Finding all solutions of equations in free groups

Volker Diekert Artur Jeż Wojciech Plandowski

Les Diablerets, 08.03.2016

Diekert, Jeż, Plandowski

Word Equations in Free Groups

08.03.16 1 / 28

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Equations in Free Groups

Definition (Free group)

Free group generated by $\boldsymbol{\Gamma}$

- words over $\Gamma \cup \Gamma^{-1}$
- no cancellation except trivial one $(aa^{-1} = 1)$

Wlog $\Gamma = \Gamma^{-1}$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Equations in Free Groups

Definition (Free group)

Free group generated by $\boldsymbol{\Gamma}$

• words over $\Gamma \cup \Gamma^{-1}$

• no cancellation except trivial one $(aa^{-1} = 1)$

Wlog $\Gamma = \Gamma^{-1}$.

Definition (Word equations in Free group)

Given equations $U_i = V_i$, where $U_i, V_i \in (\Gamma \cup \mathcal{X})^*$. Is there an assignment $S : \mathcal{X} \mapsto \Gamma^*$ satisfying the equations in a free group?

・ 同 ト ・ ヨ ト ・ ヨ ト

Equations in Free Semigroups

Definition

Free semigroup generated by Γ

- words over **F**
- no cancellation at all

Definition (Word equation in a Free Semigroup)

Given equation U = V, where $U, V \in (\Gamma \cup \mathcal{X})^*$. Is there an assignment $S : \mathcal{X} \mapsto \Gamma^*$ satisfying the equation in a free semigroup?

<日

<</p>

Makanin's algorithm

Makanin 1977 Decidability in free semigroups: Rewriting procedure for free semigroups.

A B b A B b

▲ ▲□ ▶

Makanin's algorithm

Makanin 1977

Decidability in free semigroups: Rewriting procedure for free semigroups.

Makanin 1985 Extension to free groups.

A B b A B b

Makanin's algorithm

Makanin 1977

Decidability in free semigroups: Rewriting procedure for free semigroups.

Makanin 1985 Extension to free groups.

Only satisfiability, not all solutions.

A B A A B A

Representation of all solutions

Razborov 1987

Representation of all solutions (free group). (Makanin-Razborov diagrams)

Representation of all solutions

Razborov 1987

Representation of all solutions (free group). (Makanin-Razborov diagrams)

This is important

First step in Kharlampovich & Myasnikov proof of Tarski's Conjecture

Diekert, Jeż, Plandowski

Word Equations in Free Groups

08.03.16 5 / 28

▲ 国 ▶ | ▲ 国 ▶

Progress in semigroups

Schulz 1990

Regular constraints for free semigroup.

Progress in semigroups

Schulz 1990

Regular constraints for free semigroup.

- description of regular languages R_1, R_2, \ldots as part of the input
- conditions $X \in R_i$ or $X \notin R_i$

Description: by a monoid M:

- homomorphism ρ from Γ to M
- $\rho(S(X))$ is fixed for each X

A B A A B A

Involution and free groups

Diekert, Gutiérrez, Hagenah 2001 Solving equations in free groups (with regular constraints) reduces to Solving equations in free semigroups with regular constraints and involution

Involution and free groups

Diekert, Gutiérrez, Hagenah 2001

Solving equations in free groups (with regular constraints) reduces to Solving equations in free semigroups with regular constraints and involution

- purely syntactical
- bijection on the solutions (in case of free groups: reduced)

In groups

- triangulate the equation
- remove cancellation: $XY = Z \rightarrow X = X'R$, $Y = R^{-1}Y'$, X'Y' = Z
- look only at reduced solutions

A B A A B A

In groups

- triangulate the equation
- remove cancellation: $XY = Z \rightarrow X = X'R$, $Y = R^{-1}Y'$, X'Y' = Z
- look only at reduced solutions

Definition (Involution)

Think of it as the inverse in a free group. Bijection $\overline{\cdot}$ on Γ^* and on \mathcal{X} such that

•
$$\overline{\overline{a}} = a$$

•
$$\overline{a_1 a_2 \cdots a_k} = \overline{a_k} \cdots \overline{a_2} \overline{a_1}$$

