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Tarski-type questions

Tarski’s type problems for a given group or algebra G :

First-order classification: Describe groups (algebras) H such
that Th(G ) = Th(H).

Decidability: Is the theory Th(G ) decidable?
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Model theory of algebras

General intuition:

The situation in ”free-like” associative algebras is very different
from the one in ”free-like” groups (free or torsion-free hyperbolic)
groups.

In free-like groups there is more geometry and topology, more
about equations and their solutions,

In free-like associative algebras and group rings it is more about
algebra, arithmetic, about describing (interpreting) some classical
commutative objects sitting in algebras.
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Definability

Let F be a field, X a set of variables, and F [X ] a ring of
commutative polynomials in variables X with coefficients in F .

The following formula defines F in F [X ]:

φ(x) = (x = 0) ∨ ∃y(xy = 1)

The operations + and · in F are the restrictions of the ones from
F [X ], so they are also definable in F [X ] by formulas.

The field F is definable in the ring F [X ].
Notice, that all the formulas that define F in F [X ] do not depend
on F or X . F is definable uniformly in F and X .
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Important consequences

Since F is definable in F [X ] for every first-order sentence φ of
fields one can effectively construct a sentence φ∗ of rings such that

F |= φ⇐⇒ F [X ] |= φ∗.

Implications:

If Th(F ) is undecidable then Th(F [X ]) is undecidable;

for any fields F and K

F [X ] ≡ K [Y ] =⇒ F ≡ K
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Definability

More generally:
Let B = 〈B; L(B)〉 be a structure.

An operation f or a predicate P on a subset A ⊆ Bn is definable in
B if its graph is definable in B.

Definition

An algebraic structure A = 〈A; f , . . . ,P, . . . , c, . . .〉 is definable in
B if there is a definable subset A∗ ⊆ Bn and operations f ∗, . . . ,
predicates P∗, . . . , and constants c∗, . . . , all definable in B such
that the structure A∗ = 〈A∗; f ∗, . . . ,P∗, . . . , c∗, . . . , 〉 is isomorphic
to A.

For example, if Z is the center of a group G then it is definable as
a group in G , the same for the center of a ring.
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Interpretability

Let ∼ be a definable equivalence relation on the definable subset
A ⊆ Bn. Then the quotient set A∗ = A/ ∼ is interpretable in B.

An operation f or a predicate P on the quotient set A∗ is
interpretable in B if the full preimage of its graph in A is definable
in B.

For example, if N is a normal definable subgroup of a group G ,
then the equivalence relation x ∼ y on G given by xN = yN is
definable in G , so the quotient set G/N of all right cosets of N is
interpretable in G .

It is easy to see that the multiplication induced from G on G/N is
also interpretable in G . This show that the quotient group G/N is
interpretable in G .
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Interpretability

Definition

An algebraic structure A = 〈A; f , . . . ,P, . . . , c, . . .〉 is interpretable
in a structure B if there is a subset A∗ ⊆ Bn definable in B, an
equivalence relation ∼ on A∗ definable in B, operations f ∗, . . . ,
predicates P∗, . . . , and constants c∗, . . . , on the quotient set
A∗/ ∼ all interpretable in B such that the structure
A∗ = 〈A∗/ ∼; f ∗, . . . ,P∗, . . . , c∗, . . . , 〉 is isomorphic to A.

Interpretation is uniformly in a class of structures C if the defining
formulas are the same for every structure B from C .
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Definability of Arithmetic in polynomial rings

Theorem

Let F be an arbitrary field and X an arbitrary non-empty set. Then
the following hold:

1) For any irreducible polynomial a ∈ F [X ] the arithmetic
N = 〈N; +, ·, 0, 1〉 is interpretable with the parameter a in
F [X ] uniformly in F , X , and a (i.e., the interpretation
formulas are the same for all fields F , sets X , and irreducible
polynomials a). We denote this interpretation by Na.

2) For any irreducible polynomials a, b ∈ F [X ] the canonical
(unique) isomorphism of interpretations Na → Nb is definable
in F [X ] uniformly in F , X , and a, b.

