On the universe for limit groups over free pro-*p* groups

Ilya Kazachkov

Ikerbasque, UPV/EHU

Les Diablerets, March 10

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

To understand finitely generated models of the universal theory of free groups (in classical categories of groups).

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Definition (Fully residually free)

A group G is *fully residually free* if for any finite set of non-trivial elements there is a homomorphism from G to a free group which is injective in the finite set.

Definition (Fully residually free)

A group G is *fully residually free* if for any finite set of non-trivial elements there is a homomorphism from G to a free group which is injective in the finite set.

Example (Finitely generated fully residually \mathbb{Z})

Suppose that a finitely generated group G is fully residually \mathbb{Z} , then G is free abelian.

Definition (Fully residually free)

A group G is *fully residually free* if for any finite set of non-trivial elements there is a homomorphism from G to a free group which is injective in the finite set.

Example (Finitely generated fully residually \mathbb{Z})

Suppose that a finitely generated group G is fully residually \mathbb{Z} , then G is free abelian.

Indeed, if $x, y \in G$, then any homomorphism $\varphi : G \to \mathbb{Z}$ satisfies that $\varphi([x, y]) = [\varphi(x), \varphi(y)] = 1$. Hence [x, y] = 1 for all $x, y \in G$. Hence G is f.g. abelian: $G \simeq \mathbb{Z}^n \times T$, where T is the torsion subgroup. Any homomorphism $\varphi : G \to \mathbb{Z}$ satisfies that $\varphi(T) = 1$, hence T = 1 and so G is free abelian.

Definition (Fully residually free)

A group G is fully residually free if for any finite set of non-trivial elements there is a homomorphism from G to a free group which is injective in the finite set.

Example (Finitely generated fully residually \mathbb{Z})

Any finitely generated free abelian group is fully residually $\mathbb Z$

Definition (Fully residually free)

A group G is *fully residually free* if for any finite set of non-trivial elements there is a homomorphism from G to a free group which is injective in the finite set.

Example (Finitely generated fully residually \mathbb{Z})

Any finitely generated free abelian group is fully residually \mathbb{Z} Let n = 2, $\mathbb{Z}^2 = \langle a, b \rangle$ and $\mathbb{Z} = \langle x \rangle$. For any finite set $S = \{(a^{r_1}, b^{s_1}), \dots, (a^{r_k}, b^{s_k})\} \subset \mathbb{Z}^2$, the homomorphism

$$\varphi_{\mathcal{S}}: \left\{ \begin{array}{l} \mathbf{a} \mapsto \mathbf{x} \\ \mathbf{b} \mapsto \mathbf{x}^{\mathbf{n}} \end{array} \right.$$

うしつ 山 (山) (山) (山) (山) (山) (山) (山)

where $n = \sum_{i=1,...,k} (|r_i| + |s_i|)$ is injective in S

Characterization

- Finitely generated fully residually free group or *limit* groups;
- Finitely generated models of the universal theory of *F*;
- Coordinate groups of irreducible algebraic sets;
- Finitely generated subgroups of the ultra-power of *F*;
- Gromov-Hausdorff limits of free groups in a compact space of marked groups;

(ロ) (型) (E) (E) (E) (O)

- Groups acting on a limit tree obtained from sequences of homomorphisms to F;
- Groups realising atomic types over *F*...

Definition

A group *G* equipped with the action of the ring $\mathbb{Z}[t]$ subject to the following axioms:

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

1
$$g^1 = g, g^0 = 1, 1^{\alpha} = 1;$$

2
$$g^{\alpha+\beta} = g^{\alpha} \cdot g^{\beta}, g^{\alpha\beta} = (g^{\alpha})^{\beta};$$

$$(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h;$$

• if [g, h] = 1, then $(gh)^{\alpha} = g^{\alpha}h^{\alpha}$;

is called a $\mathbb{Z}[t]$ -group.

Definition

A group *G* equipped with the action of the ring $\mathbb{Z}[t]$ subject to the following axioms:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

g¹ = g, g⁰ = 1, 1^α = 1;
g^{α+β} = g^α · g^β, g^{αβ} = (g^α)^β;
(h⁻¹gh)^α = h⁻¹g^αh;
if [g, h] = 1, then (gh)^α = g^αh^α;

is called a $\mathbb{Z}[t]$ -group.

Definition

A group *G* equipped with the action of the ring $\mathbb{Z}[t]$ subject to the following axioms:

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

•
$$g^1 = g, g^0 = 1, 1^{\alpha} = 1;$$

$$(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h;$$

• if
$$[g, h] = 1$$
, then $(gh)^{\alpha} = g^{\alpha}h^{\alpha}$;

is called a $\mathbb{Z}[t]$ -group.

