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Basic definitions: Equations

Let F “ F pAq be the free group on A, F pX q be a free group with
basis X “ tx1, . . . , xku. Set F rX s “ F ˚ F pX q.

An equation over F is an expression of the form

w “ 1, where w P F ˚ F pX q.

A system of equations S over F is a collection of equations.
Alternatively, an equation is an atomic formula in the language
of groups (with constants).



Basic definitions: Solutions

A solution of S P F rx1, . . . , xk s:

pg1, . . . , gkq P F
k so that wpg1, . . . , gkq “ 1 in F

for all w in S .
Equivalently, a solution of S is a homomorphism

ϕ : F rX s Ñ F so that S Ď kerpϕq

that is a homomorphism

ϕ : F rX s{xxSyy “ xA,X | Sy Ñ F



Let S be a system of equations:
1 Does S have a solution?
2 Can one describe the set of all solutions of S?



Linear equations

S “ txyz “ 1u

FRpSq “ xx , y , z | xyz “ 1y » xx , yy “ F2

HompF2,F q » F ˆ F

or
V pSq “ tpu,w ,w´1v´1q | u,w P F u.

CONCLUSION: Linear equations always have solutions and we can
describe their solution sets. In fact, if FRpSq is a free group, we
understand HompFRpSq,F q.



Quadratic equations: abelian case

S “ trx , y s “ 1u and so FRpSq “ xx , y | rx , y s “ 1y “ Z2. The
solution set V pSq “ tpwk ,w lq | w P F , k , l P Zu.

Homomorphisms φ from Z2 Ñ F map x to wk and y to w l

We can find an automorphism β of Z2 so that

βφ : Z2 Ñ Z2 Ñ F

x Ñ βpxq Ñ wgcdpk,lq

y Ñ βpyq Ñ 1

And obtain the following diagram

Z2 Ñβ Z2 �π Z
Ó φ Ó βφ Ó ϕ

pwk ,w lq pwgcdpk,lq, 1q wgcdpk,lq



Abelian case

Every homomorphism φ : Zn Ñ F is the composition of an
automorphism of Zn, the epimorphism π : Zn Ñ Z and a
homomorphism ϕ : ZÑ F .

ýZn � ZÑ F .



Quadratic equations: orientable case

Consider the following quadratic equation in variables x , y , z , t:

rx , y srz , ts “ 1

The group
G “ 〈x , y , z , t | rx , y srz , ts “ 1〉

is the fundamental group of an orientable surface of genus 2.

	



Quadratic equations: orientable case

																																							

<	x,	y,	z,	t	|	[x,y][z,t]=1	>	

x	 			a	
y	 			1	
z	 			b		
t	 			1	

											 											

a	 							b
	 	



Quadratic equations: non-orientable case

Consider the quadratic equation in variables x , y , z , t:

x2y2z2t2 “ 1

The group
G “

〈
x , y , z , t | x2y2z2t2 “ 1

〉

is the fundamental group of a non-orientable surface of genus 4.

G “
〈
x , y , z , t | x2y2z2t2 “ 1

〉

Theorem (Grigorchuk-Kurchanov, 1989)
Any homomorphism ϕ : G Ñ F2 “ 〈a, b〉 factors through one of 3
non-equivalent epimorphisms.



Quadratic equations: non-orientable case
		
	

<	x,	y,	z,	t	|	x2	y2	z2	t2	=1>	

x	 					a-1b-1		
y	 					ba	
z	 					a-1		
t	 					a	

x	 			a-1	
y	 			a	
z	 			b-1		
t	 			b	

x	 					b-1	a-1		
y	 					ab	
z	 					b-1		
t	 					b	

											 											

a	 							b
	 	



Makanin-Razborov diagramsRazborov: use equationally Noetherian condition to obtain a
finite diagram
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Equations in the free group

GAUSS ELIMINATION vs MAKANIN

encode the problem
use transformations to make the problem/objects “easier”
stop when the problem is easy/obvious

Linear system of
equations S Ñ M

Matrix

Algorithm: “put 0”
below the diagonal

Triangular matrices

System of equations over a free group
S Ñ tM1, . . .Mnu

Generalised equation

Algorithm: “make variables free or
constants”

System of equations xi “ ai , where ai P F .
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Equations in the free group

GAUSS ELIMINATION vs MAKANIN

sequence of matrices

finite (always terminates)

“solutions in matrices” correspond
to solutions of the system.

tree

infinite

for any S exists K pSq such that
solution is in TKpSq.
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Algorithm: outline

1. Makanin’s Algorithm
Goal: Transform a system into finitely many simpler systems.

S0



Algorithm: outline
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Algorithm: outline
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From system of equations to a single equation

Systems of equations are not more complicated than one equation:

U “ 1,V “ 1ô U2aU2a´1 “ pVbVb´1q2



From one equation to a triangular system 32

...
...
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l-1r
lr

1t

2t

x x

Figure 2–1: Triangulation of the system S(X).

