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Goal

To understand finitely generated models of the universal theory of
free groups (in classical categories of groups).



Algebraic characterization: Fully residually H
groups

Definition (Fully residually free)

A group G is fully residually free if for any finite set of non-trivial
elements there is a homomorphism from G to a free group which is
injective in the finite set.
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Algebraic characterization: Fully residually H
groups

Definition (Fully residually free)

A group G is fully residually free if for any finite set of non-trivial
elements there is a homomorphism from G to a free group which is
injective in the finite set.

Example (Finitely generated fully residually Z)

Suppose that a finitely generated group G is fully residually Z, then
G is free abelian.

Indeed, if x,y € G, then any homomorphism ¢ : G — Z satisfies
that o([x, y]) = [¢(x),¢(y)] = 1. Hence [x,y] = 1 for all

x,y € G. Hence G is f.g. abelian: G ~ Z" x T, where T is the
torsion subgroup. Any homomorphism ¢ : G — 7Z satisfies that
©(T)=1, hence T =1 and so G is free abelian.



Algebraic characterization: Fully residually H
groups

Definition (Fully residually free)

A group G is fully residually free if for any finite set of non-trivial
elements there is a homomorphism from G to a free group which is
injective in the finite set.

Example (Finitely generated fully residually Z)

Any finitely generated free abelian group is fully residually Z



Algebraic characterization: Fully residually H
groups
Definition (Fully residually free)

A group G is fully residually free if for any finite set of non-trivial
elements there is a homomorphism from G to a free group which is
injective in the finite set.

Example (Finitely generated fully residually Z)

Any finitely generated free abelian group is fully residually Z
Let n =2, Z? = (a, b) and Z = (x).

For any finite set S = {(a", b%),...,(a', b%)} C Z?, the
homomorphism

[ ax
vs - b— x"

where n=3>" (|ri| + |si|) is injective in S

i=1,..,



Characterization

Finitely generated fully residually free group or limit
groups;

Finitely generated models of the universal theory of F;
Coordinate groups of irreducible algebraic sets;

Finitely generated subgroups of the ultra-power of F;

Gromov-Hausdorff limits of free groups in a compact space of
marked groups;

Groups acting on a limit tree obtained from sequences of
homomorphisms to F;

Groups realising atomic types over F...
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Universe of limit groups over free groups

Definition
A group G equipped with the action of the ring Z[t| subject to the

following axioms:
@gl=gg'=11"=1
@ g+’ =g gf g = (g,
© (h-gh)" = h-gh
Q if [g,h] =1, then (gh)* = g“h*;
is called a Z[t]-group.
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Universe of limit groups over free groups

Definition
A group G equipped with the action of the ring Z[t] subject to the
following axioms:

@gl=gg'=11"=1
@ g7 =g g" g = (g°)";
© (hlgh)* = h-1g°h;
Q if [g,h] =1, then (gh)* = g“h%;
is called a Z[t]-group.
Let G = F(a, b) be the free group of rank 2.
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Universe of limit groups over free groups

Definition
A group G equipped with the action of the ring Z[t] subject to the
following axioms:

@sgl=gg'=11"=1
@ g7 =g g’ g7 = (g")";
o (highy = higeh
Q if [g,h] =1, then (gh)® = g“h*;
is called a Z[t]-group.
Let G = F(a, b) be the free group of rank 2.
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Universe of limit groups over free groups

Definition
A group G equipped with the action of the ring Z[t] subject to the
following axioms:

@g'l=gg'=11"=1
@ g7 =g g’ g = (g°)";
Q (hlgh)® = h~lg%h;
Q if [g,h] =1, then (gh)® = g“h*;
is called a Z[t]-group.
Let G = F(a, b) be the free group of rank 2.

Theorem (Lyndon, 61)
The free Z[t]|-group is fully residually free.



Universe of limit groups over free groups

Definition
A group G equipped with the action of the ring Z[t] subject to the
following axioms:

@gl=gg=11"=1
@ g =g g g = (g°);
o (high)y = hlgoh
Q if [g,h] =1, then (gh)® = g“h;
is called a Z[t]-group.
Let G = F(a, b) be the free group of rank 2.

Corollary

Any finitely generated subgroup of the free Z[t]-group is fully
residually free and so a limit group.
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Extension of centralisers

Definition
Let w € G, then H = (G, x = w' | [x, C(w)] = 1) is called the
extension of the centraliser of w.

