fails to preserve at most finitely many adjacencies of Γ.

Higman-Thompson groups and Houghton groups embed as fg subgroups
of QAut(T2) (Lehnert, Röver). So the third theorem ⇒ the first two.

Where N0 is the graph (N∪ {0}, {{i, i + 1}}), and ∗n
0 is the star formed

from n copies of N0 by identifying the vertices labelled 0, Hn can be
defined as the subgroup of QAut(∗n

0) that induces the identity on the set
of n semi-infinite rays of ∗n

0 , has finite index in QAut(∗n
0).

Further interest:

Gn,r and Hn were shown in 2006 to be in coInd (Holt,Röver), had been
conjectured to separate coInd from coCF .

Proof that QAut(T2) ∈ coCF

The basic components.

• For any cf language L, the language Lo of all cyclic permutations of
words in L is also cf (Maslo, 1973).

• for some generating set X of QAut(T2) a word w over X is non-trivial
iff a cyclic permutation of w moves some vertex in the subtree of depth
4 of T2.

• WP(QAut(T2), X) = Lo, where L is the language of words over X that
move some vertex in the subtree of depth at most 4.

• L is context-free.

Which groups cannot be in coCF ?

How is a set proved not-context-free?

Pumping Lemma for CF languages

If L is context-free, then ∃n such that, for any z ∈ L with |z| > n,

∃u, v, w, x, y, z = uvwxy, |uvxy| ≤ n, |vx| ≥ 1, and∀i ≥ 0, uviwxiy ∈ L.

Parikh’s lemma

If L′ ⊂ w∗
1w

∗
2 . . . w∗

k is context-free then the set L, defined by

L := {(n1, . . . nk) ∈ Nk
0 : w

n1
1 w

n2
2 . . . w

nk
k

∈ L}, N0 = N ∪ {0}

is a finite union of sets Li,

where Li = ci + 〈pi1, pi2, . . . piji〉N0
= ci + 〈Pi〉N0

, ci, pij ∈ Nk
0 .

Some negative results

Theorem (HRRT, 2005)

A finitely generated nilpotent group has context-free co-word problem iff
it is virtually abelian.

Theorem (HRRT,2005)

A Baumslag-Solitar group G = 〈x, y | y−1xpy = xq〉 has context-free
co-word-problem iff it is virtually abelian (i.e. if p = ±q).

Theorem (HRRT,2005)

A polycyclic group has context-free co-word problem iff it is virtually
abelian.

Groups with co-indexed word problem

Theorem (Holt,Röver, 2006)

• For all r ≥ 1, n ≥ 2 the Higman-Thompson groups Gn,r are in coInd ;
in fact they are ‘stack groups’ (use of stack is restricted); the first fact is
a consequence of Lehnert and Schweitzer’s 2007 result, but the second
is not.

• The Grigorchuk group is in coInd , as is every fg bounded automata
group.

• coInd is closed under finite direct products, fg subgroups, finite exten-
sions, restricted wreath product with top group in CF .

• a free product of stack groups is a stack group.

Open problems

• Are CF and Ind equal?

• Is coCF equal to the set of fg subgroups of QAut(T2) (Lehnert, Schweitzer)?

• Is coCF closed under free products? We think not, suspect that Z2 ∗Z

is not in coCF .

• Are coCF and coInd equal?

• Is the Grigorchuk group in coCF ?

• Is every group in coInd actually a stack group?

The word problem in the Chomsky hierarchy, II

Context-sensitive word problem

Hopcroft and Ullman claim that

‘Almost any language one can think of is context-sensitive.’

This is certainly a large class, and for instance it contains linear time.

It contains all the classes we’ve looked at so far....

