Algebraic subgroups of acylindrically hyperbolic groups

Bryan Jacobson Vanderbilt University

Equations and formal languages in algebra Les Diablerets 9 March 2016

B. Jacobson Algebraic subgroups of acylindrically hyperbolic groups

Equations

Notation:

For each $w(x) \in G * \langle x \rangle$ and each $g \in G$, let w(g) denote the image of w(x) under the homomorphism $G * \langle x \rangle \to G$ given by taking $id : G \to G$ and sending $x \mapsto g$.

イロト イ押ト イヨト イヨトー

Equations

Notation:

For each $w(x) \in G * \langle x \rangle$ and each $g \in G$, let w(g) denote the image of w(x) under the homomorphism $G * \langle x \rangle \to G$ given by taking $id : G \to G$ and sending $x \mapsto g$.

Definition

Write w(x) = 1 to represent an *equation* in the single variable x with coefficients in *G* whose *solution set* is

 $\{g \in G \,|\, w(g) = 1\}.$

Examples:

イロン イロン イヨン イヨン

æ

Examples:

Let $G = F_2$ with generators *a* and *b*.

 If w(x) = [x, a], then the equation w(x) = 1 has solution set equal to ⟨a⟩.

イロト イポト イヨト イヨト

Examples:

Let $G = F_2$ with generators *a* and *b*.

- If w(x) = [x, a], then the equation w(x) = 1 has solution set equal to (a).
- If w(x) = a, then the equation w(x) = 1 has solution set equal to Ø.

イロト イポト イヨト イヨト

Examples:

Let $G = F_2$ with generators *a* and *b*.

- If w(x) = [x, a], then the equation w(x) = 1 has solution set equal to (a).
- If w(x) = a, then the equation w(x) = 1 has solution set equal to Ø.
- If w(x) is 1, then the equation w(x) = 1 has solution set equal to F₂.

イロト イポト イヨト イヨト

Examples:

Let $G = F_2$ with generators *a* and *b*.

- If w(x) = [x, a], then the equation w(x) = 1 has solution set equal to (a).
- If w(x) = a, then the equation w(x) = 1 has solution set equal to Ø.
- If w(x) is 1, then the equation w(x) = 1 has solution set equal to F₂.

イロト イポト イヨト イヨト

The Zariski topology on G

Definition

The *Zariski topology* on *G* is defined by taking the collection of solution sets to individual equations to be a sub-basis for the closed sets of the topology.

The Zariski topology on G

Definition

The *Zariski topology* on G is defined by taking the collection of solution sets to individual equations to be a sub-basis for the closed sets of the topology. That is, each Zariski-closed set of G is of the form

$\cap_{i\in I}S_i$

where for each $i \in I$, the set S_i is a finite union of solution sets corresponding to (single-variable) equations with coefficients in G.

The Zariski topology on G

Definition

The *Zariski topology* on G is defined by taking the collection of solution sets to individual equations to be a sub-basis for the closed sets of the topology. That is, each Zariski-closed set of G is of the form

$\cap_{i\in I}S_i$

where for each $i \in I$, the set S_i is a finite union of solution sets corresponding to (single-variable) equations with coefficients in G.

• Zariski-closed sets are closed in every *T*₀ group topology, and, in the case of countable groups, the Zariski-closed sets are the only such sets (Markov, 1944).

Algebraic subgroups of G

Definition

A Zariski-closed subgroup (or more generally, a subset) of *G* is called *algebraic*.

Algebraic subgroups of G

Definition

A Zariski-closed subgroup (or more generally, a subset) of *G* is called *algebraic*.

Examples:

• The whole group G

Algebraic subgroups of G

Definition

A Zariski-closed subgroup (or more generally, a subset) of *G* is called *algebraic*.

Examples:

- The whole group G
- Any finite subgroup of G

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

→ E → < E →</p>

Algebraic subgroups of G

Definition

A Zariski-closed subgroup (or more generally, a subset) of *G* is called *algebraic*.

Examples:

- The whole group G
- Any finite subgroup of G
- We saw that the subgroup $\langle a \rangle$ in $F_2 = \langle a, b \rangle$ was algebraic.

Algebraic subgroups of G

Definition

A Zariski-closed subgroup (or more generally, a subset) of *G* is called *algebraic*.

Examples:

- The whole group G
- Any finite subgroup of G
- We saw that the subgroup $\langle a \rangle$ in $F_2 = \langle a, b \rangle$ was algebraic.
- Centralizers of subsets of G
- Exercise: If *G* is a torsion-free abelian group, then the only algebraic subgroups of *G* are *G* and {1}.

Algebraic subgroups of G

Definition

A Zariski-closed subgroup (or more generally, a subset) of *G* is called *algebraic*.

