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Equations

Equations are central in mathematics
From Diophantus to Hilbert.
Equations in logic.
Tarski problems: the origin of the study of equations over free
groups.



Equations over free groups

R. Lyndon (1960) - one-variable equations;
Yu. Hmelevskĭi (1971, 1972) and Yu. Ozhigov (1983) - two
variable equations;
A. Razborov (1984) - no generalizations to 3 variables;
A. Malcev (1962) - the commutator equation rx , y s “ ra, bs;
Commerford-Edmunds and Grigorchuk-Kurchanov - general
quadratic equations;
G. Makanin (1977, 1982) - decidability of compatibility;
A. Razborov (1985, 1987) - description of solutions.
and beyond...



Basic definitions: Equations

Let F “ F pAq be the free group on A, F pX q be a free group with
basis X “ tx1, . . . , xku. Set F rX s “ F ˚ F pX q.

An equation over F is an expression of the form

w “ 1, where w P F ˚ F pX q.

A system of equations S over F is a collection of equations.
Alternatively, an equation is an atomic formula in the language
of groups (with constants).
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Basic definitions: Equations
Let F “ F pAq be the free group on A, F pX q be a free group with
basis X “ tx1, . . . , xku. Set F rX s “ F ˚ F pX q.

An equation over F is an expression of the form

w “ 1, where w P F ˚ F pX q.

A system of equations S over F is a collection of equations.
Alternatively, an equation is an atomic formula in the language
of groups (with constants).

Example:

x´1y´1xy “ a´1b´1ab

prx , y sra, bs´1 “ 1q



Basic definitions: Solutions

A solution of S P F rx1, . . . , xk s:

pg1, . . . , gkq P F
k so that wpg1, . . . , gkq “ 1 in F

for all w in S .
Equivalently, a solution of S is a homomorphism

ϕ : F rX s Ñ F so that S Ď kerpϕq

that is a homomorphism

ϕ : F rX s{xxSyy “ xA,X | Sy Ñ F
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Basic definitions: Algebraic Sets

The set V pSq “
 

p P F k | sppq “ 1 @ s P S
(

is called the algebraic
set defined by S .
Equivalently, the algebraic set is the set

HompFRpSq,F q

where
FRpSq “ xA,X | Sy.

Remark: We consider F -homomorphism: homomorphisms
ϕ : FRpSq Ñ F that are the identity on constants, i.e. ϕ |F“ id |F .
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Examples of Algebraic Sets

1 Every element g P G is an algebraic set tgu:
S “ tx “ gu, VG pSq “ tgu, FRpSq “ xA, x | x “ gy » F .

2 Every element g P Gn is an algebraic set tpg1, . . . , gnqu:
S “ tx1 “ g1, . . . , xn “ gnu, VG pSq “ tpg1, . . . , gnqu.

3 The centraliser CG pMq of every subset M Ď G is algebraic,
S “ trx ,ms “ 1| m P Mu.

4 The whole affine space Gn is the algebraic set defined by the
system S “ t1 “ 1u.

5 Then the empty set H is not algebraic of any coefficient-free
system.



Examples of Algebraic Sets

1 Every element g P G is an algebraic set tgu:
S “ tx “ gu, VG pSq “ tgu, FRpSq “ xA, x | x “ gy » F .

2 Every element g P Gn is an algebraic set tpg1, . . . , gnqu:
S “ tx1 “ g1, . . . , xn “ gnu, VG pSq “ tpg1, . . . , gnqu.

3 The centraliser CG pMq of every subset M Ď G is algebraic,
S “ trx ,ms “ 1| m P Mu.

4 The whole affine space Gn is the algebraic set defined by the
system S “ t1 “ 1u.

5 Then the empty set H is not algebraic of any coefficient-free
system.



Examples of Algebraic Sets

1 Every element g P G is an algebraic set tgu:
S “ tx “ gu, VG pSq “ tgu, FRpSq “ xA, x | x “ gy » F .

2 Every element g P Gn is an algebraic set tpg1, . . . , gnqu:
S “ tx1 “ g1, . . . , xn “ gnu, VG pSq “ tpg1, . . . , gnqu.