Recap: Fitting WP(G,X) into the formal language hierarchy

regular
XXXXXXX

�
�

�
�

�
�

�
�

�
��

det. context-free
�

�
��context-free

growing context-sens.
����

indexed
�����������

co-context-free

co-indexed
real-time
@

@
@

@
@@

context-sensitive

recursive

recursively enumerable

Finite groups�

Virtually free groups -PPPPPPPq

Nondet. Cannon’s alg,

e.g. nilpotent groups,

hyperbolic groups -

e.g. Nilpotent groups,
hyperbolic groups

�

e.g. Abelian gps, ZwrZ, QAut(T2),

Higman-Thompson and Houghton gps
HHHHY

e.g. Grigorchuk group�

e.g. Async. automatic groups�

Soluble word problem�

e.g. Finitely presented groups,
recursively presented groups

�

Plan for today’s lecture

Context-sensitive word problem

Dehn’s algorithm

Real-time word problem

Generalising Dehn - Cannon’s algorithm

More on real-time

Growing context-sensitive

Linearly bounded tm, context-sensitive languages and gram-
mars

A language is context-sensitive (cs) iff accepted by a non-det tm with
linearly bounded memory, iff generated by a context-sensitive grammar.

(Technically speaking a cs language can’t contain ǫ, but the language of
a linearly bounded tm can.)

A grammar over A is cs if all of its productions have the form ξ → η,
ξ, η ∈ (A ∪ V)∗, |η| ≥ |ξ|, ξ 6∈ A∗.

Membership of a CS language is PSPACE complete, and not in general
soluble in polynomial time.

The complement of a context-sensitive language is also context-sensitive.
It is open whether CS=DCS .

Groups with context-sensitive word problem

If G is asynchronously automatic, or even if G has a cs asynchronous
combing with length and departure function, then G ∈ DCS (Shapiro,1994).

Hence DCS contains Coxeter groups, Baumslag-Solitar groups, Fn >�Fm,
Artin groups of spherical, large, or right-angled type, π1(M), M a com-
pact 3-manifold.

For G asynchronously combable (Gersten,1992), almost convex (Riley,2002),
or fg nilpotent (Holt,Riley),

∀w ∈ WP (G),∃chain w → w1 → · · · → wn → ǫ, |wi| < c|w|, ∀i,

(i.e. the groups have linear filling length). So all these groups are in CS .

CS is closed under free and direct products and finite extension (Lakin,
thesis 2001).

Dehn’s algorithm to solve the word problem

But in particular, Dehn’s algorithm to solve the word problem in surface
groups runs in linear time, and so is in DCS .

Input word is reduced by string substitution using finitely many length
reducing rules

u1 → v1, u2 → v2, . . . , un → vn

over X±, reduces to ǫ iff trivial. We can find rules like this if G has a
Dehn presentation, that is, a presentation

〈X | R〉.

for which any w ∈ W (G,X) either freely reduces or contains more than
half of an element of R as a subword. We get rules xx−1 → ǫ for free
reduction, and rules u → v for each relator uv−1 (or its conjugate or
inverse).

Example:
G = 〈a, b, c, d | ABabCDcd〉

The standard presentation of a surface group is a Dehn presentation.

We reduce DCddcBAbaDBAba as follows

DCddcBAbaDBAba → DCdcdAaDBAba → DCdcBAba

→ ABaAba → ǫ.

Notice that we need to backtrack, i.e. that the third reduction is further
left in the word than the first two.

We can program Dehn’s algorithm on a fairly straightforward machine
with two stacks (one for input, one for output) and a ‘read window’.

N := max length of a lhs of a rule.

Put w on input stack,

Read letters one by one from input to output until last N symbols of
output stack contain lhs of a rule u → v.

Delete u from output, add v to input, and continue reading from input
stack.

If both stacks are empty, w represents the identity.

Total time depends on number of reductions (≤ n), and number of sym-
bols read from input stack, so is linear in n.

Some words provoke a lot of backtracking

| DCdcaDCddcBAAbaDCdcBbaDCcBAbBAba

DCdcaDCddcBAAbaDC dcBbaDCcBAbBAba

AbaDC → bCD

DCdcaDC ddcBA bCDdcBbaDCcBAbBAba

DCdcaDCddcBAb CDdcBbaDCcBAbBAba

dcBAb → cdA

DCdcaDCd cdACDdcBbaDCcBAbBAba

DCdcaDCdc dACDdcBbaDCcBAbBAba

aDCdc → Bab

DCdc BabdACDdcBbaDCcBAbBAba

DCdcB abdACDdcBbaDCcBAbBAba

DCdcB → ABa

| ABaabdACDdcBbaDCcBAbBAba

A sequence of free reductions finishes the reduction.

| |

But in fact backtracking is under control . . .