Examples:

- The whole group G
- Any finite subgroup of G
- We saw that the subgroup $\langle a \rangle$ in $F_2 = \langle a, b \rangle$ was algebraic.
- Centralizers of subsets of G
- Exercise: If *G* is a torsion-free abelian group, then the only algebraic subgroups of *G* are *G* and $\{1\}$. (Hint: WLOG, each equation is of the form $gx^n = 1$, where $g \in G$, $n \in \mathbb{Z}$.)

Algebraic subgroups of G

Goal: structural result for algebraic subgroups in the case where G is an acylindrically hyperbolic group

Next: definition of acylindrically hyperbolic group, some examples

Acylindrical actions

Let *G* be group acting by isometries on a metric space (S, d).

イロト イポト イヨト イヨト

ъ

Acylindrical actions

Let G be group acting by isometries on a metric space (S, d).

Definition

The action of *G* on *S* is called *acylindrical* if $\forall \varepsilon > 0$ $\exists R, N > 0$ such that $\forall x, y \in S$

 $d(x,y) \geq R \Longrightarrow |\{g \in G \mid d(x,gx) \leq \varepsilon \text{ and } d(y,gy) \leq \varepsilon\}| \leq N.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Acylindrical actions

Let *G* be group acting by isometries on a metric space (S, d).

Definition

The action of *G* on *S* is called *acylindrical* if $\forall \varepsilon > 0$ $\exists R, N > 0$ such that $\forall x, y \in S$

 $d(x,y) \geq R \Longrightarrow |\{g \in G \mid d(x,gx) \leq \varepsilon \text{ and } d(y,gy) \leq \varepsilon\}| \leq N.$

イロト イヨト イヨト

Acylindrical actions

Let *G* be group acting by isometries on a metric space (S, d).

Definition

The action of *G* on *S* is called *acylindrical* if $\forall \varepsilon > 0$ $\exists R, N > 0$ such that $\forall x, y \in S$

 $d(x,y) \geq R \Longrightarrow |\{g \in G \mid d(x,gx) \leq \varepsilon \text{ and } d(y,gy) \leq \varepsilon\}| \leq N.$

イロト イヨト イヨト

Acylindrically hyperbolic groups

Definition

If *S* is a hyperbolic space, then the action of *G* on *S* is called *elementary* if the limit set of *G* on the Gromov boundary ∂S contains at most 2 points.

Acylindrically hyperbolic groups

Definition

If *S* is a hyperbolic space, then the action of *G* on *S* is called **elementary** if the limit set of *G* on the Gromov boundary ∂S contains at most 2 points.

Definition

A group *G* is called *acylindrically hyperbolic* if it admits a non-elementary acylindrical action on a hyperbolic space.

Acylindrically hyperbolic groups

Examples:

- non-elementary hyperbolic and relatively hyperbolic groups
- infinite mapping class groups of punctured closed surfaces (Mazur-Minsky, Bowdich)
- $Out(F_n)$ for $n \ge 2$ (Bestvina-Feign, Dahmani-Guirardel-Osin)
- directly indecomposable non-cyclic right angled Artin groups (Sisto, Caprace-Sageev, Osin)
- most 3-manifold groups (Minasyan-Osin)
- groups of deficiency ≥ 2 (Osin)

イロト イ押ト イヨト イヨトー

Acylindrically hyperbolic groups

Definition

Given an acylindrically hyperbolic group G, a subgroup $H \le G$ is called **non-elementary** if for some acylindrical action of G on a hyperbolic space S, the action of H on S is non-elementary.

Main Result

Theorem (J., 2015)

Suppose that *G* is an acylindrically hyperbolic group and that $H \leq G$ is non-elementary. Then *H* is algebraic if and only if *H* is a virtual centralizer of some finite subgroup of *G*.

ヘロン 人間 とくほ とくほ とう

Main Result

Theorem (J., 2015)

Suppose that *G* is an acylindrically hyperbolic group and that $H \leq G$ is non-elementary. Then *H* is algebraic if and only if *H* is a virtual centralizer of some finite subgroup of *G*.

Stronger version of the forward implication:

Theorem (J., 2015)

Suppose that *G* is an acylindrically hyperbolic group and *H* is a non-elementary subgroup of *G*. Then the Zariski closure of *H* contains $C_G(E_G(H))$ where $E_G(H)$ is the unique maximal finite subgroup of *G* normalized by *H*.

イロト イポト イヨト イヨト

Main Result

Theorem (J., 2015)

Suppose that *G* is an acylindrically hyperbolic group and that $H \leq G$ is non-elementary. Then *H* is algebraic if and only if *H* is a virtual centralizer of some finite subgroup of *G*.

Stronger version of the forward implication:

Theorem (J., 2015)

Suppose that *G* is an acylindrically hyperbolic group and *H* is a non-elementary subgroup of *G*. Then the Zariski closure of *H* contains $C_G(E_G(H))$ where $E_G(H)$ is the unique maximal finite subgroup of *G* normalized by *H*.

