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plan

Word problems:

• introduce various classes of formal languages: regular, counter, context-free,
indexed, ET0L, EDT0L, context-sensitive

• time and space complexity for Turing machine algorithms

Other problems:

• solutions to equations over groups
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word problem

Let G be a group with finite generating set X = X−1.

The set {w ∈ X∗ | w =G 1} is called the word problem for (G, X).

More typically, the word problem is given as a decision problem:

input: w ∈ X∗ output: yes if w =G 1, no otherwise

Eg: Z, integers generated by 1,−1, or multiplicatively by a,a−1.

Eg: F2, free group on a,b, the set of all reduced words in a±1,b±1
with operation of concatenate then reduce
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complexity of the word problem

How can we describe how hard the word problem is for some group?

• the complexity of the Turing machine (algorithm) that solves the
decision problem

• the complexity of the set {w ∈ X∗ | w =G 1} in terms of formal
language theory
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definitions

• regular: accepted by a finite state automaton (FSA)

• 1-counter: FSA with additional counter; blind if it cannot see the
value of the counter while reading; accepts if the input word
labels a path from start to accept which returns counter to 0;
non-blind if it can see if the counter if 0 while processing input;
equivalent to having a stack with a token 1 plus bottom of stack
token Eg: anbnan

• context-free: accepted by a pushdown automaton (FSA plus
stack with finite set of tokens) Eg: anbmambn

• logspace: Turing machine with input, work and output tapes; on
input w length n uses at most O(logn) squares of the work tape.
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complexity of the word problem

Eg: Z

• decision problem: linear time and logspace: scan word and
update a binary counter ±1.

• language: {w ∈ {a±1}∗ | #a = #a−1} is blind 1-counter and not
regular.

Eg: F2

• decision problem:
• linear time: scan word and push/pop stack: each letter at worst is
pushed then popped later, so each letter looked at at most twice.

• logspace [19]

• language: context-free and not regular.
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logspace word problem for linear groups

F2 is a subgroup of SL2(Z): a −→

(
1 2
0 1

)
,b −→

(
1 0
2 1

)

Lipton and Zalcstein [19] gave the following logspace algorithm to
solve the word problem for linear groups:

• on input w ∈ X∗, multiply I by the matrix for each letter and store
the product with each entry mod p for some small number.

• if at the end the matrix is not I, then w ̸=G 1.
• if at the end the matrix is I for all small numbers, then w =G 1.
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regular word problem

Theorem (Anisimov [4])
(G, X) has regular word problem iff G is finite

Proof: If G is finite, draw the Cayley graph for (G, X): node for each
g ∈ G, directed edge (g,h) labeled x ∈ X±1 if h =G gx.

The graph is a FSA with start and accept state 1 accepting the word
problem for G.

Now suppose G is infinite. If M is a FSA with n states accepting the
word problem for G, let w ∈ (X±1)∗ be a geodesic of length > n. Then
w has prefix w1w2 where both w1,w1w2 end at the same state of M.

Then w1w−1
1 and w1w2w−1

1 both end at the same state, and since
w1w−1

1 =G 1 this is an accept state, which means w1w2w−1
1 =G 1. Thus

w2 =G 1 so w was not geodesic
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context-free again

Context-free languages can also be described in terms of a grammar:

• two finite alphabets T,N with S ∈ N
• finite set of rules A −→ w ∈ (T ∪ N)∗ with A ∈ N
• language is the set of all words in T∗ that can be produced by
applying rules to S

Eg: T = {a±1,b±1},N = {S}, rules

S −→ aSa−1S | bSb−1S | a−1SaS | b−1SbS | ϵ
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pumping lemma

If a language L is context-free, there is a constant k (depending on
the lengths of things in the grammar) so that for words w in L longer
than k,

any derivation (drawn as a parse tree) must include the same
nonterminal twice. This means w = uvxyz and uvixyiz ∈ L for all i ∈ N.

Eg: L = {anbnan | n ∈ N}, L = {ww | w ∈ {a,b}∗} are not context-free.
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hyperbolic groups

(G, X) has a Dehn’s algorithm if there exists a finite list

{(ui, vi) | ui, vi ∈ X∗,ui =G vi, |ui| > |vi|}

so that 1 ̸= w =G 1 implies ui is a factor of w.

Eg: F2 : (aa−1, 1), (a−1a, 1), (bb−1, 1), (b−1b, 1).

G is hyperbolic if and only if it has a Dehn’s algorithm (Cannon [7]).