▲ 国 ▶ | ▲ 国 ▶

In groups

- triangulate the equation
- remove cancellation: $XY = Z \rightarrow X = X'R$, $Y = R^{-1}Y'$, X'Y' = Z
- look only at reduced solutions

Definition (Involution)

Think of it as the inverse in a free group. Bijection $\overline{\cdot}$ on Γ^* and on \mathcal{X} such that

•
$$\overline{\overline{a}} = a$$

•
$$\overline{a_1 a_2 \cdots a_k} = \overline{a_k} \cdots \overline{a_2} \overline{a_1}$$

Regular constraints

Enforce that everything is reduced (no aa^{-1})

・ 何 ト ・ ヨ ト ・ ヨ ト

Compression and word equations in semigroups

Plandowski & Rytter 1998

Length minimal solution of length N is compressible into poly(log N).

< ∃ > < ∃

Compression and word equations in semigroups

Plandowski & Rytter 1998

Length minimal solution of length N is compressible into poly(log N).

Plandowski

- PSPACE algorithm [1999]
- generation of all solutions in PSPACE [2006]

Compression and word equations in semigroups

Plandowski & Rytter 1998

Length minimal solution of length N is compressible into poly(log N).

Plandowski

- PSPACE algorithm [1999]
- generation of all solutions in PSPACE [2006]

J. 2013

The same, but simpler.

▲ 国 ▶ | ▲ 国 ▶

Generation of all solutions?

Adding involution and regular constraints to Plandowski's construction:

- works for satisfiability [Diekert, Gutiérrez, Hagenah 2001]
- does not work for generation of all solutions (problems with involution)

Generation of all solutions?

Adding involution and regular constraints to Plandowski's construction:

- works for satisfiability [Diekert, Gutiérrez, Hagenah 2001]
- does not work for generation of all solutions (problems with involution)

We do this for Jeż's solution.

Representation of all solutions

- Graph (exponential size)
- Nodes: equations of size length O(n), at most n occurrences of variables
- Edges between nodes, labelled with (families of) morphisms

4 3 > 4 3

Representation of all solutions

- Graph (exponential size)
- Nodes: equations of size length O(n), at most n occurrences of variables
- Edges between nodes, labelled with (families of) morphisms

Preserving solutions

- If S is a solution of U = V then
 - the equation is trivial or
 - there is $\phi\text{-labelled}$ edge to an equation U'=V' with a solution S' such that $S=\phi(S')$

・ 回 ト ・ ヨ ト ・ ヨ ト

Representation of all solutions

- Graph (exponential size)
- Nodes: equations of size length O(n), at most n occurrences of variables
- Edges between nodes, labelled with (families of) morphisms

Preserving solutions

- If S is a solution of U = V then
 - the equation is trivial or
 - there is ϕ -labelled edge to an equation U' = V' with a solution S' such that $S = \phi(S')$

If U' = V' has a solution S' and there is ϕ -labelled edge from U = V then $\phi(S')$ is a solution of U = V.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Representation of all solutions

- Graph (exponential size)
- Nodes: equations of size length O(n), at most n occurrences of variables
- Edges between nodes, labelled with (families of) morphisms

Preserving solutions

- If S is a solution of U = V then
 - the equation is trivial or
 - there is $\phi\text{-labelled}$ edge to an equation U'=V' with a solution S' such that $S=\phi(S')$

If U' = V' has a solution S' and there is ϕ -labelled edge from U = V then $\phi(S')$ is a solution of U = V.

Each solution is obtained on a path from original equation to a trivial one.

a a a b a b c a b a b b a b c b a a a a b a b c a b a b b a b c b a

Diekert, Jeż, Plandowski

Word Equations in Free Groups

08.03.16 12 / 28

a a a b a b c a b a b b a b c b a a a a b a b c a b a b b a b c b a

Diekert, Jeż, Plandowski

Word Equations in Free Groups

08.03.16 12 / 28

a₃ b a b c a b a b b a b c b a a₃ b a b c a b a b b a b c b a

Diekert, Jeż, Plandowski

Word Equations in Free Groups

08.03.16 12 / 28

→ ∃ ▶

a₃ b a b c a b a b₂ a b c b a a₃ b a b c a b a b₂ a b c b a

08.03.16 12 / 28

- 4 回 ト 4 ヨ ト 4 ヨ ト

< □ > < □ > < □ > < □ > < □ > < □ >

< □ > < 同 > < 回 > < 回 > < 回 >

Iterate!