3 The centraliser CG pMq of every subset M Ď G is algebraic,
S “ trx ,ms “ 1| m P Mu.

4 The whole affine space Gn is the algebraic set defined by the
system S “ t1 “ 1u.

5 Then the empty set H is not algebraic of any coefficient-free
system.



Examples of Algebraic Sets

1 Every element g P G is an algebraic set tgu:
S “ tx “ gu, VG pSq “ tgu, FRpSq “ xA, x | x “ gy » F .

2 Every element g P Gn is an algebraic set tpg1, . . . , gnqu:
S “ tx1 “ g1, . . . , xn “ gnu, VG pSq “ tpg1, . . . , gnqu.

3 The centraliser CG pMq of every subset M Ď G is algebraic,
S “ trx ,ms “ 1| m P Mu.

4 The whole affine space Gn is the algebraic set defined by the
system S “ t1 “ 1u.

5 Then the empty set H is not algebraic of any coefficient-free
system.



Examples of Algebraic Sets

1 Every element g P G is an algebraic set tgu:
S “ tx “ gu, VG pSq “ tgu, FRpSq “ xA, x | x “ gy » F .

2 Every element g P Gn is an algebraic set tpg1, . . . , gnqu:
S “ tx1 “ g1, . . . , xn “ gnu, VG pSq “ tpg1, . . . , gnqu.

3 The centraliser CG pMq of every subset M Ď G is algebraic,
S “ trx ,ms “ 1| m P Mu.

4 The whole affine space Gn is the algebraic set defined by the
system S “ t1 “ 1u.

5 Then the empty set H is not algebraic of any coefficient-free
system.



Basic definitions: Algebraic Geometry
In fact, there is a well-developed algebraic geometry theory over
groups.

A coordinate group of S is:

FRpSq “
F rX s

O

Ş

ϕ solution
kerpϕq

Solutions of S are homomorphisms from FRpSq to F .

Every algebraic set V pSq can be identified with the set
HompFRpSq,F q.
there is a one-to-one correspondence between varieties V pSq
and coordinate groups FRpSq.

N.B: The group xA,X | Sy and the coordinate group FRpSq do not
always coincide.
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Let S be a system of equations:
1 Does S have a solution?
2 Can one describe the set of all solutions of S?



Linear equations

Linear equations = variables occur at most once in the system of
equations.
(Convention: x , x´1 are occurrences of the same variable)

Example 1: S “ tx “ g , y “ g 1 | g , g 1 P F u, V pSq “ tpg , g 1qu.



Linear equations

Linear equations = variables occur at most once in the system of
equations.
(Convention: x , x´1 are occurrences of the same variable)

Example 2: S “ txyz “ 1u

FRpSq “ xx , y , z | xyz “ 1y » xx , yy “ F2

HompF2,F q » F ˆ F

or
V pSq “ tpu,w ,w´1v´1q | u,w P F u.



Linear equations

Linear equations = variables occur at most once in the system of
equations.
(Convention: x , x´1 are occurrences of the same variable)

CONCLUSION:
Linear equations always have solutions and we can describe their
solution sets. In fact, if FRpSq is a free group, we understand
HompFRpSq,F q.



Quadratic equations

Quadratic equation = every variable occurs at most twice in the
system of equations.

Example 1. Not all quadratic systems of equations are compatible!
S “ tx “ a, x “ bu, V pSq “ tHu.



Quadratic equations

Quadratic equation = every variable occurs at most twice in the
system of equations.

Example 2. S “ trx , g s “ 1u, g P F .

V pSq “ C pgq “ t
?
gn
| n P Zu.

The set V pSq can be “parametrised” by a word g t , where t is an
integer variable.

