
On the universe for limit groups over free pro-p
groups

Ilya Kazachkov

Ikerbasque, UPV/EHU

Les Diablerets, March 10



Goal

To understand finitely generated models of the universal theory of
free groups (in classical categories of groups).



Algebraic characterization: Fully residually H
groups

Definition (Fully residually free)
A group G is fully residually free if for any finite set of non-trivial
elements there is a homomorphism from G to a free group which is
injective in the finite set.
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Example (Finitely generated fully residually Z)

Suppose that a finitely generated group G is fully residually Z, then
G is free abelian.



Algebraic characterization: Fully residually H
groups

Definition (Fully residually free)
A group G is fully residually free if for any finite set of non-trivial
elements there is a homomorphism from G to a free group which is
injective in the finite set.

Example (Finitely generated fully residually Z)

Suppose that a finitely generated group G is fully residually Z, then
G is free abelian.
Indeed, if x , y ∈ G , then any homomorphism ϕ : G → Z satisfies
that ϕ([x , y ]) = [ϕ(x), ϕ(y)] = 1. Hence [x , y ] = 1 for all
x , y ∈ G . Hence G is f.g. abelian: G ' Zn × T , where T is the
torsion subgroup. Any homomorphism ϕ : G → Z satisfies that
ϕ(T ) = 1, hence T = 1 and so G is free abelian.



Algebraic characterization: Fully residually H
groups

Definition (Fully residually free)
A group G is fully residually free if for any finite set of non-trivial
elements there is a homomorphism from G to a free group which is
injective in the finite set.

Example (Finitely generated fully residually Z)

Any finitely generated free abelian group is fully residually Z



Algebraic characterization: Fully residually H
groups

Definition (Fully residually free)
A group G is fully residually free if for any finite set of non-trivial
elements there is a homomorphism from G to a free group which is
injective in the finite set.

Example (Finitely generated fully residually Z)

Any finitely generated free abelian group is fully residually Z
Let n = 2, Z2 = 〈a, b〉 and Z = 〈x〉.
For any finite set S = {(ar1 , bs1), . . . , (ark , bsk )} ⊂ Z2, the
homomorphism

ϕS :

{
a 7→ x
b 7→ xn

where n =
∑

i=1,...,k
(|ri |+ |si |) is injective in S



Characterization

Finitely generated fully residually free group or limit
groups;
Finitely generated models of the universal theory of F ;
Coordinate groups of irreducible algebraic sets;
Finitely generated subgroups of the ultra-power of F ;
Gromov-Hausdorff limits of free groups in a compact space of
marked groups;
Groups acting on a limit tree obtained from sequences of
homomorphisms to F ;
Groups realising atomic types over F ...



Universe of limit groups over free groups

Definition
A group G equipped with the action of the ring Z[t] subject to the
following axioms:

1 g1 = g , g0 = 1, 1α = 1;
2 gα+β = gα · gβ , gαβ = (gα)β ;
3 (h−1gh)α = h−1gαh;
4 if [g , h] = 1, then (gh)α = gαhα;

is called a Z[t]-group.
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Universe of limit groups over free groups

Definition
A group G equipped with the action of the ring Z[t] subject to the
following axioms:

1 g1 = g , g0 = 1, 1α = 1;
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is called a Z[t]-group.
Let G = F (a, b) be the free group of rank 2.

Theorem (Lyndon, 61)
The free Z[t]-group is fully residually free.



Universe of limit groups over free groups

Definition
A group G equipped with the action of the ring Z[t] subject to the
following axioms:

1 g1 = g , g0 = 1, 1α = 1;
2 gα+β = gα · gβ , gαβ = (gα)β ;
3 (h−1gh)α = h−1gαh;
4 if [g , h] = 1, then (gh)α = gαhα;

is called a Z[t]-group.
Let G = F (a, b) be the free group of rank 2.

Corollary
Any finitely generated subgroup of the free Z[t]-group is fully
residually free and so a limit group.



Extension of centralisers

Definition
Let w ∈ G , then H = 〈G , x = w t | [x ,C (w)] = 1〉 is called the
extension of the centraliser of w .