Can we solve the word problem using a stack? Let’s try:

• scan the tape and push letters onto a stack;
• at each step check the top of the stack for a word ui (to do this,
pop m = max |ui| letters off and record in a finite memory)

• if ui is on top of the stack, replace it by vi
• problem: this might produce another uj inside the stack
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hyperbolic groups

Do this on a tape instead of a stack: linear time

• let m = max |ui|, n = length of input

• write each letter on tape, checking suffix for ui
• if found, replace by vi, and check for uj by scanning m steps
back from vi

• if found, replace by vj, repeat (moving backwards)
• overall, the pointer moves backwards at most n times (since
word length is reduced), by at most m steps each time

• it moves forwards n times plus at most nm (the steps it made
backwards)

Open problem: logspace? Not all hyperbolic groups are linear (see [1])
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context-free word problem

Theorem (Muller-Schupp [20])
(G, X) has context-free word problem iff G is virtually free

virtually P = has a finite index subgroup with property P

See [9] for a nice discussion of this result.
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indexed

An indexed grammar is

• nonterminals N, including a start symbol S ∈ N
• terminals A
• flags or indices F
• productions of the following types:

• A −→ v ∈ (A ∪ N)∗

• Af −→ v ∈ (A ∪ N)∗
• A −→ Af

Eg:

• S −→ T$
• T −→ Tf | Tg | UU

• Uf −→ aU
• Ug −→ bU

• U$ −→ 1

S −→ T$ −→ T$f −→ T$fg −→ T$fgf −→ U$fgfU$fgf −→ aU$fgaU$fg
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nested stack automaton

Equivalent to indexed [2, 3].

Nested stack has a root node and a pointer which can read the
current node

Moves:

• push (branch sideways if pointer not at a leaf)
• move up-down most recently formed branch of the stack
(between the root and most recently added node)

• pop (only if pointer at a leaf)

Eg: L = {ww | w ∈ {a,b}∗}, L = {anbnan | n ∈ N}

Eg: L = {abi1abi2 . . .abin | i1 < i2 < · · · < in} (intermediate growth [16])
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hyperbolic again

Recall our failed attempt to accept the word problem for a
hyperbolic group using a stack. With a nested stack we can read and
append inside the stack

, but still we cannot replace ui by vi correctly.

Conjecture: word problem indexed if and only if group is virtually
free (so no advantage to using a nested stack)

Subconjecture: word problem for Z2 is not indexed.

Gilman and Shapiro: word problem accepted by deterministic
limited erasing nested stack automaton if and only if virtually free
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shrinking lemma

Gilman [15]

If L ⊆ X∗ is indexed and m ∈ N, there is a constant k > 0 so that
|w| ≥ k can be written as w = w1 . . .wr

• m < r ≤ k
• |wi| > 0
• each choice of m factors is included in a proper subproduct
which lies in L

Eg: L = {(abn)n | n ∈ N} not indexed: m = 1, pick (abn)n with n > k,
then some wi must contain two or more a’s, so proper subproduct
has factor abna.

Doesn’t help with word problem of Z2 though

17



shrinking lemma

Gilman [15]

If L ⊆ X∗ is indexed and m ∈ N, there is a constant k > 0 so that
|w| ≥ k can be written as w = w1 . . .wr

• m < r ≤ k
• |wi| > 0
• each choice of m factors is included in a proper subproduct
which lies in L

Eg: L = {(abn)n | n ∈ N} not indexed:

m = 1, pick (abn)n with n > k,
then some wi must contain two or more a’s, so proper subproduct
has factor abna.

Doesn’t help with word problem of Z2 though

17



shrinking lemma

Gilman [15]

If L ⊆ X∗ is indexed and m ∈ N, there is a constant k > 0 so that
|w| ≥ k can be written as w = w1 . . .wr

• m < r ≤ k
• |wi| > 0
• each choice of m factors is included in a proper subproduct
which lies in L

Eg: L = {(abn)n | n ∈ N} not indexed: m = 1, pick (abn)n with n > k,
then some wi must contain two or more a’s, so proper subproduct
has factor abna.

Doesn’t help with word problem of Z2 though

17



shrinking lemma

Gilman [15]

If L ⊆ X∗ is indexed and m ∈ N, there is a constant k > 0 so that
|w| ≥ k can be written as w = w1 . . .wr

• m < r ≤ k
• |wi| > 0
• each choice of m factors is included in a proper subproduct
which lies in L

Eg: L = {(abn)n | n ∈ N} not indexed: m = 1, pick (abn)n with n > k,
then some wi must contain two or more a’s, so proper subproduct
has factor abna.

Doesn’t help with word problem of Z2 though

17



et0l

An ET0L-system is a tuple (C, T,∆,#) where

• C is a finite alphabet
• T ⊆ C
• # ∈ C
• ∆ = {f1, . . . , fn} with each fi : C −→ P(C∗) \ ∅.