N.B: Lyndon showed that the solution set of one variable equations
admit a “parametrization”. These ideas extended to 2-variable
equations but it does not work for 3-variable equations.



Quadratic equations: abelian case

Example 3. S “ trx , y s “ 1u and so
FRpSq “ xx , y | rx , y s “ 1y “ Z2. The solution set
V pSq “ tpwk ,w lq | w P F , k , l P Zu.
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Homomorphisms φ from Z2 Ñ F map x to wk and y to w l
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x Ñ x
y Ñ yx´1
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Quadratic equations: abelian case
Homomorphisms φ from Z2 Ñ F map x to wk and y to w l

Let us do an α automorphism of Z2:

α : Z2 Ñ Z2

x Ñ x
y Ñ yx´1

Then
αφ : Z2 Ñ Z2 Ñ F

x Ñ x Ñ wk

y Ñ yx´1 Ñ w l´k

Arguing this way we find an automorphism β of Z2 so that

βφ : Z2 Ñ Z2 Ñ F

x Ñ βpxq Ñ wgcdpk,lq

y Ñ βpyq Ñ 1



Quadratic equations: abelian case
Arguing this way we find an automorphism β of Z2 so that

βφ : Z2 Ñ Z2 Ñ F

x Ñ βpxq Ñ wgcdpk,lq

y Ñ βpyq Ñ 1

Define
π : Z2 “ 〈x , y〉Ñ Z “ 〈x〉

and
ϕ : ZÑ F

x Ñ wgcdpk,lq

Then φ “ β´1pβφq and βφ “ πϕ and so

Z2 Ñβ Z2 �π Z
Ó φ Ó βφ Ó ϕ

pwk ,w lq pwgcdpk,lq, 1q wgcdpk,lq



Abelian case

CONCLUSION:
Every homomorphism φ : Zn Ñ F is the composition of an
automorphism of Zn, the epimorphism π : Zn Ñ Z and a
homomorphism ϕ : ZÑ F .

ýZn � ZÑ F .



Quadratic equations

Fact. Any quadratic equation is “equivalent” to one of the following
two types:

rx1, y1s . . . rxn, yns “ 1 (orientable case)
x2
1x

2
2 . . . x

2
n “ 1 (non-orientable case)

By “equivalent” we mean: if S “ 1 is quadratic and S P F pX q, then
there exists an automorphism ψ of F pX q such that ψpSq is of the
form above.
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Quadratic equations

Example:

S “ tx´1yxy “ 1u, S P F px , yq

Consider the automorphism:
ψ : F px , yq Ñ F px , yq

x Ñ x´1

y Ñ xy

then ψpSq “ x xy x´1 xy “ x2y2



Quadratic equations: orientable case

Consider the following quadratic equation in variables x , y , z , t:

rx , y srz , ts “ 1

The group
G “ 〈x , y , z , t | rx , y srz , ts “ 1〉

is the fundamental group of an orientable surface of genus 2.

	



Quadratic equations: orientable case

Fact (Grigorchuk-Kurchanov, Commerford-Edmunds)
Any homomorphism ϕ : G Ñ F2 “ 〈a, b〉 factors through the
epimorphism

π : G Ñ F2
x Ñ a
y Ñ 1
z Ñ b
t Ñ 1

if pre-composed with an automorphism of the surface group G .

Note that the group of automorphisms of the surface group G is
well-understood.



Quadratic equations: orientable case

																																							

<	x,	y,	z,	t	|	[x,y][z,t]=1	>	

x	 			a	
y	 			1	
z	 			b		
t	 			1	

											 											

a	 							b
	 	



Quadratic equations: non-orientable case

In general, one epimorphism and automorphisms are not enough to
describe all the homomorphisms of quadratic equations.

Consider the following quadratic equation in variables x , y , z , t:

x2y2z2t2 “ 1

The group

G “
〈
x , y , z , t | x2y2z2t2 “ 1

〉
is the fundamental group of a non-orientable surface of genus 4.