 $(E_G(H)$ exists by Hull (2013) or Antolin-Minasyan-Sisto (2013).)

Classification of acylindrical actions on hyperbolic spaces

Theorem (Osin, 2013)

If *G* acts acylyndrically on a hyperbolic space, then exactly one of the following holds:

- The action of G is non-elementary.
- G has bounded orbits.
- G is virtually cyclic and contains a loxodromic element.

ヘロト 人間 ト ヘヨト ヘヨト

Corollary (Free products)

Let *A* and *B* be nontrivial groups, and let *H* be an algebraic subgroup of *A* * *B*. Then at least one of the following holds:

- (a) *H* is either infinite cyclic or isomorphic to D_{∞} , the infinite dihedral group.
- (b) *H* is conjugate to a subgroup of either *A* or *B*.

(c) H = A * B.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Corollaries

Corollary (Torsion-free relatively hyperbolic groups)

Let *G* be a torsion-free relatively hyperbolic group with peripheral subgroups $\{H_{\lambda}\}_{\lambda \in \Lambda}$, and let $H \leq G$ be an algebraic subgroup. Then at least one of the following holds:

- (a) H = G.
- (b) H is cyclic.
- (c) *H* is conjugate to a subgroup of some H_{λ} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Corollaries

Corollary (Torsion-free relatively hyperbolic groups)

Let *G* be a torsion-free relatively hyperbolic group with peripheral subgroups $\{H_{\lambda}\}_{\lambda \in \Lambda}$, and let $H \leq G$ be an algebraic subgroup. Then at least one of the following holds:

- (a) H = G.
- (b) H is cyclic.
- (c) *H* is conjugate to a subgroup of some H_{λ} .

Furthermore, if (c) holds for an abelian H_{λ} , then either $H = \{1\}$ or H is conjugate to H_{λ} .

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Corollaries

Corollary (Ascending chains of algebraic subgroups)

Let *G* be an acylindrically hyperbolic group and let $H_1 \leq H_2 \leq H_3 \leq \ldots$ be an ascending chain of algebraic subgroups of *G*. Then either

(a) for each acylindrical action of *G* on a hyperbolic space *S*, the subgroup $\bigcup_{i \in \mathbb{N}} H_i$ acts on *S* with bounded orbits (in particular, each H_i is elliptic), or

(b) the chain stabilizes.

Corollaries

Corollary (Ascending chains of algebraic subgroups)

Let *G* be an acylindrically hyperbolic group and let $H_1 \leq H_2 \leq H_3 \leq \ldots$ be an ascending chain of algebraic subgroups of *G*. Then either

- (a) for each acylindrical action of *G* on a hyperbolic space *S*, the subgroup $\cup_{i \in \mathbb{N}} H_i$ acts on *S* with bounded orbits (in particular, each H_i is elliptic), or
- (b) the chain stabilizes.

Note: in general, it is actually possible for an acylindrically hyperbolic group to have an ascending chain of (elliptic) algebraic subgroups which does not stabilize.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Ascending chain example

Consider a group with presentation $\langle X|R\rangle$ that contains an infinite ascending chain of subgroups

$$K_1 \leq K_2 \leq \ldots (K_i \neq K_{i+1}).$$

・ロン・西方・ ・ ヨン・

Ascending chain example

Consider a group with presentation $\langle X|R\rangle$ that contains an infinite ascending chain of subgroups

$$K_1 \leq K_2 \leq \ldots (K_i \neq K_{i+1}).$$

Let

$$H = \langle X, a, t_1, t_2, \dots | R, [X, a] = 1, [K_1, t_1] = 1, [K_2, t_2] = 1, \dots \rangle$$

Then $G = H * \mathbb{Z}$ is acylindrically hyperbolic.

Ascending chain example

Consider a group with presentation $\langle X|R\rangle$ that contains an infinite ascending chain of subgroups

$$K_1 \leq K_2 \leq \ldots (K_i \neq K_{i+1}).$$

Let

$$H = \langle X, a, t_1, t_2, \dots | R, [X, a] = 1, [K_1, t_1] = 1, [K_2, t_2] = 1, \dots \rangle$$

Then $G = H * \mathbb{Z}$ is acylindrically hyperbolic. Furthermore,

$$K_i = \{x \in H * \mathbb{Z} \mid [x, t_i] = 1\} \cap \{x \in H * \mathbb{Z} \mid [x, a] = 1\}$$

so that $K_1 \le K_2 \le ...$ is an ascending chain of algebraic subgroups of *G* that does not stabilize.

Thank you!

B. Jacobson Algebraic subgroups of acylindrically hyperbolic groups

イロト イロト イヨト イヨト

æ