Theorem (Miasnikov, Remeslennikov, 94)
The free Z[t]-group FZ[t] is the direct limit of iterated centraliser
extensions.
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Morphisms and discrimination
Theorem (Miasnikov-Remeslennikov, ’94)
The free Z[t]-group FZ[t] is the direct limit of iterated centraliser
extensions.

F <G1 = 〈a, b, at | [a, at ] = 1〉 <

<G2 = 〈G1, a
t t = at

2 | [C (a), at
2
] = 1〉 <

<〈G2, (a
3b−1ab2)t | [C (a3b−1ab2), (a3b−1ab2)t ] = 1〉

Theorem (Kharlampovich-Miasnikov ’98)

Any limit group is a subgroup of FZ[t].
Every limit group is a subgroup of a finite iterated extension of
centralisers of the free group.

One could do amalgamated products instead

F < G1 = F ∗〈 w〉Z[t] < . . .
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Pro-p groups

Let (Ai ), i ∈ N be a family of finite p-groups and
let fij : Aj → Ai for all i < j family of homomorphisms with
the following properties:

fii is the identity in Ai ,
fik = fij ◦ fjk for all i < j < k

Then

P = lim
←−

Ai :=

{
(ai ) ∈

∏
i∈N

Ai | fij(aj) = ai for all i ≤ j

}
with the topology induced by the product topology on

∏
i∈N

Ai is

called a pro-p group.
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Consider Z and all its p-quotients Z/pnZ there are natural
maps from fij : Z/pjZ→ Z/piZ, i < j .
We take the inverse limit and obtain Zp.
The free group is residually nilpotent. The quotient of the free
group by the c + 1-th member of the lower central is the free
nilpotent group of class c
Make it into a p-group by imposing all generators to have
order pn.
Take the inverse limit and obtain the free pro-p group.
it is the free object of the category.
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Elementary theory of free pro-p groups

Analogue of Tarski’s problem for free pro-p groups:
Elementary equivalence of free pro-p groups is trivial;
More generally, two f.g. pro-p groups are elementarily
equivalent iff they are isomorphic (Jarden-Lubotzky, 2011).
Decidability of the first-order theory of the free pro-p group.
Axiomatisation of the free pro-p group and description of
(abstract) groups elementarily equivalent to it. abstract
groups.
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Algebraic geometry over pro-p groups

Pro-p groups form a category and all usual definitions from
algebraic geometry carry over to the pro-p setting, e.g.
G [[X ]] = G ∗p F(X ).
A pro-p group G is fully residually free pro-p if for any
g1, g2, . . . , gn from G there exists a surjective continuous
φ : G → F, so that φ(gi ) 6= 1.

Theorem (Kochloukova, Zalesskii, 2010)
Every orientable surface pro-p group

Gd = 〈x1, x2, . . . , x2d | [x1, x2] · · · [x2d−1, x2d ] = 1〉

is fully residually free pro-p, d even.
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What are limit groups over pro-p groups?
Theorem (Kharlampovich-Miasnikov ’98)

Any limit group is a subgroup of FZ[t].
Every limit group is a subgroup of a finite iterated extension of
centralisers of the free group.

Let G0 be the class of all free pro-p groups of finite rank.
Define inductively Gn, where Gn ∈ Gn is a free pro-p
amalgamated product Gn−1 tC A, where Gn−1 ∈ Gn−1, C is
any self-centralised procyclic pro-p subgroup of Gn−1, A is any
finite rank free abelian pro-p group such that C is a direct
summand of A.
Define limit groups to be (topologically) f.g. subgroups of
extensions of centralisers.

Problem (Kochloukova, Zalesskii, 2011)
Is every pro-p “limit group” (fully) residually free pro-p?
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Binomial rings and closures

Definition
A domain R of characteristic 0 is called binomial if for any λ ∈ R
and n ∈ N, the ring R contains the binomial coefficients:

Cn
λ =

λ(λ− 1)(λ− 2) · · · (λ− n + 1)

n!
.