3) The arithmetic N is 0-interpretable in F [X ].
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Definability of Arithmetic in polynomial rings

Let a ∈ F [X ] be irreducible. Then the formula

∀u(u | x → (u ∈ F ∨ a | u))

defines in F [X ] a set {αan | α ∈ F , n ∈ N}.
A formula

a− 1 | x − 1

defines in this set the subset

Na = {an | n ∈ N}.
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Definability of Arithmetic in polynomial rings

For any n,m, k ∈ N one has

n + m = k ⇐⇒ an · am = ak ,

n | m⇐⇒ (an − 1) | (am − 1).

which defines addition and division (hence multiplication) on
Na ' N.
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Important implications

If A is interpretable in B then for every first-order sentence φ in
the language of A one can effectively construct a sentence φ∗ in
the language of B such that

A |= φ⇐⇒ B |= φ∗.
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Undecidability of Th(F [X ])

Since the arithmetic N is interpretable in F [X ] and Th(N) is
undecidable the following result holds.

Theorem [Robinson, ...]

For any field F the elementary theory of F [X ] is undecidable.

This is typical use of interpretability.

It solves the Tarski’s problem on decidability of the theory for
polynomial rings F [X ].

Theorem [Denef]

For any field F of zero characteristic, the Diophantine problem for
F [X ] is undecidable.
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First-order classification of polynomial rings

Theorem

F [X ] ≡ K [Y ] =⇒ |X | = |Y | and F ≡ K .

Sketch of the proof: If F [X ] ≡ K [Y ], then they have the same
Krull dimension, hence |Y | = |X |.

Since F is definable in F [X ] uniformly in F and X it follows that
F ≡ K .

But the converse is not true! Take as F and K algebraic closures
of transcendental extensions of Q of different finite transcendence
degrees. Then F ≡ K but F [X ] 6≡ K [X ].
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Hereditary finite superstructures

For a set A let Pf (A) be the set of all finite subsets of A.

Definition of hereditary finite sets over A

HF0(A) = A,

HFn+1(A) = HFn(A) ∪ Pf (HFn(A)),

HF (A) =
⋃

n∈ω HFn(A).

For a ring R = (A; +,×, 0, 1) define a new structure

HF (R) = 〈HF (A);PA,+,×, 0, 1,∈〉,

where PA is the predicate defining A in HF (A), +,×, 0, 1 are
defined on A as before and ∈ is the membership predicate on
HF (A).
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The weak second-order theory

The main point:

The first-order theory of HF (R) has the same expressiveness as the
weak second order theory of R.

For example: one can use arithmetic in HF (R), finite sequences of
of elements from R, define the lengths of the sequences by
formulas, take their components, concatenations, etc. - extremely
powerful language.
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Theorem (Bauval)

Rings of polynomials of finite number of variables over infinite
fields F [X ] and K [Y ] are elementarily equivalent if and only if
|X | = |Y | and HF (F ) ≡ HF (K ).

Corollary

If F and K are computable (for instance, Q, and f.g. extensions of
Q, or algebraic closure of Q), then the polynomial rings F [X ] and
K [Y ] are elementarily equivalent iff they are isomorphic.
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By Bauval’s theorem the model HF (F ) of hereditary finite sets
over F is uniformly definable in the ring F [x ].
Hence F [X ] ≡ K [Y ] =⇒ HF (F ) ≡ HF (K ), and

HF (F ) ≡ HF (K ) ⇐⇒ F ≡w .s.o.l . K .
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Conversely, we can enumerate all the monomials in F [X ] and
represent each element in F [X ] as a finite set of coefficients in F .
Multiplication in F [X ] is interpretable in the weak second order
logic of F . Therefore the theory of F [X ] is interpretable in the
weak second order theory of F uniformly on F [X ] .
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Theorem (Bauval)

A noetherian ring R is first-order equivalent to F [X ] if and only if
it is isomorphic to a polynomial ring K [Y ] where |X | = |Y | and
HF (F ) ≡ HF (K ).
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The weak second-order theory

In applications it is convenient to use the list superstructure of A:

S(A,N) = 〈A,S(A),N; t(s, i), l(s),_, 〉,

where

S(A) = all finite sequences of elements from A.

_ is the operation of concatenation of two sequences

N = 〈N | +, ·, 0, 1〉 is the standard arithmetic,

l : S(A)→ N is the length function on sequences

t : S(A)× N→ A is the coordinate function: t(s, i) is the i ’s
component of s.