Let G = F(a, b) be the free group of rank 2.

Definition

A group *G* equipped with the action of the ring $\mathbb{Z}[t]$ subject to the following axioms:

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

g¹ = g, g⁰ = 1, 1^α = 1;
g^{α+β} = g^α · g^β, g^{αβ} = (g^α)^β;
(h⁻¹gh)^α = h⁻¹g^αh;
if [g, h] = 1, then (gh)^α = g^αh^α;
is called a Z[t]-group.

Let G = F(a, b) be the free group of rank 2.

Definition

A group *G* equipped with the action of the ring $\mathbb{Z}[t]$ subject to the following axioms:

g¹ = g, g⁰ = 1, 1^α = 1;
g^{α+β} = g^α · g^β, g^{αβ} = (g^α)^β;
(h⁻¹gh)^α = h⁻¹g^αh;
if [g, h] = 1, then (gh)^α = g^αh^α;
is called a Z[t]-group.

Let G = F(a, b) be the free group of rank 2.

 a^{2-t}

Definition

A group *G* equipped with the action of the ring $\mathbb{Z}[t]$ subject to the following axioms:

g¹ = g, g⁰ = 1, 1^α = 1;
g^{α+β} = g^α · g^β, g^{αβ} = (g^α)^β;
(h⁻¹gh)^α = h⁻¹g^αh;
if [g, h] = 1, then (gh)^α = g^αh^α;
is called a Z[t]-group.
Let G = F(a, b) be the free group of rank 2.

$$a^{2-t}b^{t^3-5t^2+3t}a^{-4t^2+3}b^{-4}$$

Definition

A group *G* equipped with the action of the ring $\mathbb{Z}[t]$ subject to the following axioms:

• $g^1 = g, g^0 = 1, 1^{\alpha} = 1;$ • $g^{\alpha+\beta} = g^{\alpha} \cdot g^{\beta}, g^{\alpha\beta} = (g^{\alpha})^{\beta};$ • $(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h;$ • if [g, h] = 1, then $(gh)^{\alpha} = g^{\alpha}h^{\alpha};$ is called a $\mathbb{Z}[t]$ -group.

Let G = F(a, b) be the free group of rank 2.

$$\left(a^{2-t}b^{t^3-5t^2+3t}a^{-4t^2+3}b^{-4}\right)^{-t^2+3t-1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Definition

A group *G* equipped with the action of the ring $\mathbb{Z}[t]$ subject to the following axioms:

• $g^1 = g, g^0 = 1, 1^{\alpha} = 1;$ • $g^{\alpha+\beta} = g^{\alpha} \cdot g^{\beta}, g^{\alpha\beta} = (g^{\alpha})^{\beta};$ • $(h^{-1}gh)^{\alpha} = h^{-1}g^{\alpha}h;$ • if [g, h] = 1, then $(gh)^{\alpha} = g^{\alpha}h^{\alpha};$ is called a $\mathbb{Z}[t]$ -group. Let G = F(a, b) be the free group of rank 2.

$$\left(\left(a^{2-t}b^{t^3-5t^2+3t}a^{-4t^2+3}b^{-4}\right)^{-t^2+3t-1}a^{t+3}b^{-t^2-t}\right)^{t-1}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Definition

A group *G* equipped with the action of the ring $\mathbb{Z}[t]$ subject to the following axioms:

g¹ = g, g⁰ = 1, 1^α = 1;
g^{α+β} = g^α · g^β, g^{αβ} = (g^α)^β;
(h⁻¹gh)^α = h⁻¹g^αh;
if [g, h] = 1, then (gh)^α = g^αh^α;
is called a Z[t]-group.
Let G = F(a, b) be the free group of rank 2.
Theorem (Lyndon, 61)

The free $\mathbb{Z}[t]$ -group is fully residually free.

Definition

A group *G* equipped with the action of the ring $\mathbb{Z}[t]$ subject to the following axioms:

g¹ = g, g⁰ = 1, 1^α = 1;
g^{α+β} = g^α · g^β, g^{αβ} = (g^α)^β;
(h⁻¹gh)^α = h⁻¹g^αh;
if [g, h] = 1, then (gh)^α = g^αh^α;
is called a Z[t]-group.

Let G = F(a, b) be the free group of rank 2.

Corollary

Any finitely generated subgroup of the free $\mathbb{Z}[t]$ -group is fully residually free and so a limit group.

Definition

Let $w \in G$, then $H = \langle G, x = w^t | [x, C(w)] = 1 \rangle$ is called the *extension of the centraliser of w*.