Quadratic equations: non-orientable case

G “
〈
x , y , z , t | x2y2z2t2 “ 1

〉
Theorem (Grigorchuk-Kurchanov, 1989)
Any homomorphism ϕ : G Ñ F2 “ 〈a, b〉 factors through one of
the following epimorphisms:

π1 : G Ñ F2
x Ñ a´1c´1

y Ñ ca
z Ñ a´1

t Ñ a

π2 : G Ñ F2
x Ñ a´1

y Ñ a
z Ñ c´1

t Ñ c

π3 : G Ñ F2
x Ñ c´1a´1

y Ñ ac
z Ñ c´1

t Ñ c

if pre-composed with an automorphism of the surface group G .

The epimorphisms are NOT equivalent: there is no automorphism
of G such that ϕπi “ πj , i ‰ j .



Quadratic equations: non-orientable case
		
	

<	x,	y,	z,	t	|	x2	y2	z2	t2	=1>	

x	 					a-1b-1		
y	 					ba	
z	 					a-1		
t	 					a	

x	 			a-1	
y	 			a	
z	 			b-1		
t	 			b	

x	 					b-1	a-1		
y	 					ab	
z	 					b-1		
t	 					b	

											 											

a	 							b
	 	



Quadratic equations

Theorem (Commerford-Edmunds, Grigorchuk-Kurchanov ’89)
Let S be a quadratic equation and G “ 〈X | S〉. Then there exist
finitely many epimorphisms π1, . . . , πk such that any
homomorphism from G to a free group F factors through one of
the epimorphism πi , i P t1, . . . , ku if pre-composed with an
automorphism of G .

ýG
Ö Ó Œ

Fr1 Fr2 Frk



General equations

If S is an equation, in general it is not true that automorphisms of
G “ 〈X | S〉 and finitely many epimorphisms suffice to describe the
set of homomorphisms.
The Makanin-Razborov process “detects” pieces that are quadratic
or abelian or free. Homomorphisms of these pieces factor up to
automorphism through finitely many proper quotients. The process
repeats the analysis of the quotients. After finitely many steps, the
quotients are free groups.



General equations
G “ 〈a, b, u, v , x , y , z , t | S〉 where

S “ rrrru, v s, asrru,w s, bs, absrrv ,w s, abas, abbasrrx , y srz , tsw2, abaas

Makanin-Razborov (+ Kharlampovich-Miasnikov):

G »
〈
a, b, u, v , x , y , z , t | Rpa, b, u, vq, rx , y srz , ts “ w 1

〉
The process produces finitely many quotients (NOT necessarily
free groups) such that any homomorphism from G to F factors up
to automorphism through one of these quotients.

π : G Ñ G1 “ 〈a, b, u, v , | Rpa, b, u, vq〉

Using Makanin-Razborov:

G1 » 〈a, b, u, v | ru, v s “ 1, ru,w s “ 1, rv ,w s “ 1,w “ wpa, bq〉



																																	
	
	
	
	
	
	
	

																																																																 																																
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
																																			

	

											 											

<	a,	b,	u,	v,	x,	y,	z,	t	|	[[[[u,v],a][[u,	w],b],	ab][[v,w],	aba],	abba][[x,y][z,t]w’’,abaa]=1	>	
	
	 	 	 Makanin-Razborov	
	 	 	 	
	
<	a,	b,	u,	v,	x,	y,	z,	t	|	[u,v]=1,	[u,	w]=1,	[v,w]=1,	[x,y][z,t]=w’	>	

	[x,y][z,t]	
	
	
	
	
								c	
	
	
			
							w’	

		w	
	
	
	
			d	
	
	
				
			w	

Z3=	<	w,u,v>	



Makanin-Razborov diagrams

Razborov: use equationally Noetherian condition to obtain a
finite diagram
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