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Introduction

In this talk we will explore some connections between geodesic
language complexity and group structure.

Motivation : computable geodesic language implies solvable
word problem; more restrictive language classes yield more
efficient solutions.

There are two basic types of questions one can ask:

What do properties of the geodesic language imply about
the group?

What do properties of the group imply about geodesic
languages?

Note : In this talk, all groups are finitely generated and all
generating sets are finite and inverse closed.
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Languages

Definition

A language L over an alphabet A is a subset of A∗, the set of
all finite words over A.

Definition

The set of regular languages is the closure of finite sets under
concatenation, union, intersection, complementation, and
Kleene closure.

L is regular if and only if L can be recognized by a finite state
automaton.
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Cayley Graphs and Geodesic Languages

Definition

The Cayley graph of a group G with generating set A, Γ(G,A)
is the directed graph with a vertex ∀g ∈ G and an edge labeled
a from g to ga ∀a ∈ A, ∀g ∈ G.

Definition

A geodesic word in Γ(G,A) is a word which labels a path of
minimal length between two vertices.

Definition

The geodesic language of G over A, Geo(G,A), is the set of
all geodesic words in Γ(G,A).
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Examples

G = F2 =< x, y | >, A = {x, y}±

Γ(G,A) :

Geo(G,A) is the set of all freely reduced words over A.
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both a generator and its inverse.
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Groups with Regular Geodesic Language

Groups with Geo(G,A) regular for all generating sets:

hyperbolic groups (Cannon ’80’s)

abelian groups (Neumann & Shapiro ’95)

Groups with Geo(G,A) regular for some generating set:

Coxeter groups (Howlett ’93)

virtually abelian groups (Neumann & Shapiro ’95)

geometrically finite hyperbolic groups (N & S ’95)

Artin groups of finite type (Charney & Meier ’03)

Garside groups (C & M ’03)

Artin groups of large type (Holt & Rees ’11)

The second class is closed under graph products (Loeffler,
Meier, & Worthington ’02)
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Locally Excluding

Definition

A group is virtually free if it has a finite index free subgroup.

Definition

L is locally excluding, LE, if ∃F ⊆ A∗, |F | <∞, such that
w ∈ L if and only if w contains no subword in F .

Example: F2 =< x, y | > has LE geodesic language
with F = {xx−1, x−1x, yy−1, y−1y}.

Theorem (Gilman, Hermiller, Holt, & Rees, 2007)

G is virtually free if and only if Geo(G,A) is LE for some
generating set A.
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Piecewise Excluding

Definition

a1a2 · · · an is called a piecewise subword of w if
w = w0a1w1a2 · · · anwn for some wi ∈ A∗.

Definition

L is piecewise excluding, PE, if ∃F ⊆ A∗, |F | <∞, such that
w ∈ L if and only if w contains no piecewise subword in F .

Example: Z2 =< x, y | [x, y] > has PE geodesic language
with F = {xx−1, x−1x, yy−1, y−1y}.

Theorem (Hermiller, Holt, & Rees, 2007)

If G is abelian, then Geo(G,A) is PE for all generating sets A.
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Question 1

We know G abelian ⇒ Geo(G,A) is PE ∀A.

Remark

If Geo(G,A) is PE, then aa−1 must be an excluded piecewise
subword ∀a ∈ A as aa−1 /∈ Geo(G,A) ∀a ∈ A.

This seems to suggest something about commutivity...

Question

Is Geo(G,A) PE if and only if G is abelian?

No.
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Question 1

If |G| <∞, let A = G \ {1}. Then Geo(G,A) is PE.

Finite groups may have other generating sets producing PE
geodesic language.

D8 =< a, b, t | a2, b2, (ab)4, ababt > has PE geodesic language.
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Infinite Examples

There are also infintite non-abelian groups with Geo(G,A) PE
for some generating set A.

Proposition (F., 2015)

Let G be abelian and H be finite. If K = H oG, then there is
a generating set A such that Geo(K,A) is PE.

Z/3Z o Z
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Question 2

G abelian ⇒ Geo(G,A) is PE ∀A
Geo(G,A) PE ; G abelian

Question (from Murray Elder)

Is Geo(G,A) PE for all generating sets A if and only if G is
abelian?

No again.

Proposition (F., 2015)

A group G with Geo(G,A) PE for all generating sets A need
not be abelian.

H =< i, j, k | i2 = j2 = k2 = ijk, i4 = 1 > (the quaternions)
has PE geodesic language for all generating sets.
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not be abelian.

H =< i, j, k | i2 = j2 = k2 = ijk, i4 = 1 > (the quaternions)
has PE geodesic language for all generating sets.

13 / 24



Geodesic
Language

Complexity
and Group
Structure

Maranda
Franke

Introduction

Basic
Definitions

Background

Results

Background II

Results II

Continuing
Work

Virtually Abelian Groups

Definition

A group is virtually abelian if it has a finite index abelian
subgroup.

Theorem (Neumann & Shapiro, 1995)

If G is abelian, Geo(G,A) is regular for all generating sets A.