Theorem (Miasnikov, Remeslennikov, 94) The free **Z[t]-group** F^{Z[t]} is the direct limit of iterated centraliser extensions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

Let $w \in G$, then $H = \langle G, x = w^t | [x, C(w)] = 1 \rangle$ is called the *extension of the centraliser of w*.

 $F < G_1 = \langle a, b, a^t \mid [a, a^t] = 1 \rangle < 0$

Theorem (Miasnikov, Remeslennikov, 94) The free Z[t]-group F^{Z[t]} is the direct limit of iterated centraliser extensions.

ション ふゆ く 山 マ チャット しょうくしゃ

Definition

Let $w \in G$, then $H = \langle G, x = w^t | [x, C(w)] = 1 \rangle$ is called the *extension of the centraliser of w*.

$$egin{aligned} F < &G_1 = \langle a, b, a^t \mid [a, a^t] = 1
angle < \ < &G_2 = \langle G_1, a^{t^t} = a^{t^2} \mid [C(a), a^{t^2}] = 1
angle < \end{aligned}$$

Theorem (Miasnikov, Remeslennikov, 94) The free $\mathbb{Z}[t]$ -group $F^{\mathbb{Z}[t]}$ is the direct limit of iterated centraliser extensions.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Definition

Let $w \in G$, then $H = \langle G, x = w^t | [x, C(w)] = 1 \rangle$ is called the *extension of the centraliser of w*.

$$F < G_1 = \langle a, b, a^t \mid [a, a^t] = 1 \rangle < < G_2 = \langle G_1, a^{t^t} = a^{t^2} \mid [C(a), a^{t^2}] = 1 \rangle < < \langle G_2, (a^3b^{-1}ab^2)^t \mid [C(a^3b^{-1}ab^2), (a^3b^{-1}ab^2)^t] = 1 \rangle$$

Theorem (Miasnikov, Remeslennikov, 94) The free **Z[t]-group** *F^{Z[t]} is the direct limit of iterated centraliser* extensions.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Definition

Let $w \in G$, then $H = \langle G, x = w^t | [x, C(w)] = 1 \rangle$ is called the *extension of the centraliser of w*.

$$F < G_1 = \langle a, b, a^t | [a, a^t] = 1 \rangle < < G_2 = \langle G_1, a^{t^t} = a^{t^2} | [C(a), a^{t^2}] = 1 \rangle < < \langle G_2, (a^3b^{-1}ab^2)^t | [C(a^3b^{-1}ab^2), (a^3b^{-1}ab^2)^t] = 1 \rangle$$

Theorem (Miasnikov, Remeslennikov, 94)

The free $\mathbb{Z}[t]$ -group $F^{\mathbb{Z}[t]}$ is the direct limit of iterated centraliser extensions.

Theorem (Miasnikov-Remeslennikov, '94) The free $\mathbb{Z}[t]$ -group $F^{\mathbb{Z}[t]}$ is the direct limit of iterated centraliser extensions.

$$\begin{split} F < &G_1 = \langle a, b, a^t \mid [a, a^t] = 1 \rangle < \\ < &G_2 = \langle G_1, a^{t^t} = a^{t^2} \mid [C(a), a^{t^2}] = 1 \rangle < \\ < &\langle G_2, (a^3 b^{-1} a b^2)^t \mid [C(a^3 b^{-1} a b^2), (a^3 b^{-1} a b^2)^t] = 1 \rangle \end{split}$$

Theorem (Kharlampovich-Miasnikov '98)

- Any limit group is a subgroup of $F^{\mathbb{Z}[t]}$.
- Every limit group is a subgroup of a finite iterated extension of centralisers of the free group.

One could do amalgamated products instead

 $F < G_1 = F *_{\langle} w \rangle \mathbb{Z}[t] < \dots$

ション ふゆ く 山 マ チャット しょうくしゃ

Theorem (Miasnikov-Remeslennikov, '94) The free $\mathbb{Z}[t]$ -group $F^{\mathbb{Z}[t]}$ is the direct limit of iterated centraliser extensions.

$$F < G_1 = \langle a, b, a^t \mid [a, a^t] = 1 \rangle < < G_2 = \langle G_1, a^{t^t} = a^{t^2} \mid [C(a), a^{t^2}] = 1 \rangle < < \langle G_2, (a^3 b^{-1} a b^2)^t \mid [C(a^3 b^{-1} a b^2), (a^3 b^{-1} a b^2)^t] = 1 \rangle$$

Theorem (Kharlampovich-Miasnikov '98)

- Any limit group is a subgroup of $F^{\mathbb{Z}[t]}$.
- Every limit group is a subgroup of a finite iterated extension of centralisers of the free group.

