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Notation:
For each w(x) ∈ G ∗ 〈x〉 and each g ∈ G, let w(g) denote the
image of w(x) under the homomorphism G ∗ 〈x〉 → G given by
taking id : G→ G and sending x 7→ g.

Definition
Write w(x) = 1 to represent an equation in the single variable x
with coefficients in G whose solution set is

{g ∈ G |w(g) = 1}.
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Examples:

Let G = F2 with generators a and b.
If w(x) = [x, a], then the equation w(x) = 1 has solution set
equal to 〈a〉.
If w(x) = a, then the equation w(x) = 1 has solution set
equal to ∅.
If w(x) is 1, then the equation w(x) = 1 has solution set
equal to F2.
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The Zariski topology on G

Definition
The Zariski topology on G is defined by taking the collection
of solution sets to individual equations to be a sub-basis for the
closed sets of the topology.

That is, each Zariski-closed set of
G is of the form

∩i∈ISi

where for each i ∈ I, the set Si is a finite union of solution sets
corresponding to (single-variable) equations with coefficients in
G.

Zariski-closed sets are closed in every T0 group topology,
and, in the case of countable groups, the Zariski-closed
sets are the only such sets (Markov, 1944).
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Algebraic subgroups of G

Definition
A Zariski-closed subgroup (or more generally, a subset) of G is
called algebraic.

Examples:
The whole group G

Any finite subgroup of G

We saw that the subgroup 〈a〉 in F2 = 〈a, b〉 was algebraic.
Centralizers of subsets of G

Exercise: If G is a torsion-free abelian group, then the only
algebraic subgroups of G are G and {1}. (Hint: WLOG,
each equation is of the form gxn = 1, where g ∈ G, n ∈ Z.)
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Algebraic subgroups of G

Goal: structural result for algebraic subgroups in the case
where G is an acylindrically hyperbolic group

Next: definition of acylindrically hyperbolic group, some
examples
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Acylindrical actions

Let G be group acting by isometries on a metric space (S, d).

Definition
The action of G on S is called acylindrical if ∀ ε > 0
∃R,N > 0 such that ∀ x, y ∈ S

d(x, y) ≥ R =⇒ |{g ∈ G | d(x, gx) ≤ ε and d(y, gy) ≤ ε}| ≤ N.

≥ R
x y

gx gy

< ε < ε
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Acylindrically hyperbolic groups

Definition
If S is a hyperbolic space, then the action of G on S is called
elementary if the limit set of G on the Gromov boundary ∂S
contains at most 2 points.

Definition
A group G is called acylindrically hyperbolic if it admits a
non-elementary acylindrical action on a hyperbolic space.
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Acylindrically hyperbolic groups

Examples:
non-elementary hyperbolic and relatively hyperbolic groups
infinite mapping class groups of punctured closed surfaces
(Mazur-Minsky, Bowdich)
Out(Fn) for n ≥ 2 (Bestvina-Feign,
Dahmani-Guirardel-Osin)
directly indecomposable non-cyclic right angled Artin
groups (Sisto, Caprace-Sageev, Osin)
most 3-manifold groups (Minasyan-Osin)
groups of deficiency ≥ 2 (Osin)
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Acylindrically hyperbolic groups

Definition
Given an acylindrically hyperbolic group G, a subgroup H ≤ G
is called non-elementary if for some acylindrical action of G on
a hyperbolic space S, the action of H on S is non-elementary.
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Main Result

Theorem (J., 2015)
Suppose that G is an acylindrically hyperbolic group and that
H ≤ G is non-elementary. Then H is algebraic if and only if H is
a virtual centralizer of some finite subgroup of G.

Stronger version of the forward implication:

Theorem (J., 2015)
Suppose that G is an acylindrically hyperbolic group and H is a
non-elementary subgroup of G. Then the Zariski closure of H
contains CG(EG(H)) where EG(H) is the unique maximal finite
subgroup of G normalized by H.

(EG(H) exists by Hull (2013) or Antolin-Minasyan-Sisto (2013).)
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Classification of acylindrical actions on hyperbolic
spaces

Theorem (Osin, 2013)
If G acts acylyndrically on a hyperbolic space, then exactly one
of the following holds:

1 The action of G is non-elementary.
2 G has bounded orbits.
3 G is virtually cyclic and contains a loxodromic element.
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Corollary (Free products)
Let A and B be nontrivial groups, and let H be an algebraic
subgroup of A ∗ B. Then at least one of the following holds:
(a) H is either infinite cyclic or isomorphic to D∞, the infinite

dihedral group.
(b) H is conjugate to a subgroup of either A or B.
(c) H = A ∗ B.
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Corollary (Torsion-free relatively hyperbolic groups)

Let G be a torsion-free relatively hyperbolic group with
peripheral subgroups {Hλ}λ∈Λ, and let H ≤ G be an algebraic
subgroup. Then at least one of the following holds:
(a) H = G.
(b) H is cyclic.
(c) H is conjugate to a subgroup of some Hλ.

Furthermore, if (c) holds for an abelian Hλ, then either H = {1}
or H is conjugate to Hλ.
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Corollary (Ascending chains of algebraic subgroups)
Let G be an acylindrically hyperbolic group and let
H1 ≤ H2 ≤ H3 ≤ . . . be an ascending chain of algebraic
subgroups of G. Then either
(a) for each acylindrical action of G on a hyperbolic space S,

the subgroup ∪i∈NHi acts on S with bounded orbits (in
particular, each Hi is elliptic), or

(b) the chain stabilizes.

Note: in general, it is actually possible for an acylindrically
hyperbolic group to have an ascending chain of (elliptic)
algebraic subgroups which does not stabilize.
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Ascending chain example

Consider a group with presentation 〈X|R〉 that contains an
infinite ascending chain of subgroups

K1 ≤ K2 ≤ . . . (Ki 6= Ki+1).

Let

H = 〈X, a, t1, t2, . . . |R, [X, a] = 1, [K1, t1] = 1, [K2, t2] = 1, . . .〉

Then G = H ∗ Z is acylindrically hyperbolic. Furthermore,

Ki = {x ∈ H ∗ Z | [x, ti] = 1} ∩ {x ∈ H ∗ Z | [x, a] = 1}

so that K1 ≤ K2 ≤ . . . is an ascending chain of algebraic
subgroups of G that does not stabilize.
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Thank you!
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