Theorem (Holt,2000) Dehn’s algorithm for a hyperbolic group can
be run on a Turing machine that operates deterministically in real-time.

Equivalently the word problem for a hyperbolic group is a real-time lan-
guage.

Intro. to real-time

We define a real-time Turing machine (Rtm) to be a deterministic
tm with finitely many doubly-infinite tapes, one containing the input as
a string of consecutive symbols, where

• input is read once from left to right,

• processing of input is completed in the move in which last symbol is
read,

• in a single move, one symbol is read from the input, and there may be
one operation on each other tape (a symbol may be read, a new symbol
written, the tape head shifted at most one position).

Clearly real-time languages are recognised in linear time, and so are context-
sensitive.

Example: {an! : n ∈ N} is recognised on a Rtm with 3 work tapes.
(This isn’t indexed.)

We recognise an! recursively.

Suppose we can recognise ak! and then have a(k−1)! on T1, T2, and ak

on T3. Now we want to recognise the remainder of a(k+1)! and update
tapes T1-T3 to analogous configurations.

Now (k + 1)! = k! + k! + (k − 1)k!.

We recognise a second ak! by traversing T1 k times (using T3 to count
to k). On the first pass we move right on T2, and on further passes write
to T2, as we read, so that ultimately this contains ak!.

We recognise the remaining (k− 1)k! by traversing T3 k− 1 times (using
T3 to count to k−1). As we do this we copy T2 to T1 so that ultimately
this contains ak!.

Non-example: {0k110k21 . . . 0kr12s0k
r−s : ki ≥ 1, s ≤ r} is not in

RT, but is in dcf.

For any language in RT we must have at most ck equivalence classes for
the relation Ek defined by

xEky ⇐⇒ (|z| ≤ k ⇒ (xz ∈ L ⇐⇒ yz ∈ L)),

For this example, the number of equivalence classes > ck for all c.

Unusual feature of RT: It’s closed under Boolean operations.

Hyperbolic groups have real-time word problem

Crucial observation: Dehn’s algorithm reduces any input word w to a k-
local geodesic, where k is max length of a lhs. In a hyperbolic group,
a k-local geodesic is quasigeodesic, so at most K times longer than a
geodesic.

The machinery

We run Dehn’s algorithm on a Rtm with 4 work tapes T1–T4, two mov-
able RW heads H1, H2, which delete after reading. It’s convenient to
allow M > 1 moves per work tape between inputs.

• T1 stores reduced output. The suffix of length k is visible.

• T2 holds the right hand sides of rules after reductions.

• T3, T4 are used alternately to store input symbols read while processing.

• H1 reads symbols at a slow, constant rate from the input tape to the
right hand end of one of T1,T3,T4.

• H2 reads symbols rapidly from the left hand end of one of T2,T3,T4
to the right hand end of T1, unless all three are empty. When H2 is
operational, it reads many (cK) symbols between 2 readings of H1.

The algorithm

Initially H1 is set to write to T1,and T2,T3,T4 are empty.

After a symbol is read to T1:

if T1 contains the lhs of a rule u → v at its right hand end,
u is deleted from T1, v is written onto the left hand end of T2,
H1 is set to write to T3 if that is non-empty, otherwise to T4,
H2 is set to read from T2.

if T2 is empty,
if T3 is non-empty & H1 is set to write to T4, H2 set to read from T3,
else if T4 is non-empty & H1 is set to write to T3, H2 set to read from
T4,
else H2 is set to read from input.

Groups with real-time word problem

In the algorithm above, the Rtm is ‘tidy’ after accepting an input, so in
fact hyperbolic groups have ‘tidy real-time’ (tRT) word problem.