One could do amalgamated products instead

 $F < G_1 = F *_{\langle} w \rangle \mathbb{Z}[t] < \dots$

Theorem (Miasnikov-Remeslennikov, '94) The free $\mathbb{Z}[t]$ -group $F^{\mathbb{Z}[t]}$ is the direct limit of iterated centraliser extensions.

$$F < G_1 = \langle a, b, a^t \mid [a, a^t] = 1 \rangle < < G_2 = \langle G_1, a^{t^t} = a^{t^2} \mid [C(a), a^{t^2}] = 1 \rangle < < \langle G_2, (a^3 b^{-1} a b^2)^t \mid [C(a^3 b^{-1} a b^2), (a^3 b^{-1} a b^2)^t] = 1 \rangle$$

Theorem (Kharlampovich-Miasnikov '98)

- Any limit group is a subgroup of $F^{\mathbb{Z}[t]}$.
- Every limit group is a subgroup of a finite iterated extension of centralisers of the free group.

One could do amalgamated products instead

 $F < G_1 = F *_{\langle} w \rangle \mathbb{Z}[t] < \dots$

Theorem (Miasnikov-Remeslennikov, '94) The free $\mathbb{Z}[t]$ -group $F^{\mathbb{Z}[t]}$ is the direct limit of iterated centraliser extensions.

$$F < G_1 = \langle a, b, a^t \mid [a, a^t] = 1 \rangle < < G_2 = \langle G_1, a^{t^t} = a^{t^2} \mid [C(a), a^{t^2}] = 1 \rangle < < \langle G_2, (a^3 b^{-1} a b^2)^t \mid [C(a^3 b^{-1} a b^2), (a^3 b^{-1} a b^2)^t] = 1 \rangle$$

Theorem (Kharlampovich-Miasnikov '98)

- Any limit group is a subgroup of $F^{\mathbb{Z}[t]}$.
- Every limit group is a subgroup of a finite iterated extension of centralisers of the free group.

One could do amalgamated products instead

 $F < G_1 = F *_{\langle} w \rangle \mathbb{Z}[t] < \dots$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Pro-*p* groups

- Let $(A_i), i \in \mathbb{N}$ be a family of finite *p*-groups and
- let $f_{ij} : A_j \rightarrow A_i$ for all i < j family of homomorphisms with the following properties:
 - f_{ii} is the identity in A_i ,
 - $f_{ik} = f_{ij} \circ f_{jk}$ for all i < j < k

• Then

 $P = \lim_{\leftarrow} A_i := \left\{ (a_i) \in \prod_{i \in \mathbb{N}} A_i \mid f_{ij}(a_j) = a_i \text{ for all } i \leq j \right\}$ with the topology induced by the product topology on $\prod_{i \in \mathbb{N}} A_i$ is called a pro-*p* group.

Pro-*p* groups

- Let $(A_i), i \in \mathbb{N}$ be a family of finite *p*-groups and
- let $f_{ij} : A_j \rightarrow A_i$ for all i < j family of homomorphisms with the following properties:
 - f_{ii} is the identity in A_i ,
 - $f_{ik} = f_{ij} \circ f_{jk}$ for all i < j < k
- Then

 $P = \lim_{\longleftarrow} A_i := \left\{ (a_i) \in \prod_{i \in \mathbb{N}} A_i \mid f_{ij}(a_j) = a_i \text{ for all } i \leq j \right\}$ with the topology induced by the product topology on $\prod_{i \in \mathbb{N}} A_i$ is called a pro-*p* group.

ション ふゆ く 山 マ チャット しょうくしゃ

- Consider Z and all its p-quotients Z/pⁿZ there are natural maps from f_{ij} : Z/p^jZ → Z/pⁱZ, i < j.
- We take the inverse limit and obtain \mathbb{Z}_p .
- The free group is residually nilpotent. The quotient of the free group by the c + 1-th member of the lower central is the free nilpotent group of class c

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Make it into a *p*-group by imposing all generators to have order *pⁿ*.
- Take the inverse limit and obtain the free pro-*p* group.
- it is the free object of the category.

- Consider Z and all its p-quotients Z/pⁿZ there are natural maps from f_{ij} : Z/p^jZ → Z/pⁱZ, i < j.
- We take the inverse limit and obtain \mathbb{Z}_p .
- The free group is residually nilpotent. The quotient of the free group by the *c* + 1-th member of the lower central is the free nilpotent group of class *c*

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Make it into a *p*-group by imposing all generators to have order *pⁿ*.
- Take the inverse limit and obtain the free pro-*p* group.
- it is the free object of the category.