Fact: HF (A) and S(A,N) are bi-interpretable in one another.
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Interpretation of S(F ,N) in F [X ]

Theorem

Let F be an infinite field and X an arbitrary non-empty set. Then
the following hold:

1) for a given non-invertible polynomial P ∈ F [X ] one can
interpret S(F ,N) in F [X ] using the parameter P uniformly in
F , X , and P.

2) for any non-invertible polynomials P,Q ∈ F [X ] the canonical
(unique) isomorphism of the interpretations above
S(F ,N)P → S(F ,N)Q is definable in F [X ] uniformly in F , X ,
P, and Q.
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Interpretation of S(F ,N) in F [t]

(α0, . . . , αn)⇐⇒ (α0 + α1t + . . .+ αnt
n, tn)

.

Definability of such pairs:

degf (t) ≤ n⇐⇒ tnf (
1

t
) ∈ F [t]

.

Hence the formula: φ(f , t, tn) =

∃g∀α ∈ F ∗∃β, γ ∈ F
(
t− 1

α
| f −β∧t−α | tn−γ∧t−α | g−βγ

)
.
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Associative algebras

Denote by A = AF (X ) a free associative unital algebra over a field
F with basis X .

Approach to Tarski’s problems for AF (X ):

Do the same as for commutative polynomials
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Definability of F [t]

Theorem [Bergman]

The centralizer in AF (X ) of a non-scalar polynomial is isomorphic
to F [t].

Corollary

The ring F [t] is definable in AF (X ) uniformly in F and X .
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Decidability

Theorem

The first-order theory of AF (X ) is undecidable for any F and X .
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First-order classification

Theorem

Free associative algebras AF1(X ) and AF2(Y ) of finite rank over
infinite fields F1,F2 are elementarily equivalent if and only if their
ranks are the same and HF (F1) ≡ HF (F2).

This implies the answer to B. Plotkin’s question showing that the
variety of associative algebras is logically perfect, i.e. if a f.g.
algebra is isotypic to a free algebra over the same field, then they
are isomorphic.

Corollary

If F1 and F2 are computable (for instance, Q, and f.g. extensions
of Q, or algebraic closure of Q), then the algebras AF1(X ) and
AF2(Y ) are elementarily equivalent iff they are isomorphic.

27 / 43



Bi-interpretability

Theorem

S(K ,N) and AK (X ) are bi-interpretable, HF (K ) and AK (X ) are
bi-interpretable.

Theorem

The set of all free bases of AK (X ) is 0-definable in AK (X ).

Theorem

There is no quantifire elimination in the theory of AF (X ).
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Rings elementarily equivalent to AF (X )

Theorem

Let AF (X ) be a free associative algebra of finite rank over an
infinite field F . Assume that B is an arbitrary ring with at least
one Noetherian centralizer. Then AF (X ) ≡ B if and only if
B ' AK (Y ) where K is a field such that HF (F ) ≡ HF (K ) and
|X | = |Y |.
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Rings elementarily equivalent to AF (X )

Theorem

Let K be an infinite field and X an arbitrary non-empty set. Then
for any non-invertible polynomials P,Q ∈ AK (X ) the canonical
isomorphism of the centralizers CA(P)→ CA(Q) is definable in
AK (X ) uniformly in K ,X ,P and Q.
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Non-unitary free associative algebras

Let A0
F (X ) be a free associative algebra with basis X without unity

( non-commutative monomials on X without constant terms).

Main Problem: there is no subfield F in A0
F (X )!
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Non-unitary free associative algebras

Theorem

The field F and its action on A0
F (X ) are interpretable in A0

F (X )
uniformly in F .

Corollary

Algebra AF (X ) is definable in A0
F (X ).

Indeed, AF (X ) = 1 · F ⊕ A0
F (X ).

Theorem

Free associative algebras A0
F1

(X ) and A0
F2

(Y ) of finite rank over
infinite fields F1,F2 are elementarily equivalent if and only if their
ranks are the same and HF (F1) ≡ HF (F2).
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Ordered groups

A group G is called Left Orderable (LO) if there is a linear ordering
on G which respects left multiplication in G .

Free groups, special groups, etc., are LO.