Suppose that S 0
i has the form x2 = 1 for some x 2 X±1. We introduce two more

variables t1 and t2 and write the following system of equations (see Figure 2.6):

S(i) =
©
x = t1t2, x

°1 = t1t2
™

.

It is clear that S 0
i is equivalent to S(i) and that the equations of S(i) have the required

form

Nota Bene. We further consider only triangular systems of equations over G.



Reduction to generalised equations2. Reduction: free groups

WLOG all equations of a system are triangular: xyz = 1.
Cancellation schemes for the equation xyz = 1 in the free group:

𝑥 𝑦

𝑥 𝑦

𝑥 𝑦

𝑥 𝑦

𝑧 𝑧

𝑧𝑧



Reduction to generalised equations
2. Reduction: free groups

To each cancellation scheme one can associate a system of
equations

𝑥
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2 

⇢ x = x1x2
y = y1y2
z = z1z2

+3
8
<
:

x1 = z�1
2 ,

x2 = y�1
1 ,

y2 = z�1
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Reduction to generalised equations
2. Reduction: free groups
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Summarising:
Begin from system, pass to 1 equation and to a triangular
system.
Consider all possible cancellation schemes for all equations of
the system and obtain MANY systems of equations.
The equations in these systems become graphical.
Every solution of the original system defines a solution of one
of the new systems.
Any solution of any of the new systems lifts to a solution of
the original system.
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Generalised equations: example

Let S “ tz1z2z3 “ z5; z5 “ z´1
7 z´1

6 z3z4; z1 “ a´1; z2 “ b´1; z6 “
a; z7 “ bu

108 975 642 31 11 12 13 14 15

b a1a−1b−
1µ

2µ

( )1µ∆

( )2µ∆

( )5λ∆ ( )4λ∆ ( )1λ∆ ( )2λ∆( )3λ∆1λ 2λ 3λ 4λ5λ ( )6λ∆( )7λ∆6λ 7λ



Generalised equations: example

10 11 12 13 14 15

1 ,1zµ 2 ,2zµ 3 ,4zµ 4 ,5zµ 5 ,7zµ 6 ,9zµ 7 ,10zµ

1,11µ 1,12µ 1,13µ 1,14µ

e b

bb

1h′ 2h′ 3h′ 4h′ 5h′ 6h′ 7h′ 8h′ 10h′ 11h′ 12h′ 13h′ 14h′9h′
ac 1 1c a− − d e 1d − ac 1 1c a− − 1b− 1b−

e 1− b 1−

e1e− 1e−

( )1 ,1zµ∆( )2 ,2zµ∆ ( )3 ,4zµ∆ ( )4 ,5zµ∆( )5 ,7zµ∆ ( )6 ,9zµ∆( )7 ,10zµ∆

875 642 31 9

1,x qµ ( )1,x qµ∆

( )2,y qµ∆2,y qµ
( )3,z qµ∆3,z qµ



Generalised equations: moves

Two types of moves:
1 Simplify the generalised equation whenever possible;
2 Move bases to the right.



Generalised equations: moves

ACTIVE SECTIONS NON-ACTIVE SECTIONS

a

108 975 642 31
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1λ
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( )2µ∆ 2µ

ACTIVE SECTIONS NON-ACTIVE SECTIONS

a

10 118 975 642 31

1µ
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1λ
( )2λ∆ 2λ

( )2µ∆ 2µ



Generalised equations: moves
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Dividing the problem
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Generalised equations: moves
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Description of algebraic sets
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Description of algebraic setsRazborov: algebraic structure on the tree
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Description of algebraic setsRazborov: encoding infinite branches by automorphisms
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Description of algebraic setsRazborov: use equationally Noetherian condition to obtain a
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Group-theoretic structure
Matrix to affine subspace MR diagram to tower

																																	
	
	
	
	
	
	
	

																																																																 																																
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
																																			

	

											 											

<	a,	b,	u,	v,	x,	y,	z,	t	|	[[[[u,v],a][[u,	w],b],	ab][[v,w],	aba],	abba][[x,y][z,t]w’’,abaa]=1	>	
	
	 	 	 Makanin-Razborov	
	 	 	 	
	
<	a,	b,	u,	v,	x,	y,	z,	t	|	[u,v]=1,	[u,	w]=1,	[v,w]=1,	[x,y][z,t]=w’	>	

	[x,y][z,t]	
	
	
	
	
								c	
	
	
			
							w’	

		w	
	
	
	
			d	
	
	
				
			w	

Z3=	<	w,u,v>	



Applications

1 MR process Ø Stable actions on R-trees Ø Splittings of
groups, JSJ-decompositions.

2 Complexity.
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