- Consider Z and all its p-quotients Z/pⁿZ there are natural maps from f_{ij} : Z/p^jZ → Z/pⁱZ, i < j.
- We take the inverse limit and obtain \mathbb{Z}_p .
- The free group is residually nilpotent. The quotient of the free group by the c + 1-th member of the lower central is the free nilpotent group of class c

- Make it into a *p*-group by imposing all generators to have order *pⁿ*.
- Take the inverse limit and obtain the free pro-*p* group.
- it is the free object of the category.

- Consider Z and all its p-quotients Z/pⁿZ there are natural maps from f_{ij} : Z/p^jZ → Z/pⁱZ, i < j.
- We take the inverse limit and obtain \mathbb{Z}_p .
- The free group is residually nilpotent. The quotient of the free group by the c + 1-th member of the lower central is the free nilpotent group of class c

- Make it into a *p*-group by imposing all generators to have order *pⁿ*.
- Take the inverse limit and obtain the free pro-*p* group.
- it is the free object of the category.

- Consider Z and all its p-quotients Z/pⁿZ there are natural maps from f_{ij} : Z/p^jZ → Z/pⁱZ, i < j.
- We take the inverse limit and obtain \mathbb{Z}_p .
- The free group is residually nilpotent. The quotient of the free group by the c + 1-th member of the lower central is the free nilpotent group of class c

- Make it into a *p*-group by imposing all generators to have order *pⁿ*.
- Take the inverse limit and obtain the free pro-p group.
- it is the free object of the category.

- Consider Z and all its p-quotients Z/pⁿZ there are natural maps from f_{ij} : Z/p^jZ → Z/pⁱZ, i < j.
- We take the inverse limit and obtain \mathbb{Z}_p .
- The free group is residually nilpotent. The quotient of the free group by the *c* + 1-th member of the lower central is the free nilpotent group of class *c*

- Make it into a *p*-group by imposing all generators to have order *pⁿ*.
- Take the inverse limit and obtain the free pro-p group.
- it is the free object of the category.

Analogue of Tarski's problem for free pro-p groups:

- Elementary equivalence of free pro-p groups is trivial;
- More generally, two f.g. pro-*p* groups are elementarily equivalent iff they are isomorphic (Jarden-Lubotzky, 2011).
- Decidability of the first-order theory of the free pro-*p* group.
- Axiomatisation of the free pro-*p* group and description of (abstract) groups elementarily equivalent to it. abstract groups.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Analogue of Tarski's problem for free pro-p groups:

- Elementary equivalence of free pro-p groups is trivial;
- More generally, two f.g. pro-*p* groups are elementarily equivalent iff they are isomorphic (Jarden-Lubotzky, 2011).
- Decidability of the first-order theory of the free pro-*p* group.
- Axiomatisation of the free pro-*p* group and description of (abstract) groups elementarily equivalent to it. abstract groups.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Analogue of Tarski's problem for free pro-p groups:

- Elementary equivalence of free pro-p groups is trivial;
- More generally, two f.g. pro-*p* groups are elementarily equivalent iff they are isomorphic (Jarden-Lubotzky, 2011).
- Decidability of the first-order theory of the free pro-p group.
- Axiomatisation of the free pro-*p* group and description of (abstract) groups elementarily equivalent to it. abstract groups.

ション ふゆ く 山 マ チャット しょうくしゃ

Analogue of Tarski's problem for free pro-p groups:

- Elementary equivalence of free pro-p groups is trivial;
- More generally, two f.g. pro-*p* groups are elementarily equivalent iff they are isomorphic (Jarden-Lubotzky, 2011).
- Decidability of the first-order theory of the free pro-*p* group.
- Axiomatisation of the free pro-*p* group and description of (abstract) groups elementarily equivalent to it. abstract groups.

Algebraic geometry over pro-p groups

Pro-*p* groups form a category and all usual definitions from algebraic geometry carry over to the pro-*p* setting, e.g. $G[[X]] = G *_p \mathbb{F}(X).$

A pro-*p* group *G* is fully residually free pro-*p* if for any g_1, g_2, \ldots, g_n from *G* there exists a surjective continuous $\phi : G \to \mathbb{F}$, so that $\phi(g_i) \neq 1$.

Theorem (Kochloukova, Zalesskii, 2010)

Every orientable surface pro-p group

 $G_d = \langle x_1, x_2, \dots, x_{2d} \mid [x_1, x_2] \cdots [x_{2d-1}, x_{2d}] = 1 \rangle$

ション ふゆ く 山 マ チャット しょうくしゃ

is fully residually free pro-p, d even.

Algebraic geometry over pro-p groups

Pro-*p* groups form a category and all usual definitions from algebraic geometry carry over to the pro-*p* setting, e.g. $G[[X]] = G *_p \mathbb{F}(X)$. A pro-*p* group *G* is fully residually free pro-*p* if for any g_1, g_2, \ldots, g_n from *G* there exists a surjective continuous $\phi : G \to \mathbb{F}$, so that $\phi(g_i) \neq 1$.