< □ > < □ > < □ > < □ > < □ > < □ >

Regular constraints

• When c replaces w then $\rho(c) \leftarrow \rho(w)$.

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Involution

When we replace ab with c, we should also replace $\overline{b}\overline{a}$ by \overline{c} .

∃ >

Involution

When we replace ab with c, we should also replace $\overline{b}\overline{a}$ by \overline{c} .

What if they overlap?

Involution

When we replace ab with c, we should also replace $\overline{b}\overline{a}$ by \overline{c} .

What if they overlap?

Can happen only when $a = \overline{a}$ or $b = \overline{b}$.
Involution

When we replace ab with c, we should also replace $\overline{b}\overline{a}$ by \overline{c} .

What if they overlap?

Can happen only when $a = \overline{a}$ or $b = \overline{b}$.

Replace maximal such overlapping factors.

a = b

a^i for $i \ge 2$ and \overline{a}^i for $i \ge 2$

イロト イヨト イヨト イヨト

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

a = b $a^{i} \text{ for } i \ge 2 \text{ and } \overline{a}^{i} \text{ for } i \ge 2$ $a \ne b$ $\overline{a} \ne a, \ \overline{b} \ne b \text{ ab and } \overline{ab} = \overline{b}\overline{a}$ $\overline{a} = a, \ \overline{b} \ne b \text{ ab, } \overline{ab} = \overline{b}a \text{ and } \overline{b}ab$

イロト イボト イヨト イヨト

a = b $a^{i} \text{ for } i \ge 2 \text{ and } \overline{a}^{i} \text{ for } i \ge 2$ $a \neq b$ $\overline{a} \neq a, \ \overline{b} \neq b \ ab \text{ and } \overline{ab} = \overline{b}\overline{a}$ $\overline{a} = a, \ \overline{b} \neq b \ ab, \ \overline{ab} = \overline{b}a \text{ and } \overline{b}ab$ $\overline{a} \neq a, \ \overline{b} = b \ ab, \ \overline{ab} = b\overline{a} \text{ and } ab\overline{a}$

・ 同 ト ・ ヨ ト ・ ヨ ト

a = b $a^{i} \text{ for } i \ge 2 \text{ and } \overline{a}^{i} \text{ for } i \ge 2$ $a \neq b$ $\overline{a} \neq a, \ \overline{b} \neq b \ ab \text{ and } \overline{ab} = \overline{b}\overline{a}$ $\overline{a} = a, \ \overline{b} \neq b \ ab, \ \overline{ab} = \overline{b}a \text{ and } \overline{b}ab$ $\overline{a} \neq a, \ \overline{b} = b \ ab, \ \overline{ab} = b\overline{a} \text{ and } \overline{b}ab$ $\overline{a} \neq a, \ \overline{b} = b \ ab, \ \overline{ab} = b\overline{a} \text{ and } ab\overline{a}$ $\overline{a} = a, \ \overline{b} = b \ (ba)^{i}, \ a(ba)^{i}, \ (ba)^{i}b \text{ and } (ab)^{i} \ (i \ge 1)$

<日

<</p>

a = b $a^{i} \text{ for } i \ge 2 \text{ and } \overline{a}^{i} \text{ for } i \ge 2$ $a \ne b$ $\overline{a} \ne a, \ \overline{b} \ne b \ ab \text{ and } \overline{ab} = \overline{b}\overline{a}$ $\overline{a} = a, \ \overline{b} \ne b \ ab, \ \overline{ab} = \overline{b}a \text{ and } \overline{b}ab$ $\overline{a} \ne a, \ \overline{b} = b \ ab, \ \overline{ab} = b\overline{a} \text{ and } b\overline{ab}$ $\overline{a} \ne a, \ \overline{b} = b \ ab, \ \overline{ab} = b\overline{a} \text{ and } ab\overline{a}$ $\overline{a} = a, \ \overline{b} = b \ (ba)^{i}, \ a(ba)^{i}, \ (ba)^{i}b \text{ and } (ab)^{i} \ (i \ge 1)$

Lemma

Maximal ab-factors do not overlap.