It is not known if every torsion-free hyperbolic group is LO or not.

Fact

Every LO group satisfies the Kaplansky unit conjecture, i.e., the
group of units in the group algebra K (G ) is precisely K · G .

Corollary

If G is LO then G is definable in K (G ).
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Centralizers

Centralizers

Let G be a commutative transitive and torsion free group and
g ∈ G such that CG (g) = Zn. Then
CK(G)(g) = K (Zn) = K [t1, . . . , tn, t

−1
1 , . . . , t−1n ].

Corollary

If G is torsion-free hyperbolic, then for any g ∈ G the centralizer
CK(G)(x) = K [t, t−1] is the ring of Laurent polynomials in one
variable.

34 / 43



Centralizers

Centralizers

Let G be a commutative transitive and torsion free group and
g ∈ G such that CG (g) = Zn. Then
CK(G)(g) = K (Zn) = K [t1, . . . , tn, t

−1
1 , . . . , t−1n ].

Corollary

If G is torsion-free hyperbolic, then for any g ∈ G the centralizer
CK(G)(x) = K [t, t−1] is the ring of Laurent polynomials in one
variable.

34 / 43



Interpretability of arithmetic in Laurent polynomials

Theorem

The following holds for every ring of Laurent polynomials
K [x , x−1] over a field K of characteristic 0:

The arithmetic N = 〈N | +, ·, 0, 1〉 is interpretable in
K [x , x−1] uniformly in K .

HF (K ) is interpretable in K [x , x−1] uniformly in K .
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Interpretability of arithmetic in group rings

Theorem

Let G be torsion free hyperbolic or toral relatively hyperbolic and
K be an infinite field, then Th(K (G )) is undecidable.
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Left orderable groups

Theorem

Let G ,H be groups and K , L fields such that K (G ) ≡ L(H). If G
is LO then the following hold:

1) H is LO.

2) K ≡ L and G ≡ H.

Theorem

Let G be LO and hyperbolic and H a group such that there is an
element in H with a finitely generated centralizer. Then for any
fields K and L, if K (G ) ≡ L(H) then

G ≡ H

HF (K ) ≡ HF (L).
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Algebras over free groups

Theorem

Let F be a finitely generated free group and K an infinite field. Let
H be a group such that there is an element in H with finitely
generated centralizer and L be a field. Then K (F ) ≡ L(H) if and
only if

H is isomorphic to F ,

HF (K ) ≡ HF (L).
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Algebras over free groups

Theorem

Let F be a finitely generated free group and K an infinite field. Let
B be a ring that has an invertible element x with finitely generated
centralizer, such that x + 1 is not invertible. If K (F ) ≡ B then

B is isomorphic to a group algebra L(H),

H is isomorphic to F ,

HF (K ) ≡ HF (L).
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Algebras over free groups

Theorem

Let K be an infinite field and Fn a free non-abelian group of rank
n. Then:

Th(K (Fn)) is undecidable.

K (Fn) 6≡ K (Fm) for n 6= m.

Theorem

The set of all free bases of F is 0-definable in K (F ).
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Lie Algebras

Let LF (X ) be a free Lie algebra with basis X with coefficients in F .

Theorem

The field F and its action on LF (X ) are definable in LF (X )
uniformly in F .

Corollary

The theory of LF (X ) over Q (any field with undecidable theory) is
undecidable.

Theorem

If two free Lie algebras of finite rank over fields are elementarily
equivalent, then the ranks are the same and the fields are
elementarily equivalent.
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Lie Algebras

Theorem

If a ring B is elementarily equivalent to a free lie algebra LF (X ) of
rank n , then B is a Lie algebra over a field F1, such that:

F1 is elementarily equivalent to F ,

B/Bn ≡ Cn, where Cn is a free n-nilpotent Lie algebra with
basis X over the field F1.

In particular, if B is residually nilpotent, then B is para-free.
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Open problems

Problem

Describe para-free Lie (associative) algebras which are
elementarily equivalent to a free Lie (associative) algebra.

Are free associative or Lie algebras equationally Noetherian?

43 / 43



Open problems

Problem

Describe para-free Lie (associative) algebras which are
elementarily equivalent to a free Lie (associative) algebra.

Are free associative or Lie algebras equationally Noetherian?

43 / 43