A table fi acts on a word w ∈ C∗ as follows: if w = x1 . . . xk with xi ∈ C,
for each xj we can choose any uj ∈ fi(xj) and replace xj by uj.

The language generated by the system is the set L ⊆ T∗ obtained by
applying some word in ∆∗ to # (and being left only with letters in T).

Eg: C = {a,b,A,B,#}, T = {a,b}, tables
f1 = {(a, {a}), (b, {b,AA}), (A, {aA, ϵ}), (B, {AA,B}), (#, {B,#})}
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et0l: more examples

Eg: C = {a,b,#}, T = {a,b}, tables

f1 = {{(a, {a}), (b, {b}), (#, {a#a#,#})},
f2 = {{(a, {a}), (b, {b}), (#, {b#b#,#})},
f3 = {{(a, {a}), (b, {b}), (#, {ϵ,#})},

19



et0l

context-free ⊂ ET0L ⊂ indexed:

context-free: make every fi include {(c, c) | c ∈ C}

indexed:

• S ̸∈ C, make production S −→ #$

• make productions S −→ Sfi for each table
• then each derivation starts with S⇒ #$fi1 ...fik
• for each c ∈ C, fi ∈ ∆ make productions cfi −→ w where w ∈ fi(c)
• for each t ∈ T make production t$ −→ t′.
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edt0l

An ET0L system is deterministic (called EDT0L) if |fi(c)| = 1 for each
table and each c ∈ C, that is, there is no choice about how to rewrite
different letters when you apply a table.

So for example, we cannot use the same trick to simulate
context-free grammars

In fact, the word problem for free groups (of sufficiently high rank) is
not EDT0L [12, 21]

Eg: L = {ww | w ∈ {a,b}∗} and L = {anbnan | n ∈ N} are EDT0L.

Eg: L = {a2n | n ∈ N} is EDT0L
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context-sensitive

A language L ⊆ X∗ is context-sensitive if there is a linear space
algorithm that decides which words are in L.

Equivalently, there is a grammar description.

Shapiro [22] showed that every finitely generated subgroup of an
automatic group is context-sensitive

— ie its a big class (includes group with undecidable conjugacy
problem, non finitely presented etc.)

22
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containments

regular EDT0L

context-free

ET0L indexed context-sens
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inverse homomorphism

A formal language class C is closed under inverse homomorphism if
L ⊆ X∗ in C and φ : Y∗ −→ X∗ a letter homomorphism (φ(y) = u ∈ X∗
for each y ∈ Y) implies φ−1(L) is in C.

Examples

• regular

• context-free

• indexed

• ET0L

• context-
sensitive

Non-examples: EDT0L: {a2n | n ∈ N} is EDT0L and the homomorphic image of
{w ∈ {a, b}∗ | ∃n ∈ N such that |w|a = 2n} which is not EDT0L [10, 11].

Fact: if a language class C is closed under inverse homomorphism
and intersection with regular languages then (G, X) has word
problem in C if and only if (G, Y) does
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word problem: summary

• regular word problem if and only if finite (Anisimov [4, 5])

• context-free if and only if virtually free (Muller-Schupp [20])

• 1-counter if and only if virtually cyclic (Herbst [17])

• blind k-counter if and only if virtually abelian
(E-Kambites-Ostheimer [13])

• deterministic limited erasing nested stack automaton if and
only if virtually free (Gilman-Shapiro [14])

Open problems:

• indexed conjecture: virtually free
• ET0L conjecture: virtually free
• EDT0L conjecture: finite
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edt0l

Recall: L ⊆ T∗ is EDT0L if there is T ⊆ C ∋ # and a finite set of tables
fi that rewrite each c ∈ C by uc ∈ C∗ in parallel.

An alternative definition [6] restricts how the tables are applied.

A language L ⊆ A∗ is EDT0L if ∃

• C ⊇ A an extended alphabet (finite)
• # ∈ C
• R regular set of endomorphisms h : C∗ −→ C∗

so that L = {h(#) | h ∈ R}.

26



edt0l

Recall: L ⊆ T∗ is EDT0L if there is T ⊆ C ∋ # and a finite set of tables
fi that rewrite each c ∈ C by uc ∈ C∗ in parallel.

An alternative definition [6] restricts how the tables are applied.

A language L ⊆ A∗ is EDT0L if ∃

• C ⊇ A an extended alphabet (finite)
• # ∈ C
• R regular set of endomorphisms h : C∗ −→ C∗

so that L = {h(#) | h ∈ R}.