Compress in parallel the maximal *ab*-blocks.

Block types

Definition (Factor and block types)
Factor ab is
 explicit it comes from U or V;
 implicit comes solely from S(X);
 crossing in other case.
ab is crossing if ab or ab have a crossing occurrence,
non-crossing otherwise.

< 注入 < 注入

Block types

Definition (Factor and block types)
Factor ab is
 explicit it comes from U or V;
 implicit comes solely from S(X);
 crossing in other case.
ab is crossing if ab or ab have a crossing occurrence,
non-crossing otherwise.

Alphabet: $a = \overline{a}, b = \overline{b}, c \neq \overline{c}$ Equation: $baXbc\overline{c}ab\overline{X}ab = babac\overline{c}abc\overline{c}abac\overline{c}abab$ Solution: $S(X) = bac\overline{c}a$

- babaccabccabaccabab [baXbccabXab]
- babaccabccabaccabab [baXbccabXab]
- babaccabccabaccabab [baXbccabXab]

Compression of non-crossing *ab*-blocks

When *ab* is non-crossing.

∃ >

Compression of non-crossing ab-blocks

When *ab* is non-crossing.

CompNCr

 let f₁, f₂,..., f_k be different *ab*-blocks in the equation
 replace each explicit factor f_i in U and V by c_{fi} f_i = f̄_j ⇔ c_i = c̄_j
 set ρ(c_i) = ρ(f_i)

A B A A B A

When ab is non-crossing for S then CompNCr(a, b) returns an equation with a corresponding solution S'.

A B A A B A

When ab is non-crossing for S then CompNCr(a, b) returns an equation with a corresponding solution S'.

Consider an occurrence of *ab*-block explicit replaced explicitly implicit we change *S* to *S'* crossing there is none

When ab is non-crossing for S then CompNCr(a, b) returns an equation with a corresponding solution S'.

Consider an occurrence of *ab*-block explicit replaced explicitly implicit we change *S* to *S'* crossing there is none

 $baXbccab\overline{X}ab = babaccabccabaccabab$ S(X) = bacca

A B b A B b

When ab is non-crossing for S then CompNCr(a, b) returns an equation with a corresponding solution S'.

Consider an occurrence of *ab*-block explicit replaced explicitly implicit we change *S* to *S'* crossing there is none

 $baXbccab\overline{X}ab = babaccabccabaccabab$ S(X) = bacca $baXbdab\overline{X}ab = babadabdabadabab$ S(X) = bada

• • = • • = •

Most difficult

Consider $a = \overline{a}$, $b = \overline{b}$. *ab*-blocks: $(ab)^i$, $b(ab)^i$, $(ab)^i a$, $(ba)^i$

Most difficult

Consider $a = \overline{a}$, $b = \overline{b}$. *ab*-blocks: $(ab)^i$, $b(ab)^i$, $(ab)^i a$, $(ba)^i$

ab is crossing

• There is *ab*-factor partially in X and partially outside.

A B A A B A

Most difficult

Consider $a = \overline{a}$, $b = \overline{b}$. *ab*-blocks: $(ab)^i$, $b(ab)^i$, $(ab)^i a$, $(ba)^i$

ab is crossing

- There is *ab*-factor partially in X and partially outside.
- What is the part inside?

