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Group identities

Reference ”Algorithmic problems in varieties”, Kharlampovich,
Sapir, IJAC, 4&5, (1995), 379-602.
Definition A variety of groups is a class of groups satisfying an
identity (a law).
Ex. Nc a variety of all nilpotent groups of degree ≤ c . They
satisfy the identity

(x1, x2, . . . , xc+1) = 1,

where (x1, x2) = x−1
1 x−1

2 x1x2.
An a variety of ≤ n solvable groups, in particular, A abelian
groups, A2 metabelian groups.
ZA2 central-metabelian groups

(((x1, x2), (x3, x4)), x5) = 1.

We will talk about finitely presented groups from a variety and
relatively finitely presented groups (finite number of relations plus
the identity).
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Solvable groups

The solvable groups are interesting as far as few things are known
on their behavior up to quasi-isometry.
For polycyclic groups this is still an open question.
In the case of nilpotent groups there is much more information.
First, a consequence of Gromov’s theorem on polynomial growth is
that virtual nilpotency is a geometric property in the class of
groups (we recall that a group is called virtually nilpotent if it has
a nilpotent subgroup of finite index). In nilpotent groups, the
filling order is at most polynomial of degree c + 1, where c is the
class of the group, and it is exactly polynomial of degree c + 1 if
the group is free nilpotent.
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Solvable groups

In the Heisenberg group H3 it was shown by Thurston that the
filling order is cubic (which implies that H3 is not automatic).
Gromov gave an outline of proof that the other Heisenberg groups
H2n+1 have quadratic filling order and Allcock gave the complete
proof by means of symplectic geometry. Olshanskii and Sapir later
gave a combinatorial proof.
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Solvable groups

The property of being virtually solvable is not a geometric property
(Ershler). On the other hand, certain solvable groups are very rigid
with respect to quasi-isometry (Solvable Baumslag-Solitar groups
(Farb, Mosher)). Thurston has shown that the group Sol has exp.
filling order (so it is not automatic). Gersten: BS(1; p) has exp.
filling order. Gromov showed that the semidirect product of Rn

and Rn−1, n ≥ 3, has quadratic filling order. Arzhantseva and Osin
constructed a sequence of discrete nonpolycyclic solvable groups
with filling orders that are at most cubic. Drutu studied the filling
order for Lie solvable groups. The discrete groups she studied are
all polycyclic.
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Word problem

There are two classes of solvable group varieties where the
solvability of the word problem is well known: the varieties of
nilpotent groups and the varieties of metabelian groups.
All nilpotent and metabelian varieties of groups are finitely based.
Every finitely generated nilpotent groups is finitely presented,
representable by matrices over Z and residually finite. This implies
the solvability of the word problem in nilpotent varieties. The word
problem in a nilpotent group is solvable in polynomial time.
Finitely generated groups in the variety A2 are finitely presented in
this variety and residually finite, hence have solvable word problem
(Ph. Hall). The word problem is solvable in polynomial time
because such groups are matrix groups.
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Word problem

1 Determine whether or not the WP is solvable for groups,
relatively finitely presented in the variety An, n ≥ 3 (Mal’cev).
There exists a group relatively f.p. in An, n ≥ 5 with
unsolvable WP (Remeslennikov).
In our terminology, the question is whether the WP is solvable
in the varieties An.

2 Construct a finitely presented group, satisfying a nontrivial
identity, with unsolvable WP (Adian, 74). Constructed by
Kharlampovich, the group belonged to A3 ∪ ZN3A. Then
Baumslag, Gildenhuys and Strebel presented this construction
in terms of matrix groups and repeated it for Lie algebras.

3 Determine whether or not every recursively presented group in
the variety An is embeddable in a relatively finitely presented
group in the variety Am, for some m (Remeslennikov).
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Word problem

Theorem(Kharlampovich, 88). The variety ZN2A has a strongly
undecidable word problem (there exists a f.p. group with
unsolvable word problem that belongs to this variety).
This variety is given by the identity

((((x1, x2), (x3, x4)), (x5, x6)), x7) = 1.

Theorem (Kh, 87) In any subvariety of N2A the WP is solvable.
Theorem (Bieri and Strebel, 80) Every (absolutely) finitely
presented group that belongs to N2A is residually finite.
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Word problem

Theorem (Kh, 93) The varieties ZN2A∩ BpA, (p ≥ 5, prime) are
minimal varieties with unsolvable word problem.
Theorem (Sapir, 92) The varieties ApAqA (p, q, are distinct
primes) are minimal varieties with unsolvable word problem.
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Theorem (Kh) The word problem is solvable in the varieties
N2Nc ∩ ZN2A.
Let Yc be a variety defined in ZN2A by the identity
((x1, . . . , xc+2), (y1, . . . , yc+2), (z1, . . . , zc)) = 1.
Theorem (Kh) The WP is unsolvable in the varieties Yc for any
c ≥ 1.
Notice that, Yc−1 ⊂ N2Nc ∩ ZN2A ⊂ Yc+1.
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Minsky Machines