26



edt0l

Recall: L ⊆ T∗ is EDT0L if there is T ⊆ C ∋ # and a finite set of tables
fi that rewrite each c ∈ C by uc ∈ C∗ in parallel.

An alternative definition [6] restricts how the tables are applied.

A language L ⊆ A∗ is EDT0L if ∃

• C ⊇ A an extended alphabet (finite)
• # ∈ C
• R regular set of endomorphisms h : C∗ −→ C∗

so that L = {h(#) | h ∈ R}.

26



equations in free groups

Problem: on input
aXXb = YYbX

find substitutions for X, Y by words in a,b,a−1,b−1 so that both sides
are equal in the free group on A+ = {a,b}.

How hard is the problem of finding all solutions to some equation:

• the complexity of the Turing machine (algorithm)

• the complexity of the solution set in terms of formal language
theory
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equations in free groups

Context-sensitive: input (u1, . . . ,uk) of length n =
∑

|ui|, can decide

• ui reduced words in A±

• Xi −→ ui is a solution

in linear space (write the equation on the tape replacing Xi by ui)

But this does not tell us much — the emptiness problem for
context-sensitive languages in undecidable [18]
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answer

Theorem (Ciobanu-Diekert-E [8])
For any equation over a free group, the set

{(u1, . . . ,uk) | ui reduced, Xi −→ ui is a solution}

is EDT0L.

More explicitly, let n = |A+|+ |UV| where U = V is an equation over a
free group FA+ .

We construct in NSPACE(n logn) a finite direct labeled graph where

• nodes are modified versions of the equation
• edges are labeled by letter homomorphisms
• every solution in reduced words is encoded by some path from
an initial to final node in the graph.
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aspects of the proof

Here is a naïve first attempt.

• Input: XaYbaXa = bYb3ZP equation in a free monoid.
• Guess the first letter of some variable, and replace. Eg: Y −→ aY.
• Guess Y −→ 1.
• Repeat. If there is a solution, this method will find it!

Issues:

• if there is no solution, we will never stop.
• Y −→ aY increases the length of the equation (there is no
cancellation) — can get arbitrarily long.

• to ensure solutions are reduced words, need to keep track of
letters popped out of variables
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• to ensure solutions are reduced words, need to keep track of
letters popped out of variables
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aspects of the proof

To keep the equation length bounded, we can try to compress
constants using new constants. Eg: ab −→ c, aa −→ d, aa −→ a.

Issues:

• might need many new constants.
• aa −→ d means that ad = da, so we are no longer in a free
monoid.

• aa −→ a only works if all blocks of a have even length
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building the graph

Edges correspond to making one of the following moves on an
equation

pop
• X −→ aX, X −→ X a
• X −→ 1, X −→ 1

split
• X −→ X′X, X −→ X X′

compress
• aa −→ a, aa −→ a
• aa −→ c, aa −→ c
• ab −→ c, ba −→ c
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constraints

We need to introduce a symbol # that serves various purposes, but
require it not appear in any solution Xi −→ u

We ensure that solutions are in reduced words, and do not use #, by
using morphisms µ to a finite monoid.

Let N = A± × A± ∪ {0, 1} with multiplication

0 · x = 0 = x · 0
1 · x = x = x · 1

and (a,b) · (c,d) =
{

(a,d) b ̸= c
0 b = c

Then define the morphism µ : (A± ∪ {#})∗ −→ N by
µ(a) = (a,a), µ(1) = 1 and µ(#) = 0.
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constraints

If u ∈ (A± ∪ {#})∗ then µ(u) = 0 if u contains # or is not reduced, is
1 if and only if u = 1, and otherwise µ(u) = (a,b) where a,b are the
first and last letters of u.

Given an equation in A±,# and variables Xi we guess the first and
last letters of each Xi (or that Xi −→ 1) by guessing a value for µ(Xi).
As we modify our equation (pop and compress moves), we make
sure that the µ values are consistent, and updated as we pop and
compress letters

In this way, if there is a way to consistently find a solution following
our procedure, then it is guaranteed to be in reduced words not
using #.
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equations in free groups

A key difference between our result and Makanin-Razborov diagrams
is that we are able to ensure that solutions are in reduced words, ie
or maps are simply letter homomorphisms (so EDT0L) not group
homomorphisms, where controlling the form of solutions seems
difficult,

Note that we can obtain the set of all solutions as words over X∗ (not
necessarily reduced)

by taking the EDT0L grammar giving reduced solutions, and
combining it with the context-free grammar for the word problem of
the free group over X.

The result is ET0L (and not EDT0L for free groups of rank two or
more).
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Thank you
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