Systems of Equations in Random Nilpotent Groups

Albert Garreta (joint results with Alexei Miasnikov and Denis Ovchinnikov)

Stevens Institute of Technology

Nilpotent groups

► Let *G* be a group. We define $[x, y] = x^{-1}y^{-1}xy$, and $\Gamma_1(G) = G$, $\Gamma_2(G) = [G, G]$, ..., $\Gamma_k(G) = [G, \Gamma_{k-1}(G)]$.

• G is k-nilpotent if
$$\Gamma_{k+1}(G) = 1$$
.

- G is 2-nilpotent iff $[G, G] \subseteq Z(G)$.
- A τ₂-group is a finitely generated, torsion-free, 2-nilpotent group. We write G ∈ T₂.

Diophantine problem in algebraic structures

- ► Let A be an algebraic structure (e.g. a group or a ring). E(A) is the problem of determining the solubility of systems of equations over A.
- ▶ & (A) is decidable if there exists an algorithm that, given a system of equations S over A, determines whether S admits a solution or not in A.
- *Hilbert's 10th Problem*. $\mathscr{E}(\mathbb{Z}, +, \cdot)$ is undecidable.

Question

Let $G \in T_2$. When is $\mathscr{E}(G)$ decidable? Is $\mathscr{E}(G)$ usually decidable or undecidable?

What does 'usually' mean?

Equations in nilpotent groups

► There exists a 4-nilpotent group G such that E(G) is undecidable (Roman'kov, 1974).

Free nilpotent group

The free k-nilpotent group on generators S is

$$N = \langle S | \Gamma_{k+1}(N) = 1 \rangle.$$

Equations in nilpotent groups

Let $G \in T_2$, and let $a, b \in G$ be such that $[a, b] \neq 1$.

Theorem (G., Miasnikov, Ovchinnikov)

There exists a nontrivial integral domain $R_{a,b}$ such that $(R_{a,b},+)$ is free abelian and such that if $\mathscr{E}(G)$ is decidable, then $\mathscr{E}(R_{a,b})$ is decidable.

If $R_{a,b} = (\mathbb{Z}, +, \cdot)$ then we say a and b are in general position. We write $a, b \in GP$.

Corollary

Suppose $a, b \in GP$ for some $a, b \in G$. Then $\mathscr{E}(G)$ is undecidable.

Integral elements

Let $g \in G$. Suppose $C(g) = \{x \in G \mid [x,g] = 1\} = \{g^t z \mid t \in \mathbb{Z}, z \in Z(G)\}.$

Then we say g is an *integral element*.

Lemma (GMO)

If $a, b \in G$ are integral and $[a, b] \neq 1$, then $a, b \in GP$.

Here is an outline of the proof:

• Let
$$[a, b] = c$$
. We have

$$[a, C(b)] = [C(a), b] = \{c^t \mid t \in \mathbb{Z}\}.$$

Let Z denote this set.

Outline of the proof

• We define + and \cdot in Z by letting $c^{t_1} + c^{t_2} = c^{t_1+t_2}$, and $c^{t_1} \cdot c^{t_2} = c^{t_1t_2}$. Using that G is torsion-free, we have

$$(Z,+,\cdot)\cong(\mathbb{Z},+,\cdot).$$

• $x \in Z$ can be expressed in terms of equations:

$$x = [a, x'], [x', b] = 1.$$

► $\forall x, y, z \in Z$ we have

 z = x + y (since G is torsion free this has the form c^{t1} + c^{t2} = c^{t1+t2}) iff z = xy in G.
 z = x ⋅ y iff x = [a, x'], [x', b] = 1, y = [y', b], [y', a] = 1, and z = [y', x']

▶ Hence Z, +, and \cdot are definable in G by equations. \Box

New question and random nilpotent groups

New question

Do groups $G \in T_2$ usually have a pair of non-commuting integral elements? In other words, if we randomly pick a group G from T_2 , how likely is G to have such elements?

- The study of random nilpotent groups started around 2015.
- Three models have been introduced so far.

T_2 -presentations

- F.g. nilpotent groups are polycyclic. Such groups have a standard way to be presented: by means of polycyclic presentations.
- Polycyclic presentations look nice for $G \in T_2$.

Lemma (GMO)

A group G is free abelian or $G \in T_2$ if and only if G admits the following presentation:

$$G = \langle A, C \mid [a_i, a_j] = \prod_{t=1}^m c_t^{\lambda_t^{ij}}, \quad 1 \le i < j \le n,$$
$$[A, C] = 1, \quad [C, C] = 1 \rangle$$
(1)

for some $\lambda_t^{ij} \in \mathbb{Z}$, and $A = \{a_1, \ldots, a_n\}$, $C = \{c_1, \ldots, c_m\}$.