The hardware of a (two-tape) Minsky machine consists of two
tapes and a head. The tapes are infinite to the right and are
divided into infinitely many cells numbered from the left to the
right, starting with 0. The first cells on both tapes always contain
1, all other cells have 0. The head may acquire one of several
internal states: q0, . . . , qN ; q0 is called the terminal state. At every
moment the head looks at one cell of the first tape and at one cell
of the second tape. So the configuration of the Minsky machine
may be described by the triple (m, qk , n) where m (resp. n) is the
number of the cell observed by the head on the first (resp. second)
tape, qi is the state of the head.
Every command has the following form:

qi , ε, δ −→ qj ,T
α,T β.

where ε, δ ∈ {0, 1}, α, β ∈ {−1, 0, 1}.
The machine always starts working at state q1 and ends at the
terminal state q0.
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Minsky Machines

The program (software) for a Minsky machine is a set of
commands of the above form.
One says that a Minsky machine calculates a function f (m) if for
every m starting at the configuration (m, q1, 0) it ends at the
configuration (f (m), q0, 0). If m does not belong to the domain of
f then the machine works forever and never gets to the terminal
state.

Theorem For every partially recursive function f (m) there exists a
Minsky machine which calculates the partial function
gf : 2m → 2f (m).
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High school definition

Consider two glasses. We assume that these glasses are of infinite
height. Another (more restrictive!) assumption is that we have
infinitely many coins. There are four operations: “Put a coin in a
glass”, “Take a coin from a glass if it is not empty”. We are able
to check if a glass is/isn’t empty. A program is a numbered
sequence of instructions.
An instruction has one of the following forms:

Put a coin in the glass # n and go to instruction # j ;

If the glass # n is not empty then take a coin from this glass
and go to instruction # j otherwise go to instruction # k .

Stop.

A program starts working with the command number 1 and ends
when it comes to the Stop instruction which will always have
number 0. We say that a program calculates a function f (m) if,
starting with m coins in the first glass and empty second glass, we
end up with f (m) coins in the first glass and empty second glass.
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Semigroups

A configuration of a Minsky algorithm is a triple (m, k , n), where
m is the number of coins in the first glass, n is the number of coins
in the second glass, and k is the number of the instruction we are
executing. So the number of an instruction in the algorithm plays
the role of an inner state!
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Semigroups

There are two important semigroup interpretations of Minsky
machines: the semigroups S1 and S2 below. Let M be a Minsky
machine with internal states q0, . . . , qN . Then both S1 and S2 are
generated by the elements q0, . . . , qN and a, b,A,B. The
correspondences between commands of M and relations of S1 and
S2 are given by the following tables. Every command corresponds
to one relation in S1 and one relation in S2.

Olga Kharlampovich (McGill University) Algorithmic problems in solvable groups



Semigroups

Command S1

qi , 0, 0→ qj ,T
α,T β aqib = a1+αqjb

1+β

qi , 1, 0→ qj ,T
α,T β Aqib = Aaαqjb

1+β

qi , 0, 1→ qj ,T
α,T β aqiB = a1+αqjb

βB

qi , 1, 1→ qj ,T
α,T β AqiB = Aaαqjb

βB

(1)
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Semigroups

Command S2

qi , 0, 0→ qj ,T
α,T β qiab = qja

1+αb1+β

qi , 1, 0→ qj ,T
α,T β qiAb = qja

αAb1+β

qi , 0, 1→ qj ,T
α,T β qiaB = qja

1+αbβB

qi , 1, 1→ qj ,T
α,T β qiAB = qja

αAbβB

(2)
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Semigroups

The canonical words in Si are the following:

Configuration S1 S2

(m, qk , n) AamqkbnB qkamAbnB
(3)

To make these interpretations work and to make these semigroups
satisfy as many identities as possible we need also some additional
relations independent of the commands of M.
In the semigroup S2 we need the following commutativity relations:

ab = ba, aB = Ba, bA = Ab, AB = BA. (4)

Also we need all relations of the type

xy = 0

where xy is a two letter word which is not a subword of
w(m, qk , n) for some m, n or of any word obtained from
w(m, qk , n) by the commutativity relations above.
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Semigroups

Thus we have the following additional relations in S1: all two letter
words are equal to 0 except Aa, Aqi , a2, aqi , qib, qiB, b2, bB.
And we have the following additional relations in S2: all two letter
words are equal to 0 except qia, qib, qiA, qiB, a2, aA, ab, aB, ba,
b2, bB, bA, Ab, AB, Ba, BA.
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Semigroups