Proposition (Holt,Rees) If WP(G), WP(H) are in RT (tRT) then so
are

• fin. gen. subgroups of G,

• groups in which G has fin. index,

• quotients of G by finite normal subgroups,

•G × H ,

If WP(G), WP(H) are in tRT then so are G∗H and, for finite K, G∗K H

and G∗K .

Generalising Dehn

Work due to Goodman and Shapiro, which develops an idea due to Can-
non, generalises Dehn’s algorithm to give a deterministic linear time so-
lution to the word problem for many non-hyperbolic groups, including all
virtually nilpotent groups.

To see how it works, we look at why Dehn’s algorithm fails for Z2.

Dehn’s algorithm fails for Z2

We usually solve the word problem in

Z2 = 〈a, b | ba = ab〉

by reducing an input word using free reduction together with the rules

ba → ab, b−1a → ab−1, ba−1 → a−1b, b−1a−1 → a−1b−1.

This isn’t Dehn’s algorithm because the rules don’t reduce length. The
algorithm is quadratic, not linear.

Although rules such as bab−1 → a are length reducing, we cannot find
finitely many of those to handle all non-reduced words in Z2.

We need to be able to reduce words of the form

bnanb−na−n for all n

.

Fixing Dehn’s algorithm for Z2

Cannon’s generalisation of Dehn’s algorithm can solve the word problem
for Z2 in linear time using the injective homomorphism

φ : Z2 → Z2, defined by φ(a) = a4, φ(b) = b4.

We denote φ(a) by tat−1, φ(b) by tbt−1, i.e. embed Z2 in the HNN
extension Z2 ∗Z2 φ, t

Then we can solve the word problem in Z2, rewriting words of Z2 within
the larger groups, and using the rules like

a4 → tat−1, b4 → tbt−1, a−4 → ta−1t−1, b−4 → tb−1t−1

as well as baib−1 → ai, b−1aib → ai, abia−1 → bi, a−1bia → bi,

for |i| ≤ 3, and free reduction.

Example: Reduction of b12a12b−12a−12

• 3 applications of each of the first 4 rules (a4 → tat−1 etc) reduce input
word to

tb3t−1ta3t−1tb−3t−1ta−3t−1,

• then free reduction reduces that to

tb3a3b−3a−3t−1,

• then 3 applications of ba3b−1 → a3 reduces that to

ta3a−3t−1,

• and free reduction reduces that to ǫ.

Cannon’s algorithm:

• Length reducing rules u → v may contain symbols outside X ∪ X−1.

• A rule might be anchored (apply only at beginning/end of word).

• Where there is a choice of rules to apply, the rule is used which finishes
earliest and then is as long as poss. So the algorithm is deterministic
and R(uv) = R(R(u)v).

Theorem (Goodman, Shapiro,2008) WP(G) can be solved deter-
ministically in linear time for G nilpotent, G = π1(M) for M a geom.
finite hyperbolic manifold, or G hyperbolic relative to nice subgroups.

Expanding homomorphisms allow construction of appropriate rules in nilpo-
tent groups, and combining this with use of negative curvature allows
construction of rules in relatively hyperbolic groups.

More groups with real-time word problem

Theorem (Holt,Rees) If G is hyperbolic, virtually nilpotent or geo-
metrically finite hyperbolic, it has tidy real-time word problem.

Proof:

We use the algorithm we described for hyperbolic groups. It works for
these groups because the Dehn algorithm R admits a non-zero function
f : N → N bounding below the geodesic length of any word w ∈ X∗ for
which R(w) has length n.

Groups not admitting Cannon’s algorithm

If G satisfies certain conditions on the growth of a pair of commuting
subsets then it cannot admit Cannon’s algorithm.

Theorem (Goodman, Shapiro,2008)

Suppose that, for each n ≥ 0, G contains sets S1(n), S2(n) of elements,
where

(1) each elt of Si(n) can be represented by a word of length n,

(2) each element of S1(n) commutes with each element of S2(n),

(3) either for infinitely many n, each i, |Si(n)| ≥ α0α
n
1 ,

or for all but finitely many n |S1(n)| ≥ α0α
n
1 while |S2(n)| ≥ α2n,

then G can’t admit Cannon’s algorithm.

