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L is regular if and only if L can be recognized by a finite state
automaton.



NeBWERS\YV]or

Lincoln

Geodesic
Language
Complexity
and Group
Structure

Maranda
Franke

Introduction

Basic
Definitions

Background
Results
Background Il
Results 11

Continuing

Work

Cayley Graphs and Geodesic Languages

Definition

The Cayley graph of a group G with generating set A, I'(G, A)
is the directed graph with a vertex Vg € G and an edge labeled

a from g to ga Va € A, Vg € G.




Nebiaska Cayley Graphs and Geodesic Languages

Lincoln

Geodesic

Language DeflnItIOn

Complexity

I e The Cayley graph of a group G with generating set A, I'(G, A)

Structure

Maranda is the directed graph with a vertex Vg € G and an edge labeled
Franke a from g to ga Va € A, Vg € G.

Introduction

Basic
Definitions

Definition

Background

A geodesic word in T'(G, A) is a word which labels a path of
minimal length between two vertices.

Results

Background Il

Results 11

Continuing

Work



Nebiaska Cayley Graphs and Geodesic Languages

Lincoln

Geodesic

Language DeflnItIOn

Complexity

endiCroun The Cayley graph of a group G with generating set A, I'(G, A)

Structure

Maranda is the directed graph with a vertex Vg € G and an edge labeled
Franke a from g to ga Va € A, Vg € G.

Introduction

Basic
Definitions

Definition

Background

A geodesic word in T'(G, A) is a word which labels a path of
minimal length between two vertices.

Results

Background Il

Results 11

Continuing

Work Definition

The geodesic language of G over A, Geo(G, A), is the set of
all geodesic words in I'(G, A).




Weverlel Examples

Lincoln

Geodesic
Language
Complexity
and Group
Structure

Maranda
Franke

Introduction

Basic
Definitions

Background
Results
Background Il
Results 11

Continuing

Work



Weverlel Examples

Lincoln

Geodesic
Language
Complexity
and Group
Structure

Maranda
Franke

Introduction

Basic
Definitions

Background y +
Results x x +
Y
Background Il
y —

Results 11

Continuing x

Work




Nebiaska ISNSTINIS

Lincoln

Geodesic — — — +
Seodesic G=F=<uzy| > A={z,y}
Complexity F(G A) :

and Group ’

Structure

Maranda
Franke

1

>

v
Introduction $
Basic * *
i —r4
v —
x
v

Background

Definitions
Results i % x 4 4 i

Background Il

Results 11
Continuing X ? ’ ?
Work

—

1

Geo(G, A) is the set of all freely reduced words over A.
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x x X
Y y Y Y
x x X

Geo(G, A) is the set of all words in A* which do not contain
both a generator and its inverse.
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Is Geo(G, A) PE for all generating sets A if and only if G is
abelian?

No again.

Proposition (F., 2015)

A group G with Geo(G, A) PE for all generating sets A need
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H=<1i,j,k|i® = j? = k% =ijk, i* = 1 > (the quaternions)
has PE geodesic language for all generating sets.
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Theorem (Hermiller, Holt, & Rees, 2007)

If G is virtually abelian, then there is a generating set A for
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Theorem (F., 2015)

If G is virtually abelian, there need not exist a generating set A
for which Geo(G, A) is PE.
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Open Question

Is Geo(G, A) PT for some generating set A if and only if G is
virtually abelian?
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