F <Gy = {(a,b,a" | [a,a'] = 1) <
<Gy = <G1,att —at | [C(a),atz] =1)<
<(Gy, (a*b7tab?)t | [C(a*btab?), (a®b 1ab?)T] = 1)

Theorem (Miasnikov, Remeslennikov, 94)

The free Z[t]-group F”!tl is the direct limit of iterated centraliser
extensions.
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Morphisms and discrimination

Theorem (Miasnikov-Remeslennikov, '94)

The free Z[t]-group FZItl is the direct limit of iterated centraliser
extensions.

F <Gy = {(a,b,a" | [a,a'] = 1) <
<Gy = (G, a" =a" |[C(a),a"] = 1) <
<(Gy, (a*btab?)t | [C(a*b~1ab?), (a*btab?)!] = 1)
Theorem (Kharlampovich-Miasnikov '98)
o Any limit group is a subgroup of FZItl,

@ Every limit group is a subgroup of a finite iterated extension of
centralisers of the free group.



Morphisms and discrimination

Theorem (Miasnikov-Remeslennikov, '94)

The free Z[t]-group FZItl is the direct limit of iterated centraliser
extensions.

F <Gy = {(a,b,a" | [a,a'] = 1) <
<Gy = (G, a" =a" |[C(a),a"] = 1) <
<(Gy, (a*btab?)t | [C(a*b~1ab?), (a*btab?)!] = 1)
Theorem (Kharlampovich-Miasnikov '98)

o Any limit group is a subgroup of FZItl,

@ Every limit group is a subgroup of a finite iterated extension of
centralisers of the free group.

One could do amalgamated products instead

F<G1:F*<W>Z[t]<



Pro-p groups

o Let (A;),i € N be a family of finite p-groups and
o let fjj : Aj — A for all i < j family of homomorphisms with
the following properties:
o f; is the identity in A;,
o fyy =fjofyforalli<j<k



Pro-p groups

o Let (A;),i € N be a family of finite p-groups and
o let fjj : Aj — A for all i < j family of homomorphisms with
the following properties:
o f; is the identity in A;,
o fyy =fjofyforalli<j<k

@ Then
P=IlmA; = {(a,-) S H A; ’ f,-j(aj) = a; for all ISJ}
— ieN
with the topology induced by the product topology on [] A; is

ieN
called a pro-p group.
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Consider Z and all its p-quotients Z/p"Z there are natural
maps from f;; : Z/pZ — Z/p'Z, i < j .
We take the inverse limit and obtain Z,.

The free group is residually nilpotent. The quotient of the free
group by the ¢ + 1-th member of the lower central is the free
nilpotent group of class ¢

Make it into a p-group by imposing all generators to have
order p".

Take the inverse limit and obtain the free pro-p group.

it is the free object of the category.
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Elementary theory of free pro-p groups

Analogue of Tarski's problem for free pro-p groups:
o Elementary equivalence of free pro-p groups is trivial;

@ More generally, two f.g. pro-p groups are elementarily
equivalent iff they are isomorphic (Jarden-Lubotzky, 2011).

@ Decidability of the first-order theory of the free pro-p group.

o Axiomatisation of the free pro-p group and description of
(abstract) groups elementarily equivalent to it. abstract
groups.
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Algebraic geometry over pro-p groups

Pro-p groups form a category and all usual definitions from
algebraic geometry carry over to the pro-p setting, e.g.
G[[X]] = G *, F(X).

A pro-p group G is fully residually free pro-p if for any

g1, 82, --.,8n from G there exists a surjective continuous
¢: G — T, so that ¢(g;) # 1.

Theorem (Kochloukova, Zalesskii, 2010)

Every orientable surface pro-p group
Gy = (X1, X2, ..., X4 | [x1,%2] - - - [X2d—1, X0q] = 1)

is fully residually free pro-p, d even.



What are limit groups over pro-p groups?

Theorem (Kharlampovich-Miasnikov '98)

Any limit group is a subgroup of FZIt,
Every limit group is a subgroup of a finite iterated extension of
centralisers of the free group.

Let Gg be the class of all free pro-p groups of finite rank.
Define inductively G,,, where G, € G, is a free pro-p
amalgamated product G, 1 U¢c A, where G,_1 € G,_1, C is
any self-centralised procyclic pro-p subgroup of G,_1, A is any
finite rank free abelian pro-p group such that C is a direct
summand of A.

Define limit groups to be (topologically) f.g. subgroups of
extensions of centralisers.



What are limit groups over pro-p groups?
Theorem (Kharlampovich-Miasnikov '98)

Any limit group is a subgroup of FZIt,

Every limit group is a subgroup of a finite iterated extension of
centralisers of the free group.