Lemma 1 If we pass from the configuration ψ = (m, qk , n) to
another configuration ψ1 = (m′, qk ′ , n

′) by a command κ then we
pass from the word w(m, qk , n) to the word w(m′, qk ′ , n

′) by the
relation corresponding to κ.
Let us prove this only for the case of the semigroup S2 and the
command κ : qk , 1, 0→ qk ′ ,T

α,T β. All other cases are similar.
Since the command κ is applicable to the configuration (m, qk , n),
in this configuration, the head observes the first cell on the first
tape and not the first cell on the second tape. Thus m = 0, n 6= 0.
Then m′ = α, n′ = n + β (in this case α can not be negative).
Now w(m, qk , n) = qkbnAB and the relation corresponding to κ is
qkbA = qk ′a

αb1+βA. Since AB = BA and aB = Ba we have
w(m, qk , n) = qkbnAB = qkbAbn−1B. Thus we can apply our
relation and replace qibA by qk ′a

αb1+βA. As a result we obtain
the word qk ′a

αb1+βBbn−1A which is equal to qk ′a
αAbn+βB since

bA = Ab. The last word is equal to w(m′, qk ′ , n
′) as desired.
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Semigroups

Lemma 2 If we can proceed from the word w(ψ1) to the word
w(ψ2) by using relations, then M transforms ψ1 amd ψ2 into the
same configuration.
1. For every canonical word w(m, qk , n) there exists at most one
relation corresponding to a command of M which is applicable to
this word from the left to the right (this means that one replaces
the left hand side of this relation by the right hand side of it).
2. Any application of a relation from tables (1) or (2) to any
canonical word — from the left to the right or from the right to
the left — gives us another canonical word (we do not distinguish
words in S2 which are obtained from each other by the
commutativity relations)
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Groups

We begin with the group G generated by the elements
q0, . . . , qN , a, b,A,B, with defining relations

(a, b) = (a,B) = (A, b) = (A,B) = 1,

where (x , y) denotes the commutator x−1y−1xy , and relations
given by the second table where the product is replaced by the
commutator. The canonical words are also similar
(We have agreed to read the commutator (x , y , z) as ((x , y), z)
and (x , y (n)) as (x , y , . . . , y).):

w(m, qk , n) = (qk , a
(m), b(n),A,B).

Now, to prove Lemma 1 we need to be able to permute adjacent
letters, say, A and B in any canonical word, regardless of the place
where these letters occur.
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Groups

So we have to construct a finite family of relations which would
imply all the desired permutations. We would succeed if we could
find finitely many relations which make the normal subgroup
generated by all the q′s Abelian. Indeed, then we could consider
this normal subgroup as a module over the group ring of the group
generated by {a, b,A,B}. Now if x belongs to this normal Abelian
subgroup then the commutator (x , u, v) will correspond to the
element x (u−1)(v−1) of this module. And, the equality (u, v) = 1
implies (u − 1)(v − 1) = (v − 1)(u − 1) and so
x (u−1)(v−1) = x (v−1)(u−1).
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Groups

Lemma BRG . Suppose that a group G is generated by three sets
X ,K = {ai | i = 1, . . . ,m},K ′ = {a′i | i = 1, . . . ,m} such that
(1) The subgroup generated by K ∪ K ′ is Abelian;
(2) For every a ∈ K and every x ∈ X we have x f (a) = xa′ (for
some monic polynomial f of a which has at least two terms;);

(3) (x
a

α1
1 ...aαm

m

1 , x2) = 1, for every x1, x2 ∈ X , and every
α1, . . . , αm ∈ {0, 1,−1}.
Then the normal subgroup generated by X in the subgroup
< X ∪ K ∪ K ′ > is Abelian and G is metabelian.
If the elements ai and a′i and the set X satisfy this Lemma we will
call a′i a BR-conjoint to ai with respect to X .

Olga Kharlampovich (McGill University) Algorithmic problems in solvable groups



Groups

we add new generators {d , a′, b′, ã, b̃, ã′, b̃′} and the relations
saying that a′ is a BR-conjoint to a with respect to the set of q’s
and with respect to A; b′ is a BR-conjoint to b with respect to the
set of q’s and with respect to B; ã′ is a BR-conjoint to ã with
respect to the set {q, (q,A)} and with respect to d ; b̃′ is a
BR-conjoint to b̃ with respect to the set {q, (q,B)} and with
respect to d
In addition to these relations we have to add other relations:
(qi , a) = (qi , ã), (qi , a