Binomial rings and closures

Definition
Define Rbin recursively as follows. Let R = R0 < L, suppose that
Ri < L is already defined and define Ri+1 as follows

Ri+1 = 〈Ri ,C
α
n | α ∈ Ri r Ri−1〉 < L.

Set lim−→Ri = Rbin.

Proposition (Casals-Ruiz, K, Remeslennikov)

1 Rbin is a binomial ring containing R ;
2 For any binomial ring S and any φ there exists a unique

φ′ : Rbin → S s.t.:
R →φ S
↘ ↗φ′

Rbin

3 Rbin is discriminated by R
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Nilpotent groups and R-groups
When considering non-commutative groups, it is natural to attempt
to extend the idea of a module to the noncommutative case - a
group admitting exponents in some ring R .
The chief difficulty lies in attempting to replace the rule
r(x + y) = rx + ry (define an action of the ring).

1 If N is a group which is complete and Hausdorff in its p-adic
topology, then for any x ∈ N, the homomorphism of Z into N
taking n to xn extends naturally to a homomorphism of the
groups Zp of p-adic integers into N. We make N into a group
admitting exponents in the ring of p-adic integers.

2 If K is any field of characteristic zero, then an exponent can
be defined on UTn(K ):

(1 + x)r = 1 + rx + C 2
r x

2 + . . .

3 If K is the field of real numbers, then UTn(K ) is a nilpotent
Lie group, and for any g ∈ UTn(K ), the set of elements of the
form g r defined in this way, is exactly the one-parameter
subgroup generated by g .
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to extend the idea of a module to the noncommutative case - a
group admitting exponents in some ring R .
The chief difficulty lies in attempting to replace the rule
r(x + y) = rx + ry (define an action of the ring).

1 If N is a group which is complete and Hausdorff in its p-adic
topology, then for any x ∈ N, the homomorphism of Z into N
taking n to xn extends naturally to a homomorphism of the
groups Zp of p-adic integers into N. We make N into a group
admitting exponents in the ring of p-adic integers.
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Hall R-groups

Definition
Let R be a binomial ring. A nilpotent group G of a class m is
called a Hall R-group if for all x , y , x1, . . . , xn ∈ G and any
λ, µ ∈ R one has:

G is a nilpotent R-group of class m;
(y−1xy)λ = (y−1xy)λ;
xλ1 · · · xλn = (x1 · · · xn)λτ2(x)C

λ
2 · · · τm(x)C

λ
m , where

τi (x) ∈ Γi−1(F (x)) is the i-th Petrescu word defined in the
free group F (x) by

x i1 · · · x in = τ1(x)C
i
1τ2(x)C

i
2 · · · τi (x)C

i
i .



Free pro-Hall R-group

Let F (X ,R, c) be the free Hall R-group on X of class c .
For all c ≥ 1, there is a natural homomorphism
ψc : F (X ,R, c + 1)→ F (X ,R, c).
Define the free pro-Hall R-group as lim←−F (X ,R, c) = F(X ,R).

1 If R = Zp, then any torsion-free Hall R-group is a pro-p.
2 The pro-Hall Zp-group F(X ,Zp) is the free pro-p group with

base X .
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Free pro-Hall R-group as the universe

Theorem (Casals-Ruiz, K, Remeslennikov)
Let R be a ring from the universal class of Zp. Then F(A,Rbin) is
fully residually F.
Note that even, the even if R ≡∀ Zp the free pro-Hall R-group
need not be a pro-p group.

Theorem
Let h1, . . . , hm ∈ F(A,Rbin), then there exists a natural pro-p
subgroup HF of F(A,Rbin) containing/generated by the elements
{h1, . . . , hm}.
The group HF is fully residually F and hence is a coordinate group
of an irreducible algebraic set over F.
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Free pro-Hall R-group as the universe

Conjecture

1 Let G be a finitely generated fully residually F pro-p group,
then there exists a finitely generated binomial Zp-algebra
R = R(G ) from the universal class of Zp so that G embeds
into the free pro-Hall R-group F(A,R).

2 The universal class of Zp contains a Zp-ring S so that any
finitely generated fully residually F pro-p group embeds into
F(A,S).
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