• We call such presentation a T_2 -presentation.

Random nilpotent groups as random polycyclic groups

Model (GMO)

- We can randomly choose $G \in T_2$ by randomly selecting a T_2 -presentation.¹
- ► This can be done by fixing sets A, C, and then specifying integers λ^{ij}_t with |λ^{ij}_t| ≤ I for some large I.
- Let P be a property. We write Pr(G has property P) = p to mean that the proportion of groups G with property P chosen this way tends to p as I → ∞.
- If p = 1 then we say G has property P asymptotically almost surely (a.a.s.).
- |A| = n and |C| = m act as parameters.

¹Alternatively, this model can be understood as randomly selecting a Malcev basis and rules for writting the Malcev representation of xy in terms of x and y

Another model: nilpotent groups as members of a variety

Cordes, Duchin, Duong, Ho, and Sánchez model (2015)

A k-nilpotent group G can be randomly chosen by adding relations R of length $\leq l$ to some free k-nilpotent group N_k . I.e.

$$G = N_k / \langle \langle R \rangle \rangle.$$

- |R| can be a constant (Olshanskii's model), or a function of I (Gromov's model).
- This model arises from looking at k-nilpotent groups as a variety.
- ▶ Mainly, the authors study the probability that *G* is trivial or abelian.

Another model: nilpotent groups as subgroups of $UT_n(\mathbb{Z})$

A group G is f.g. torsion-free nilpotent iff it can be embedded in UT_n(ℤ).

Delp, Dymarz, and Schaffer-Cohen model (2016)

- ► G can be randomly chosen by selecting matrices from UT_n(Z) as the generators of G.
- ► This is done by specifying *m* words of length *l* on the set of standard generators of UT_n(Z) (including inverses).
- I is taken to be a function of n, and $n \to \infty$.
- ► The authors study the probability that G is abelian (for m = 2).

Main results

- Fix n and m. Randomly choose G ∈ T₂ by selecting a T₂-presentation. I.e. fix A, C, and choose λ^{ij}_t's.
- Roughly, |A| = rank(G/Z(G)), and |C| = rank(Z(G)).
- Recall that g is integral if C(g) = {g^tz | t ∈ Z, z ∈ Z(G)}.
 We write a, b ∈ Int if [a, b] ≠ 1 and a, b are integral.

Theorem (G., Miasnikov, Ovchinnikov)

- If $|C| \ge |A| 1$, then G has $a, b \in Int a.a.s.$ (as $l \to \infty$).
- If $|C| \leq (|A| 1)/2$, then G does not have $a, b \in$ Int a.a.s.

Corollary

If $|C| \ge |A| - 1$, then $\mathscr{E}(G)$ is undecidable a.a.s.

Thank you!

Bonus slides

First model: nilpotent groups as a variety

Theorem (Cordes, Duchin, Duong, Ho, Sánchez)

- G is nonabelian a.a.s. if $|R| \le m 2$.
- If |R| = m − 1 or m, the probability that G is abelian approaches (descendingly) 44% and 85% as m → ∞, respectively.

A remark: G is a f.g. nilpotent group iff it is a quotient of some $N_{k,m}$. Equivalently, iff

$$\begin{split} & [[x_1, x_2], x_3] = 1 \quad \forall \ x_1, x_2, x_3 \in G, \quad \text{case} \ k = 2. \\ & [[[x_1, x_2], x_3], x_4] = 1 \quad \forall \ x_1, x_2, x_3, x_4 \in G, \quad \text{case} \ k = 3. \end{split}$$

Hence k-nilpotent groups form a variety. This first model arises from looking at nilpotent groups as such.

First model: nilpotent groups as a variety

- Let P be a property. We write Pr(G has property P) = p to mean that the proportion of choices of R such that G has property P tends to p as I → ∞.
- If p = 1 then we say G has property P asymptotically almost surely (a.a.s.)

Theorem (Cordes, Duchin, Duong, Ho, Sánchez)

- G is trivial a.a.s. if and only if $|R| \rightarrow \infty$ as a function of I.
- G = [G, G] a.a.s. if and only if $|R| \to \infty$ as a function of I.

Second model: nilpotent groups as subgroups of $UT_n(\mathbb{Z})$

Theorem (Delp, Dymarz, Schaffer-Cohen)

- If $l \in o(\sqrt{n})$, then G is abelian a.a.s. (as $n \to \infty$).
- If $I = c\sqrt{n}$, then G is abelian with probability e^{-2c^2} .
- If $l \in w(\sqrt{n})$, then G is nonabelian a.a.s.

Theorem

- If $l \in o(n^2)$, then G is not (n-1)-nilpotent a.a.s.
- If $l \in w(n^3)$, then G is (n-1)-nilpotent a.a.s.