4 3 > 4 3

Most difficult

Consider $a = \overline{a}$, $b = \overline{b}$. *ab*-blocks: $(ab)^i$, $b(ab)^i$, $(ab)^i a$, $(ba)^i$

ab is crossing

- There is *ab*-factor partially in X and partially outside.
- What is the part inside?

```
Definition

ab-prefix of S(X) a, b or ab-block

ab-suffix of S(X) a, b or ab-block
```

• • = • • = •

f is the *ab*-prefix of S(X)

• replace X with fX and \overline{X} by $\overline{X} \overline{f}$ (implicitly change solution S(X) = fw to S(X) = w $S(\overline{X}) = \overline{w}\overline{f}$ to $S(\overline{X}) = \overline{w}$)

f is the *ab*-prefix of S(X)

• replace X with fX and \overline{X} by $\overline{X} \overline{f}$ (implicitly change solution S(X) = fw to S(X) = w $S(\overline{X}) = \overline{w}\overline{f}$ to $S(\overline{X}) = \overline{w}$)

• change ρ_X , $\rho_{\overline{X}}$ so that : $\rho_X = \rho(f)\rho'_X$, $\rho_{\overline{X}} = \rho_{\overline{X'}}\rho(\overline{f})$

f is the ab-prefix of S(X)

• replace X with
$$fX$$
 and \overline{X} by $\overline{X}\overline{f}$
(implicitly change solution $S(X) = fw$ to $S(X) = w$
 $S(\overline{X}) = \overline{w}\overline{f}$ to $S(\overline{X}) = \overline{w}$)

• change ρ_X , $\rho_{\overline{X}}$ so that : $\rho_X = \rho(f)\rho'_X$, $\rho_{\overline{X}} = \rho_{\overline{X'}}\rho(\overline{f})$

• if
$$S(X) = 1$$
 and $\rho_X = \rho(1)$ then remove X.

f is the ab-prefix of S(X)

• replace X with fX and \overline{X} by $\overline{X} \overline{f}$ (implicitly change solution S(X) = fw to S(X) = w $S(\overline{X}) = \overline{w}\overline{f}$ to $S(\overline{X}) = \overline{w}$)

• change ρ_X , $\rho_{\overline{X}}$ so that : $\rho_X = \rho(f)\rho'_X$, $\rho_{\overline{X}} = \rho_{\overline{X'}}\rho(\overline{f})$

• if
$$S(X) = 1$$
 and $\rho_X = \rho(1)$ then remove X.

Lemma

Uncrossing preserves solutions

<日

<</p>

f is the ab-prefix of S(X)

• replace X with fX and \overline{X} by $\overline{X} \overline{f}$ (implicitly change solution S(X) = fw to S(X) = w $S(\overline{X}) = \overline{w}\overline{f}$ to $S(\overline{X}) = \overline{w}$)

• change ρ_X , $\rho_{\overline{X}}$ so that : $\rho_X = \rho(f)\rho'_X$, $\rho_{\overline{X}} = \rho_{\overline{X'}}\rho(\overline{f})$

• if
$$S(X) = 1$$
 and $\rho_X = \rho(1)$ then remove X.

Lemma

Uncrossing preserves solutions

Lemma

After performing this for all variables, ab is no longer crossing.

f is the ab-prefix of S(X)

• replace X with fX and \overline{X} by $\overline{X} \overline{f}$ (implicitly change solution S(X) = fw to S(X) = w $S(\overline{X}) = \overline{w}\overline{f}$ to $S(\overline{X}) = \overline{w}$)

• change ρ_X , $\rho_{\overline{X}}$ so that : $\rho_X = \rho(f)\rho'_X$, $\rho_{\overline{X}} = \rho_{\overline{X'}}\rho(\overline{f})$

• if
$$S(X) = 1$$
 and $\rho_X = \rho(1)$ then remove X.

Lemma

Uncrossing preserves solutions

Lemma

After performing this for all variables, ab is no longer crossing.

Compress the *ab*-blocks!