Theorem (Kochloukova, Zalesskii, 2010)

Every orientable surface pro-p group

 $G_d = \langle x_1, x_2, \dots, x_{2d} \mid [x_1, x_2] \cdots [x_{2d-1}, x_{2d}] = 1 \rangle$

ション ふゆ く 山 マ チャット しょうくしゃ

is fully residually free pro-p, d even.

Algebraic geometry over pro-p groups

Pro-*p* groups form a category and all usual definitions from algebraic geometry carry over to the pro-*p* setting, e.g. $G[[X]] = G *_p \mathbb{F}(X)$. A pro-*p* group *G* is fully residually free pro-*p* if for any g_1, g_2, \ldots, g_n from *G* there exists a surjective continuous $\phi : G \to \mathbb{F}$, so that $\phi(g_i) \neq 1$.

Theorem (Kochloukova, Zalesskii, 2010)

Every orientable surface pro-p group

 $G_d = \langle x_1, x_2, \dots, x_{2d} \mid [x_1, x_2] \cdots [x_{2d-1}, x_{2d}] = 1 \rangle$

is fully residually free pro-p, d even.

What are limit groups over pro-p groups?

Theorem (Kharlampovich-Miasnikov '98)

- Any limit group is a subgroup of $F^{\mathbb{Z}[t]}$.
- Every limit group is a subgroup of a finite iterated extension of centralisers of the free group.
- Let \mathcal{G}_0 be the class of all free pro-*p* groups of finite rank.
- Define inductively \mathcal{G}_n , where $G_n \in \mathcal{G}_n$ is a free pro-*p* amalgamated product $G_{n-1} \sqcup_C A$, where $G_{n-1} \in \mathcal{G}_{n-1}$, *C* is any self-centralised procyclic pro-*p* subgroup of G_{n-1} , *A* is any finite rank free abelian pro-*p* group such that *C* is a direct summand of *A*.
- *Define* limit groups to be (topologically) f.g. subgroups of extensions of centralisers.

Problem (Kochloukova, Zalesskii, 2011)

ls every pro-p "limit group" (fully) residually free pro-p?

What are limit groups over pro-p groups?

Theorem (Kharlampovich-Miasnikov '98)

- Any limit group is a subgroup of $F^{\mathbb{Z}[t]}$.
- Every limit group is a subgroup of a finite iterated extension of centralisers of the free group.
- Let \mathcal{G}_0 be the class of all free pro-*p* groups of finite rank.
- Define inductively \mathcal{G}_n , where $G_n \in \mathcal{G}_n$ is a free pro-*p* amalgamated product $G_{n-1} \sqcup_C A$, where $G_{n-1} \in \mathcal{G}_{n-1}$, *C* is any self-centralised procyclic pro-*p* subgroup of G_{n-1} , *A* is any finite rank free abelian pro-*p* group such that *C* is a direct summand of *A*.
- *Define* limit groups to be (topologically) f.g. subgroups of extensions of centralisers.

Problem (Kochloukova, Zalesskii, 2011)

Is every pro-p "limit group" (fully) residually free pro-p?

Binomial rings and closures

Definition

A domain *R* of characteristic 0 is called *binomial* if for any $\lambda \in R$ and $n \in \mathbb{N}$, the ring *R* contains the binomial coefficients:

$$C_{\lambda}^{n} = \frac{\lambda(\lambda-1)(\lambda-2)\cdots(\lambda-n+1)}{n!}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Binomial rings and closures

Definition Define R^{bin} recursively as follows. Let $R = R_0 < L$, suppose that $R_i < L$ is already defined and define R_{i+1} as follows

$$R_{i+1} = \langle R_i, C_n^{\alpha} \mid \alpha \in R_i \smallsetminus R_{i-1} \rangle < L.$$

Set $\varinjlim R_i = R^{bin}$.

Proposition (Casals-Ruiz, K, Remeslennikov)

R^{bin} is a binomial ring containing *R*;
For any binomial ring *S* and any *φ* there exists a unique *R* → ^φ *S φ'* : *R^{bin}* → *S* s.t.: *Y R^{bin} X*^{φ'}

R^{bin} is discriminated by R

Binomial rings and closures

Definition Define R^{bin} recursively as follows. Let $R = R_0 < L$, suppose that $R_i < L$ is already defined and define R_{i+1} as follows

$$R_{i+1} = \langle R_i, C_n^{\alpha} \mid \alpha \in R_i \smallsetminus R_{i-1} \rangle < L.$$

Set $\varinjlim R_i = R^{bin}$.