In particular, the theorem covers

•F2 × Z,
• braid groups Bn for n ≥ 3,
• Thompson’s group F ,
• Baumslag-Solitar groups Bp,q, p 6= ±q,
• π1 of various closed 3-manifolds.

Idea of proof

In such a group admitting Cannon’s algorithm, there must be a pair of
commutators w0, w

′
0, where

w0 = u0v0x0y0 = u0v0u
−1
0 v−1

0 →∗ wt = utvtxtyt,

w′
0 = u′0v

′
0x

′
0y

′
0 = u′0v

′
0u

′−1
0 v′−1

0 →∗ w′
t = u′tv

′
tx

′
ty
′
t,

with v0 = v′0, y0 = y′,vtxtyt = v′tx
′
ty
′
t, but u0 6= u′0

a b c d e f g h i j k l
a b c d m n o p k l
a q r s n o p k l
a q r s t u v l
a w x y u v l
a w x z A B

for which the sequences of rewrites share enough features within sections
of each word that the LH of w0 and the RH of w′

0 can be ‘spliced’, giving
a rewrite to ǫ of the non-identity word

w′′
0 = u0v

−
0 v′+0 x′0y

′
0.

The essential features of a sequence of rewrites are picked out of diagrams
like the one shown. We can splice two diagrams that contain equivalent
‘splitting paths’.

Growing context-sensitive languages and grammars

A context-sensitive grammar is growing context sensitive (gcs) if
all of its rules are strictly length increasing, and s0 is never found in a rhs.
A language is gcs if generated by a gcs grammar.

Membership of any gcs language can be solved in deterministic poly time
(Dahlhaus and Warmuth). Hence, certainly

G ∈ GCS ⇒ WP(G) ∈ Det. Poly Time

Any word hyperbolic group is in GCS ; we have seen that we can construct
the grammar out of Dehn’s algorithm.

Some questions:

• Which groups have gcs word problem?

• Which groups have word problem that is context-sensitive but not gcs?

Some quick answers:

• Groups with Cannon’s algorithm are in GCS

• (Kambites,Otto,2007): Fm × Fn,with m,n > 1, is in CS \ GCS .

But how about F2×Z? Of interest since, if not in gcs, its word problem
would separate gcs from L(OW−auxPDA(poly, log)).

Equivalence of growing context-sensitive and non-det. Can-
non’s algorithm

We define a non-deterministic Cannon’s algorithm for WP(G,X)
be a strictly length reducing rewrite system over an alphabet containing
X±. Rules may be applied in any order,and the algorithm accepts a word
if some (but not necessarily every) order of application of rules reduces it
to the empty word.

Theorem (Holt, Rees, Shapiro,2008) A group admits a non-
deterministic Cannon’s algorithm iff it has growing context sensitive word
problem.

Theorem (Holt, Rees, Shapiro,2008) A group containing com-
muting subsets of elements as in Goodman&Shapiro’s theorem cannot
admit a non-deterministic Cannon’s algorithm.

Hence all of

• Braid groups Bn, n ≥ 3 • Baumslag-Solitar groups Bp,q, p 6= ±q,
• F2 × Z, • π1 of various closed 3-manifolds

have context-sensitive but not growing context-sensitive word problem.

In essence,

• we construct the appropriate grammar by reversing the direction of
rewrites rules to get production rules; we eradicate any anchored pro-
duction rules by duplicating symbols,

• the proof that non-det. Cannon’s algorithm cannot apply given certain
conditions follows the route of Goodman&Shapiro, with some modifi-
cations to technical definitions and counting arguments to deal with
effects of non-determinism.

More open problems

• What is the relationship between GCS and RT?

• Where do hyperbolic groups really belong?

• Are all the examples in CS actually in DCS ?

m

�
�
�
��

HHHHHHHH E R C I !

m

�
�
�
��

HHHHHHHH E R C I !

A u r e v o i r