Diekert, Jeż, Plandowski

08.03.16 20 / 28

< □ > < □ > < □ > < □ > < □ > < □ >

Alphabet: $a = \overline{a}, b = \overline{b}, c \neq \overline{c}$ Equation: $baXbc\overline{c}ab\overline{X}ab = babac\overline{c}abc\overline{c}abac\overline{c}abab$ Solution: $S(X) = bac\overline{c}a$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 >

Alphabet: $a = \overline{a}, b = \overline{b}, c \neq \overline{c}$ Equation: $baXbc\overline{c}ab\overline{X}ab = babac\overline{c}abc\overline{c}abac\overline{c}abab$ Solution: $S(X) = bac\overline{c}a$ Equation: $babaXabc\overline{c}aba\overline{X}abab = babac\overline{c}abc\overline{c}abac\overline{c}abab$ Solution: $S'(X) = c\overline{c}$

• • = • • = •

Algorithm

while $U \notin \Gamma$ and $V \notin \Gamma$ do choose *ab* from the equation uncross the *ab*-blocks compress *ab*-blocks

 \triangleright If needed

A B b A B b

Algorithm

while $U \notin \Gamma$ and $V \notin \Gamma$ do choose *ab* from the equation uncross the *ab*-blocks compress *ab*-blocks

Theorem

This preserves solution. This shortens the solution. \triangleright If needed

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Theorem (Main property: keeps the equation short)

For any solution there is always ab such that after ab-compression the equation has size $O(n^2)$.

(B)

Theorem (Main property: keeps the equation short)

For any solution there is always ab such that after ab-compression the equation has size $O(n^2)$.

Proof.

Take c = 18

• if there is non-crossing *ab*: do it!

Theorem (Main property: keeps the equation short)

For any solution there is always ab such that after ab-compression the equation has size $O(n^2)$.

Proof.

Take c = 18

- if there is non-crossing *ab*: do it!
- each crossing *ab*-compression: +2n letters

Theorem (Main property: keeps the equation short)

For any solution there is always ab such that after ab-compression the equation has size $O(n^2)$.

Proof.

Take c = 18

- if there is non-crossing *ab*: do it!
- each crossing *ab*-compression: +2n letters
- if size of the equation $\leq 18n^2 2n$: do it!

< □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Main property: keeps the equation short)

For any solution there is always ab such that after ab-compression the equation has size $O(n^2)$.

Proof.

Take c = 18

- if there is non-crossing *ab*: do it!
- each crossing *ab*-compression: +2*n* letters
- if size of the equation $\leq 18n^2 2n$: do it!
- there are $\leq 4n$ crossing *ab*

Theorem (Main property: keeps the equation short)

For any solution there is always ab such that after ab-compression the equation has size $O(n^2)$.

Proof.

Take c = 18

- if there is non-crossing *ab*: do it!
- each crossing *ab*-compression: +2*n* letters
- if size of the equation $\leq 18n^2 2n$: do it!
- there are $\leq 4n$ crossing *ab*
- so some covers $\geq (18n^2 2n)/4n \geq 4n$ letters

Theorem (Main property: keeps the equation short)

For any solution there is always ab such that after ab-compression the equation has size $O(n^2)$.

Proof.

Take c = 18

- if there is non-crossing *ab*: do it!
- each crossing *ab*-compression: +2*n* letters
- if size of the equation $\leq 18n^2 2n$: do it!
- there are $\leq 4n$ crossing *ab*
- so some covers $\geq (18n^2 2n)/4n \geq 4n$ letters
- so 4n/2 = 2n letters are removed
Crucial property

Theorem (Main property: keeps the equation short)

For any solution there is always ab such that after ab-compression the equation has size $O(n^2)$.

Proof.

Take c = 18

- if there is non-crossing *ab*: do it!
- each crossing *ab*-compression: +2*n* letters
- if size of the equation $\leq 18n^2 2n$: do it!
- there are $\leq 4n$ crossing *ab*
- so some covers $\geq (18n^2 2n)/4n \geq 4n$ letters
- so 4n/2 = 2n letters are removed
- the equation does not grow

A D N A B N A B N A B N

Corollary

Satisfiability of word equations in free semigroups with regular constraints and involution is in PSPACE.

4 3 > 4 3

Corollary

Satisfiability of word equations in free semigroups with regular constraints and involution is in PSPACE.

Proof.

Just guess so that the equation stays polynomial.

< ∃ > < ∃

Corollary

Satisfiability of word equations in free semigroups with regular constraints and involution is in PSPACE.

Proof.

Just guess so that the equation stays polynomial.