Let Gg be the class of all free pro-p groups of finite rank.

Define inductively G,,, where G, € G, is a free pro-p
amalgamated product G, 1 U¢c A, where G,_1 € G,_1, C is
any self-centralised procyclic pro-p subgroup of G,_1, A is any
finite rank free abelian pro-p group such that C is a direct
summand of A.

Define limit groups to be (topologically) f.g. subgroups of
extensions of centralisers.

Problem (Kochloukova, Zalesskii, 2011)
Is every pro-p “limit group” (fully) residually free pro-p?



Binomial rings and closures

Definition

A domain R of characteristic 0 is called binomial if for any A € R

and n € N, the ring R contains the binomial coefficients:
AN=1)(A=2)--(A—n+1)

n__
¢y = o .




Binomial rings and closures

Definition
Define RP™ recursively as follows. Let R = Ry < L, suppose that
R; < L is already defined and define R; .1 as follows

R,'+1 = <R,’, C;,l | a € R~ R,'_1> < L.

Set ||_m> R; = RPn,



Binomial rings and closures

Definition
Define RP™ recursively as follows. Let R = Ry < L, suppose that
R; < L is already defined and define R; .1 as follows

R,'+1 = <R,’, C;,l | a € R~ R,'_1> < L.
. . _ pbin
Set ||_m> R; = R°",
Proposition (Casals-Ruiz, K, Remeslennikov)

@ R" is a binomial ring containing R;

@ For any binomial ring S and any ¢ there exists a unique
R —9 S
¢ RPM — S st N A
Rbin
© R"" s discriminated by R
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Nilpotent groups and R-groups
When considering non-commutative groups, it is natural to attempt
to extend the idea of a module to the noncommutative case - a
group admitting exponents in some ring R.
The chief difficulty lies in attempting to replace the rule
r(x +y) = rx + ry (define an action of the ring).

@ If N is a group which is complete and Hausdorff in its p-adic
topology, then for any x € N, the homomorphism of Z into N
taking n to x" extends naturally to a homomorphism of the
groups Z, of p-adic integers into N. We make N into a group
admitting exponents in the ring of p-adic integers.

@ If K is any field of characteristic zero, then an exponent can
be defined on UT,(K):

(L+x)" =14m+C%°+...

@ If K is the field of real numbers, then UT,(K) is a nilpotent
Lie group, and for any g € UT,(K), the set of elements of the
form g” defined in this way, is exactly the one-parameter
subgroup generated by g.



Hall R-groups

Definition
Let R be a binomial ring. A nilpotent group G of a class m is
called a Hall R-group if for all x,y,x1,...,x, € G and any

A\, 1 € R one has:
@ G is a nilpotent R-group of class m;
o (y hy)t = (b)Y
o X x) = (x-- ~><,,)’\7'2(X)C2A e Tm(x)%, where
Ti(x) € Ti—1(F(x)) is the i-th Petrescu word defined in the
free group F(x) by

xioxt = (%) Uma(x) G - (%)
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Free pro-Hall R-group

e Let F(X, R, c) be the free Hall R-group on X of class c.

@ For all ¢ > 1, there is a natural homomorphism
Ve F(X,R,c+1)— F(X,R,0).
@ Define the free pro-Hall R-group as M F(X,R,c) =F(X,R).

@ If R =Zp, then any torsion-free Hall R-group is a pro-p.

@ The pro-Hall Z,-group F(X,Z,) is the free pro-p group with
base X.
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Free pro-Hall R-group as the universe

Theorem (Casals-Ruiz, K, Remeslennikov)

Let R be a ring from the universal class of Z,. Then F(A, RP") is
fully residually .

Note that even, the even if R =y Z, the free pro-Hall R-group
need not be a pro-p group.

Theorem

Let hy,..., hyn € F(A, RYM), then there exists a natural pro-p
subgroup Hg of F(A, RP") containing/generated by the elements
{hi,...,hm}.

The group Hy is fully residually F and hence is a coordinate group
of an irreducible algebraic set over IF.



Free pro-Hall R-group as the universe

Conjecture

@ Let G be a finitely generated fully residually F pro-p group,
then there exists a finitely generated binomial Z,-algebra
R = R(G) from the universal class of Z, so that G embeds
into the free pro-Hall R-group F(A, R).

@ The universal class of Z, contains a Zp-ring S so that any

finitely generated fully residually F pro-p group embeds into
F(A,S).
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THANK YOU, LAURA!