′) = (qi , ã
′), (qi , b) = (qi , b̃) and

(qi , b
′) = (qi , b̃

′). Also we add the relations: (qi ,A, a) = 1,
(qi ,A, a

′) = 1, (qi ,B, b) = 1, (qi ,B, b
′) = 1 and

(qi ,A,A) = (qi ,A, qj) = 1,
(qi ,B,B) = (qi ,B, qj) = 1, (qi , qj) = 1. We add the corresponding
relations for d , ã, ã′, b̃, b̃′ too.
Now we are able to prove that that the normal subgroup generated
by q0, q1, . . . , qn is abelian and to prove Lemma 1.
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Groups

To prove Lemma 2 we construct a homomorphic image of the
group G . We will use a semidirect product. Let S3 be the
semigroup from the previous subsection.
Let us take the direct product T2 of cyclic groups generated by the
elements xu where u runs over all non-zero elements of S3. By
definition let x0 = 1. We want to define automorphisms
corresponding to letters A,B, d , a, b, a′, b′, ã, b̃, ã′, b̃′ of the group
T2 in such a way that the subgroup, generated by the set
{xu, u ∈ S3,A,B, d , a, b, a

′, b′, ã, b̃, ã′, b̃′} in the semidirect product
of T2 and this group of automorphisms, becomes a homomorphic
image of G .
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Groups

There is not much freedom in defining these automorphisms.
For every v ∈ {a, b, A, B, d} we should have (xu, v) = xuv , i.e.
x−1
u v−1xuv = xuv . From this we immediately deduce that xv

u

should be equal to xuxuv . So if we denote by φv the automorphism
corresponding to v , we should have φv (xu) = xuxuv . We can
similarly deduce the definitions of automorphisms corresponding to
other letters.
But how to prove that these are actually automorphisms?
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Groups

To choose a suitable operation we start the construction of G from
the end. We first define Ĝ , and then define G itself. Namely, we
define automorphisms of a suitable direct product of cyclic groups,
then find out which operation ∗ satisfies the property qu ∗ v = quv ,
and replace the commutator by this operation ∗.
Of course, we have to choose the automorphisms corresponding to
letters in such a way that automorphisms corresponding to
members of a BR-pair form a BR-pair themselves. Practically this
means that if (u, v) is a BR-pair, and x f (u) = xv (see condition 2
of Lemma BRG ), then we have to define an automorphism u and
then only check that f (v) is also an automorphism for some monic
polynomial f of degree > 1 which has at least 2 terms.
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Groups

The solution is the following (Kh90).
Instead of T2 let us take T3, a free Abelian group generated by the
elements xi ,j ,u where u runs over all non-zero elements of S3 and
i , j ∈ 1, 2, 3. By definition let xi ,j ,0 = 1. We see that instead of one
element xu (for every u) we have now 9 “brothers” xi ,j ,u.
Let us define the automorphisms. For simplicity we will denote
automorphisms corresponding to letters a, a′, b, b′, A, B by the
same letters.
Let us start with automorphisms a, a′. We have to define xa

i ,j ,u

and xa′
i ,j ,u for every i , j , u. First suppose that u does not contain

A. Then let

xa
i ,j ,u =


xi ,j ,uxi ,j+1,uxij+2,uxi ,j ,ua, if j = 1;

xi ,j ,ux−1
i ,j−1,u, if j = 2;

xi ,j−2,u, if j = 3.

xa′
i ,j ,u = x−1

i ,j ,uxa
i ,j ,u.
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Groups

If u contains letter A, then let xa
i ,j ,u = xa′

i ,j ,u = xi ,j ,u.
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Groups

xa−1

1,3,u = x−1
1,2,ux−1

1,3,ux−1
1,3,ua

xa−1

1,2,u = x1,2,ux1,3,u,

xa−1

1,1,a = x1,3,u.

Automorphisms b, b′ are defined similarly. Let u not contain B.
Then

xb
i ,j ,u =


xi ,j ,uxi+1,j ,uxi+2,j ,uxi ,j ,ub, if i = 1;

xi ,j ,ux−1
i−1,j ,u, if i = 2;

xxi−2,j ,u, if i = 3.

xb′
i ,j ,u = x−1

i ,j ,uxb
i ,j ,u.

If u contains B, then xb
i ,j ,u = xb′

i ,j ,u = xi ,j ,u.
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Groups

If w ∈ {A,B, d} then let xw
i ,j ,u = xi ,j ,uxi ,j ,uw .

It is easy to see that a works with the second additional indexes
(j), and b works with the first additional index (i). This, by the
way, automatically makes the mappings a and b commute.
Now we can define a partial operation ∗. We know that for every
w ∈ {a, b,A,B} we should have

x1,1,u ∗ w = x1,1,uw .

From this relation we can deduce the form of the operation ∗:
For every f ∈ G let
f ∗ a = f −1f af −a−1

f (a′)−1
, f ∗ b = f −1f bf −b−1

f (b′)−1
, for z ∈ A,B

let f ∗ z = (f , z).
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