Corollary

The graph representing all solutions of word equations in free semigroups with regular constraints and involution can be constructed in PSPACE.

Corollary

Satisfiability of word equations in free semigroups with regular constraints and involution is in PSPACE.

Proof.

Just guess so that the equation stays polynomial.

Corollary

The graph representing all solutions of word equations in free semigroups with regular constraints and involution can be constructed in PSPACE.

Proof.

- produce all nodes
- verify, whether we can go from an equation to an equation

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Corollary

Satisfiability of word equations in free semigroups with regular constraints and involution is in PSPACE.

Proof.

Just guess so that the equation stays polynomial.

Corollary

The graph representing all solutions of word equations in free semigroups with regular constraints and involution can be constructed in PSPACE.

Proof.

- produce all nodes
- verify, whether we can go from an equation to an equation

Almost

What about lengths of *ab*-blocks?

Idea

• ab factors can be arbitrarily long

< □ > < 同 > < 回 > < 回 > < 回 >

Idea

- ab factors can be arbitrarily long
- when we replace *ab*-blocks, only equality matters, not length
- pop $(ab)^{\ell_X}$ and $(ba)^{r_X}$ from X but treat ℓ_X, r_X as integer variables

A B A A B A

Idea

- ab factors can be arbitrarily long
- when we replace ab-blocks, only equality matters, not length
- pop $(ab)^{\ell_X}$ and $(ba)^{r_X}$ from X but treat ℓ_X, r_X as integer variables
- guess the equal blocks
- check if they can be equal
- replace them

< ∃ ►

Idea

- ab factors can be arbitrarily long
- when we replace ab-blocks, only equality matters, not length
- pop $(ab)^{\ell_X}$ and $(ba)^{r_X}$ from X but treat ℓ_X, r_X as integer variables
- guess the equal blocks
- check if they can be equal
- replace them

< ∃ > < ∃

• $aXbXXX = \overline{X}abYY$

Diekert, Jeż, Plandowski

イロト イヨト イヨト イヨト

• $aXbXXX = \overline{X}abYY$

•
$$S(X) = (ba)^{\ell_X}, S(Y) = (ba)^{\ell_Y}$$

<ロト < 四ト < 三ト < 三ト

•
$$aXbXXX = \overline{X}abYY$$

•
$$S(X) = (ba)^{\ell_X}, S(Y) = (ba)^{\ell_Y}$$

•
$$(ab)^{\ell_X+1}(ba)^{3\ell_X} = (ab)^{\ell_X+1}(ba)^{2\ell_Y}$$

< □ > < □ > < □ > < □ > < □ >

•
$$3\ell_X = 2\ell_Y$$

< □ > < □ > < □ > < □ > < □ >

•
$$aXbXXX = \overline{X}abYY$$

• $S(X) = (ba)^{\ell_X}, S(Y) = (ba)^{\ell_Y}$
• $(ab)^{\ell_X+1}(ba)^{3\ell_X} = (ab)^{\ell_X+1}(ba)^{2\ell_X}$

•
$$3\ell_X = 2\ell_Y$$

• turn to $c_{f_1}c_{f_2} = c_{f_1}c_{f_2}$

Y

<ロト < 四ト < 三ト < 三ト

• $aXbXXX = \overline{X}abYY$

•
$$S(X) = (ba)^{\ell_X}, S(Y) = (ba)^{\ell_Y}$$

•
$$(ab)^{\ell_X+1}(ba)^{3\ell_X} = (ab)^{\ell_X+1}(ba)^{2\ell_Y}$$

- $3\ell_X = 2\ell_Y$
- turn to $c_{f_1}c_{f_2} = c_{f_1}c_{f_2}$
- Lengths: linear combination of $\{\ell_X, r_X\}_{X \in \mathcal{X}}$ and constants.