Proposition (Casals-Ruiz, K, Remeslennikov)

3 R^{bin} is discriminated by R

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R.

The chief difficulty lies in attempting to replace the rule r(x + y) = rx + ry (define an action of the ring).

- If N is a group which is complete and Hausdorff in its p-adic topology, then for any x ∈ N, the homomorphism of Z into N taking n to xⁿ extends naturally to a homomorphism of the groups Z_p of p-adic integers into N. We make N into a group admitting exponents in the ring of p-adic integers.
- If K is any field of characteristic zero, then an exponent can be defined on UT_n(K):

$(1+x)^r = 1 + rx + C_r^2 x^2 + \dots$

 If K is the field of real numbers, then UT_n(K) is a nilpotent Lie group, and for any g ∈ UT_n(K), the set of elements of the form g^r defined in this way, is exactly the one-parameter subgroup generated by g.

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R. The chief difficulty lies in attempting to replace the rule r(x + y) = rx + ry (define an action of the ring).

- If N is a group which is complete and Hausdorff in its p-adic topology, then for any x ∈ N, the homomorphism of Z into N taking n to xⁿ extends naturally to a homomorphism of the groups Z_p of p-adic integers into N. We make N into a group admitting exponents in the ring of p-adic integers.
- If K is any field of characteristic zero, then an exponent can be defined on UT_n(K):

$(1+x)^r = 1 + rx + C_r^2 x^2 + \dots$

If K is the field of real numbers, then UT_n(K) is a nilpotent Lie group, and for any g ∈ UT_n(K), the set of elements of the form g^r defined in this way, is exactly the one-parameter subgroup generated by g.

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R. The chief difficulty lies in attempting to replace the rule r(x + y) = rx + ry (define an action of the ring).

- If N is a group which is complete and Hausdorff in its p-adic topology, then for any x ∈ N, the homomorphism of Z into N taking n to xⁿ extends naturally to a homomorphism of the groups Z_p of p-adic integers into N. We make N into a group admitting exponents in the ring of p-adic integers.
- If K is any field of characteristic zero, then an exponent can be defined on UT_n(K):

$(1+x)^r = 1 + rx + C_r^2 x^2 + \dots$

(a) If K is the field of real numbers, then $UT_n(K)$ is a nilpotent Lie group, and for any $g \in UT_n(K)$, the set of elements of the form g^r defined in this way, is exactly the one-parameter subgroup generated by g.

When considering non-commutative groups, it is natural to attempt to extend the idea of a module to the noncommutative case - a group admitting exponents in some ring R. The chief difficulty lies in attempting to replace the rule r(x + y) = rx + ry (define an action of the ring).

If N is a group which is complete and Hausdorff in its p-adic topology, then for any x ∈ N, the homomorphism of Z into N taking n to xⁿ extends naturally to a homomorphism of the groups Z_p of p-adic integers into N. We make N into a group admitting exponents in the ring of p-adic integers.

If K is any field of characteristic zero, then an exponent can be defined on UT_n(K):

$$(1+x)^r = 1 + rx + C_r^2 x^2 + \dots$$

If K is the field of real numbers, then UT_n(K) is a nilpotent Lie group, and for any g ∈ UT_n(K), the set of elements of the form g' defined in this way, is exactly the one-parameter subgroup generated by g.

Hall *R*-groups

Definition

Let *R* be a *binomial* ring. A nilpotent group *G* of a class *m* is called a Hall *R*-group if for all $x, y, x_1, \ldots, x_n \in G$ and any $\lambda, \mu \in R$ one has:

- G is a nilpotent R-group of class m;
- $(y^{-1}xy)^{\lambda} = (y^{-1}xy)^{\lambda};$
- $x_1^{\lambda} \cdots x_n^{\lambda} = (x_1 \cdots x_n)^{\lambda} \tau_2(x)^{C_2^{\lambda}} \cdots \tau_m(x)^{C_m^{\lambda}}$, where $\tau_i(x) \in \Gamma_{i-1}(F(x))$ is the *i*-th Petrescu word defined in the free group F(x) by

$$x_1^i \cdots x_n^i = \tau_1(x)^{C_1^i} \tau_2(x)^{C_2^i} \cdots \tau_i(x)^{C_i^i}$$

• Let F(X, R, c) be the free Hall *R*-group on *X* of class *c*.

- For all $c \ge 1$, there is a natural homomorphism $\psi_c : F(X, R, c+1) \to F(X, R, c)$.
- Define the free pro-Hall *R*-group as $\lim_{x \to \infty} F(X, R, c) = \mathbb{F}(X, R)$.
- If $R = \mathbb{Z}_p$, then any torsion-free Hall *R*-group is a pro-*p*.
- O The pro-Hall Z_p-group 𝔽(X, ℤ_p) is the free pro-p group with base X.