If G is virtually abelian, there is a generating set A such that
Geo(G,A) is regular.

14 / 24



Geodesic
Language

Complexity
and Group
Structure

Maranda
Franke

Introduction

Basic
Definitions

Background

Results

Background II

Results II

Continuing
Work

Virtually Abelian Groups

Definition

A group is virtually abelian if it has a finite index abelian
subgroup.

Theorem (Neumann & Shapiro, 1995)

If G is abelian, Geo(G,A) is regular for all generating sets A.

If G is virtually abelian, there is a generating set A such that
Geo(G,A) is regular.

14 / 24



Geodesic
Language

Complexity
and Group
Structure

Maranda
Franke

Introduction

Basic
Definitions

Background

Results

Background II

Results II

Continuing
Work

Cannon’s Example

A virtually abelian group need not have Geo(G,A) regular for
all generating sets A:

Cannon’s Example:

Z2 o Z/2Z =< x, y, t | [x, y], t2, txty−1 >
has regular geodesic language

Z2 o Z/2Z =< x, c, d, t | cx−2, t2, [x, x−1d], txtd−1x >
does not have regular geodesic language

15 / 24
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Piecewise Testable

Definition

L is piecewise testable, PT, if L is a Boolean combination of
languages of the form A∗a1A

∗ · · ·A∗anA
∗, where n ≥ 0 and

ai ∈ A ∀i ∈ [n].

Informally, L is PT if membership can be decided by
consideration of piecewise subwords.

Note PE ⊂ PT .

Theorem (Hermiller, Holt, & Rees, 2007)

If G is virtually abelian, then there is a generating set A for
which Geo(G,A) is PT.
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Question 3

G abelian ⇒ Geo(G,A) PE
Geo(G,A) PE ∀A; G abelian
G virtually abelian ⇒ ∃A s.t. Geo(G,A) is PT ⊃ PE

Question

If G is virtually abelian, must G have a generating set A for
which Geo(G,A) is PE?

No once again.

Theorem (F., 2015)

If G is virtually abelian, there need not exist a generating set A
for which Geo(G,A) is PE.
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Proof Outline

Recall that if awa−1 is geodesic for any a ∈ A, w ∈ A∗, then
Geo(G,A) cannot be PE.

Let G = Z o Z/2Z =< x, y | y2, yxy = x−1 >.

Let A be any generating set for G.

Consider the normal form set N = {xnyε | n ∈ Z, ε ∈ {0, 1}}.

Identify each a ∈ A with its unique representative in N .

18 / 24
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Proof Outline

Case 1: ∃α ∈ A such that α =G x
n for some n 6= 0.

Let a be the generator of the form xn with n maximal.
Note n > 0 as A is inverse closed.

Let b be the generator of the form xmy with m maximal.
Note at least one such generator must exist for A to
generate G.

Suppose aba−1 is not geodesic.
Then there must either be a single generator or a product
of two generators =G aba

−1 =G x
nxmyx−n =G x

2n+my.

19 / 24
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If there was a single generator =G x
2n+my, then we have a

contradiction as n > 0 and b = xmy was chosen to have m
maximal.

If there was a product of generators =G x
2n+my, one must

be of the form xk and the other of the form xly.

Note we may assume xkxly =G x
k+ly =G x

2n+my as
xlyxk =G x

l−ky = x−kxly and xk ∈ A =⇒ x−k ∈ A.

By our assumptions, k ≤ n and l ≤ m =⇒
k + l ≤ n+m < 2n+m, another contradiction.

Thus, aba−1 must be geodesic.
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Case 2: @α ∈ A such that α =G x
n for some n 6= 0.

Let a be the generator of the form xny with n maximal.
Let b be the generator of the form xmy with m minimal.

*show aba−1 is geodesic*

In either case, aba−1 ∈ Geo(G,A) implies aa−1 can’t be an
excluded piecewise subword in Geo(G,A).

Hence Geo(G,A) is not PE.
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Extensions

Proposition (F., 2015)

Let G be an extension 1→ H → G
π→ K → 1 and A a

generating set for G. If Geo(K,π(A)) has awa−1 geodesic for
some a ∈ π(A), w ∈ π(A)∗, then Geo(G,A) is not PE.

Z2 o Z/2Z (Cannon’s example) is another group that has no
generating set which produces a PE geodesic language.

Extensions of Z2 o Z/2Z will also have non-PE geodesic
language for any generating set.
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Continuing Work

Question

If Geo(G,A) is not PE, then is there some a ∈ A and w ∈ A∗

so that awa−1 is geodesic?

Conjecture

If G = Zn oα F where |F | <∞ and α is non-trivial, then
Geo(G,A) is not PE for any generating set A.

Open Question

Is Geo(G,A) PT for some generating set A if and only if G is
virtually abelian?
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so that awa−1 is geodesic?

Conjecture

If G = Zn oα F where |F | <∞ and α is non-trivial, then
Geo(G,A) is not PE for any generating set A.

Open Question

Is Geo(G,A) PT for some generating set A if and only if G is
virtually abelian?
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