• • = • • = •

• $aXbXXX = \overline{X}abYY$

•
$$S(X) = (ba)^{\ell_X}, S(Y) = (ba)^{\ell_Y}$$

•
$$(ab)^{\ell_X+1}(ba)^{3\ell_X} = (ab)^{\ell_X+1}(ba)^{2\ell_Y}$$

- $3\ell_X = 2\ell_Y$
- turn to $c_{f_1}c_{f_2} = c_{f_1}c_{f_2}$
- Lengths: linear combination of $\{\ell_X, r_X\}_{X \in \mathcal{X}}$ and constants.
- Equality: equation in $\{\ell_X, r_X\}_{X \in \mathcal{X}}$

A B A A B A

• $aXbXXX = \overline{X}abYY$

•
$$S(X) = (ba)^{\ell_X}, S(Y) = (ba)^{\ell_Y}$$

•
$$(ab)^{\ell_X+1}(ba)^{3\ell_X} = (ab)^{\ell_X+1}(ba)^{2\ell_Y}$$

- $3\ell_X = 2\ell_Y$
- turn to $c_{f_1}c_{f_2} = c_{f_1}c_{f_2}$
- Lengths: linear combination of $\{\ell_X, r_X\}_{X \in \mathcal{X}}$ and constants.
- Equality: equation in $\{\ell_X, r_X\}_{X \in \mathcal{X}}$

Verification

Guessed equalities \iff linear Diophantine equations in $\{\ell_X, r_X\}_{X \in \mathcal{X}}$

→ Ξ →

< 1 k

• $aXbXXX = \overline{X}abYY$

•
$$S(X) = (ba)^{\ell_X}, S(Y) = (ba)^{\ell_Y}$$

•
$$(ab)^{\ell_X+1}(ba)^{3\ell_X} = (ab)^{\ell_X+1}(ba)^{2\ell_Y}$$

- $3\ell_X = 2\ell_Y$
- turn to $c_{f_1}c_{f_2} = c_{f_1}c_{f_2}$
- Lengths: linear combination of $\{\ell_X, r_X\}_{X \in \mathcal{X}}$ and constants.
- Equality: equation in $\{\ell_X, r_X\}_{X \in \mathcal{X}}$

Verification

Guessed equalities \iff linear Diophantine equations in $\{\ell_X, r_X\}_{X \in \mathcal{X}}$

has size proportional to equation

< 3 >

< 1 k

• $aXbXXX = \overline{X}abYY$

•
$$S(X) = (ba)^{\ell_X}, S(Y) = (ba)^{\ell_Y}$$

•
$$(ab)^{\ell_X+1}(ba)^{3\ell_X} = (ab)^{\ell_X+1}(ba)^{2\ell_Y}$$

- $3\ell_X = 2\ell_Y$
- turn to $c_{f_1}c_{f_2} = c_{f_1}c_{f_2}$
- Lengths: linear combination of $\{\ell_X, r_X\}_{X \in \mathcal{X}}$ and constants.
- Equality: equation in $\{\ell_X, r_X\}_{X \in \mathcal{X}}$

Verification

Guessed equalities \iff linear Diophantine equations in $\{\ell_X, r_X\}_{X \in \mathcal{X}}$

- has size proportional to equation
- can be verified in polynomial space

< 3 >

• $aXbXXX = \overline{X}abYY$

•
$$S(X) = (ba)^{\ell_X}, S(Y) = (ba)^{\ell_Y}$$

•
$$(ab)^{\ell_X+1}(ba)^{3\ell_X} = (ab)^{\ell_X+1}(ba)^{2\ell_Y}$$

- $3\ell_X = 2\ell_Y$
- turn to $c_{f_1}c_{f_2} = c_{f_1}c_{f_2}$
- Lengths: linear combination of $\{\ell_X, r_X\}_{X \in \mathcal{X}}$ and constants.
- Equality: equation in $\{\ell_X, r_X\}_{X \in \mathcal{X}}$

Verification

Guessed equalities \iff linear Diophantine equations in $\{\ell_X, r_X\}_{X \in \mathcal{X}}$

- has size proportional to equation
- can be verified in polynomial space
- one solution: one morphism

Diophantine equations and graph representation

- Edges can be labelled with (polynomial-size) system of linear Diophantine equations.
- Each solution gives one morphism.

Open questions, related research, etc.

Open questions

- Is it more general?
- To what groups it generalises?

∃ >