Tarski problems for associative algebras and group rings

Olga Kharlampovich (based on joint results with A. Miasnikov)

Diableretes, 2016

イロト 不得下 イヨト イヨト 二日

1/43

Tarski's type problems for a given group or algebra G:

- First-order classification: Describe groups (algebras) H such that Th(G) = Th(H).
- Decidability: Is the theory Th(G) decidable?

General intuition:

The situation in "free-like" associative algebras is very different from the one in "free-like" groups (free or torsion-free hyperbolic) groups.

In free-like groups there is more geometry and topology, more about equations and their solutions,

In free-like associative algebras and group rings it is more about algebra, arithmetic, about describing (interpreting) some classical commutative objects sitting in algebras.

Let F be a field, X a set of variables, and F[X] a ring of commutative polynomials in variables X with coefficients in F.

The following formula defines F in F[X]:

$$\phi(x) = (x = 0) \lor \exists y(xy = 1)$$

The operations + and \cdot in F are the restrictions of the ones from F[X], so they are also definable in F[X] by formulas.

The field F is definable in the ring F[X].

Notice, that all the formulas that define F in F[X] do not depend on F or X. F is definable uniformly in F and X. Since F is definable in F[X] for every first-order sentence ϕ of fields one can effectively construct a sentence ϕ^* of rings such that

$$F \models \phi \Longleftrightarrow F[X] \models \phi^*.$$

Implications:

• If Th(F) is undecidable then Th(F[X]) is undecidable;

• for any fields F and K

$$F[X] \equiv K[Y] \Longrightarrow F \equiv K$$

Since F is definable in F[X] for every first-order sentence ϕ of fields one can effectively construct a sentence ϕ^* of rings such that

$$F \models \phi \Longleftrightarrow F[X] \models \phi^*.$$

Implications:

- If Th(F) is undecidable then Th(F[X]) is undecidable;
- for any fields F and K

$$F[X] \equiv K[Y] \Longrightarrow F \equiv K$$

イロン イロン イヨン イヨン 三日

More generally: Let $\mathbb{B} = \langle B; L(\mathbb{B}) \rangle$ be a structure.

An operation f or a predicate P on a subset $A \subseteq B^n$ is definable in \mathbb{B} if its graph is definable in \mathbb{B} .

Definition

An algebraic structure $\mathbb{A} = \langle A; f, \dots, P, \dots, c, \dots \rangle$ is definable in \mathbb{B} if there is a definable subset $A^* \subseteq B^n$ and operations f^*, \dots , predicates P^*, \dots , and constants c^*, \dots , all definable in \mathbb{B} such that the structure $\mathbb{A}^* = \langle A^*; f^*, \dots, P^*, \dots, c^*, \dots, \rangle$ is isomorphic to \mathbb{A} .

For example, if Z is the center of a group G then it is definable as a group in G, the same for the center of a ring.

Let \sim be a definable equivalence relation on the definable subset $A \subseteq B^n$. Then the quotient set $A^* = A/\sim$ is *interpretable* in \mathbb{B} .

An operation f or a predicate P on the quotient set A^* is interpretable in \mathbb{B} if the full preimage of its graph in A is definable in \mathbb{B} .

For example, if N is a normal definable subgroup of a group G, then the equivalence relation $x \sim y$ on G given by xN = yN is definable in G, so the quotient set G/N of all right cosets of N is interpretable in G.

It is easy to see that the multiplication induced from G on G/N is also interpretable in G. This show that the quotient group G/N is interpretable in G.

Let \sim be a definable equivalence relation on the definable subset $A \subseteq B^n$. Then the quotient set $A^* = A/\sim$ is *interpretable* in \mathbb{B} .

An operation f or a predicate P on the quotient set A^* is interpretable in \mathbb{B} if the full preimage of its graph in A is definable in \mathbb{B} .

For example, if N is a normal definable subgroup of a group G, then the equivalence relation $x \sim y$ on G given by xN = yN is definable in G, so the quotient set G/N of all right cosets of N is interpretable in G.

It is easy to see that the multiplication induced from G on G/N is also interpretable in G. This show that the quotient group G/N is interpretable in G.

Definition

An algebraic structure $\mathbb{A} = \langle A; f, \dots, P, \dots, c, \dots \rangle$ is interpretable in a structure \mathbb{B} if there is a subset $A^* \subseteq B^n$ definable in \mathbb{B} , an equivalence relation \sim on A^* definable in \mathbb{B} , operations f^*, \dots , predicates P^*, \dots , and constants c^*, \dots , on the quotient set A^* / \sim all interpretable in \mathbb{B} such that the structure $\mathbb{A}^* = \langle A^* / \sim; f^*, \dots, P^*, \dots, c^*, \dots, \rangle$ is isomorphic to \mathbb{A} .

Interpretation is uniformly in a class of structures *C* if the defining formulas are the same for every structure *B* from *C*.