- Let F(X, R, c) be the free Hall *R*-group on X of class c.
- For all $c \ge 1$, there is a natural homomorphism $\psi_c : F(X, R, c+1) \rightarrow F(X, R, c)$.
- Define the free pro-Hall *R*-group as $\lim_{t \to \infty} F(X, R, c) = \mathbb{F}(X, R)$.
- If $R = \mathbb{Z}_p$, then any torsion-free Hall *R*-group is a pro-*p*.
- ② The pro-Hall Z_p-group 𝔽(X, ℤ_p) is the free pro-p group with base X.

- Let F(X, R, c) be the free Hall *R*-group on X of class c.
- For all $c \ge 1$, there is a natural homomorphism $\psi_c : F(X, R, c+1) \rightarrow F(X, R, c)$.
- Define the free pro-Hall *R*-group as $\lim_{t \to \infty} F(X, R, c) = \mathbb{F}(X, R)$.
- If R = Z_p, then any torsion-free Hall R-group is a pro-p.
 The pro-Hall Z_p-group F(X, Z_p) is the free pro-p group with base X.

- Let F(X, R, c) be the free Hall *R*-group on X of class c.
- For all $c \ge 1$, there is a natural homomorphism $\psi_c : F(X, R, c+1) \rightarrow F(X, R, c)$.
- Define the free pro-Hall *R*-group as $\lim_{t \to \infty} F(X, R, c) = \mathbb{F}(X, R)$.
- If $R = \mathbb{Z}_p$, then any torsion-free Hall *R*-group is a pro-*p*.
- ② The pro-Hall Z_p-group 𝔽(X, Z_p) is the free pro-p group with base X.

Theorem (Casals-Ruiz, K, Remeslennikov)

Let *R* be a ring from the universal class of \mathbb{Z}_p . Then $\mathbb{F}(A, R^{bin})$ is fully residually \mathbb{F} .

Note that even, the even if $R \equiv_{\forall} \mathbb{Z}_p$ the free pro-Hall *R*-group need not be a pro-*p* group.

Theorem

Let $h_1, \ldots, h_m \in \mathbb{F}(A, R^{bin})$, then there exists a natural pro-p subgroup $H_{\mathbb{F}}$ of $\mathbb{F}(A, R^{bin})$ containing/generated by the elements $\{h_1, \ldots, h_m\}$.

The group $H_{\mathbb{F}}$ is fully residually \mathbb{F} and hence is a coordinate group of an irreducible algebraic set over \mathbb{F} .

Theorem (Casals-Ruiz, K, Remeslennikov)

Let *R* be a ring from the universal class of \mathbb{Z}_p . Then $\mathbb{F}(A, R^{bin})$ is fully residually \mathbb{F} .

Note that even, the even if $R \equiv_{\forall} \mathbb{Z}_p$ the free pro-Hall *R*-group need not be a pro-*p* group.

Theorem

Let $h_1, \ldots, h_m \in \mathbb{F}(A, R^{bin})$, then there exists a natural pro-p subgroup $H_{\mathbb{F}}$ of $\mathbb{F}(A, R^{bin})$ containing/generated by the elements $\{h_1, \ldots, h_m\}$.

The group $H_{\mathbb{F}}$ is fully residually \mathbb{F} and hence is a coordinate group of an irreducible algebraic set over \mathbb{F} .

Theorem (Casals-Ruiz, K, Remeslennikov)

Let *R* be a ring from the universal class of \mathbb{Z}_p . Then $\mathbb{F}(A, R^{bin})$ is fully residually \mathbb{F} .

Note that even, the even if $R \equiv_{\forall} \mathbb{Z}_p$ the free pro-Hall *R*-group need not be a pro-*p* group.

Theorem

Let $h_1, \ldots, h_m \in \mathbb{F}(A, R^{bin})$, then there exists a natural pro-p subgroup $H_{\mathbb{F}}$ of $\mathbb{F}(A, R^{bin})$ containing/generated by the elements $\{h_1, \ldots, h_m\}$.

The group $H_{\mathbb{F}}$ is fully residually \mathbb{F} and hence is a coordinate group of an irreducible algebraic set over \mathbb{F} .

Conjecture

- Let G be a finitely generated fully residually F pro-p group, then there exists a finitely generated binomial Z_p-algebra R = R(G) from the universal class of Z_p so that G embeds into the free pro-Hall R-group F(A, R).
- On the universal class of Z_p contains a Z_p-ring S so that any finitely generated fully residually F pro-p group embeds into F(A, S).

THANK YOU! THANK YOU, LAURA!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

THANK YOU! THANK YOU, LAURA!

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@