Definition

An algebraic structure $\mathbb{A} = \langle A; f, \dots, P, \dots, c, \dots \rangle$ is interpretable in a structure \mathbb{B} if there is a subset $A^* \subseteq B^n$ definable in \mathbb{B} , an equivalence relation \sim on A^* definable in \mathbb{B} , operations f^*, \dots , predicates P^*, \dots , and constants c^*, \dots , on the quotient set A^* / \sim all interpretable in \mathbb{B} such that the structure $\mathbb{A}^* = \langle A^* / \sim; f^*, \dots, P^*, \dots, c^*, \dots, \rangle$ is isomorphic to \mathbb{A} .

Interpretation is uniformly in a class of structures C if the defining formulas are the same for every structure B from C.

Let F be an arbitrary field and X an arbitrary non-empty set. Then the following hold:

- For any irreducible polynomial a ∈ F[X] the arithmetic
 N = ⟨N; +, ·, 0, 1⟩ is interpretable with the parameter a in
 F[X] uniformly in F, X, and a (i.e., the interpretation
 formulas are the same for all fields F, sets X, and irreducible
 polynomials a). We denote this interpretation by N_a.
- For any irreducible polynomials a, b ∈ F[X] the canonical (unique) isomorphism of interpretations N_a → N_b is definable in F[X] uniformly in F, X, and a, b.
- 3) The arithmetic \mathbb{N} is 0-interpretable in F[X].

Let $a \in F[X]$ be irreducible. Then the formula

$$\forall u(u \mid x \rightarrow (u \in F \lor a \mid u))$$

defines in F[X] a set $\{\alpha a^n \mid \alpha \in F, n \in \mathbb{N}\}$. A formula

$$a - 1 | x - 1$$

defines in this set the subset

$$N_a = \{a^n \mid n \in \mathbb{N}\}.$$

イロン イロン イヨン イヨン 三日

10/43

For any $n, m, k \in \mathbb{N}$ one has

$$n + m = k \iff a^n \cdot a^m = a^k,$$

 $n \mid m \iff (a^n - 1) \mid (a^m - 1).$

which defines addition and division (hence multiplication) on $\mathbb{N}_a \simeq \mathbb{N}$.

If A is interpretable in B then for every first-order sentence ϕ in the language of A one can effectively construct a sentence ϕ^* in the language of B such that

$$A \models \phi \Longleftrightarrow B \models \phi^*.$$

Since the arithmetic \mathbb{N} is interpretable in F[X] and $Th(\mathbb{N})$ is undecidable the following result holds.

Theorem [Robinson, ...]

For any field F the elementary theory of F[X] is undecidable.

This is typical use of interpretability.

It solves the Tarski's problem on decidability of the theory for polynomial rings F[X].

Theorem [Denef]

For any field F of zero characteristic, the Diophantine problem for F[X] is undecidable.

First-order classification of polynomial rings

Theorem

$$F[X] \equiv K[Y] \Longrightarrow |X| = |Y|$$
 and $F \equiv K$.

Sketch of the proof: If $F[X] \equiv K[Y]$, then they have the same Krull dimension, hence |Y| = |X|.

Since F is definable in F[X] uniformly in F and X it follows that $F \equiv K$.

But the converse is not true! Take as F and K algebraic closures of transcendental extensions of \mathbb{Q} of different finite transcendence degrees. Then $F \equiv K$ but $F[X] \not\equiv K[X]$.

First-order classification of polynomial rings

Theorem

$$F[X] \equiv K[Y] \Longrightarrow |X| = |Y|$$
 and $F \equiv K$.

Sketch of the proof: If $F[X] \equiv K[Y]$, then they have the same Krull dimension, hence |Y| = |X|.

Since F is definable in F[X] uniformly in F and X it follows that $F \equiv K$.

But the converse is not true! Take as F and K algebraic closures of transcendental extensions of \mathbb{Q} of different finite transcendence degrees. Then $F \equiv K$ but $F[X] \not\equiv K[X]$.

$$F[X] \equiv K[Y] \Longrightarrow |X| = |Y|$$
 and $F \equiv K$.

Sketch of the proof: If $F[X] \equiv K[Y]$, then they have the same Krull dimension, hence |Y| = |X|.

Since F is definable in F[X] uniformly in F and X it follows that $F \equiv K$.

But the converse is not true! Take as F and K algebraic closures of transcendental extensions of \mathbb{Q} of different finite transcendence degrees. Then $F \equiv K$ but $F[X] \not\equiv K[X]$.

For a set A let Pf(A) be the set of all finite subsets of A.

Definition of hereditary finite sets over A

- $HF_0(A) = A$,
- $HF_{n+1}(A) = HF_n(A) \cup Pf(HF_n(A)),$
- $HF(A) = \bigcup_{n \in \omega} HF_n(A).$

For a ring $R = (A; +, \times, 0, 1)$ define a new structure

$$HF(R) = \langle HF(A); P_A, +, \times, 0, 1, \in \rangle,$$

where P_A is the predicate defining A in HF(A), +, \times , 0, 1 are defined on A as before and \in is the membership predicate on HF(A).

For a set A let Pf(A) be the set of all finite subsets of A.

Definition of hereditary finite sets over A

- $HF_0(A) = A$,
- $HF_{n+1}(A) = HF_n(A) \cup Pf(HF_n(A)),$

•
$$HF(A) = \bigcup_{n \in \omega} HF_n(A).$$

For a ring $R = (A; +, \times, 0, 1)$ define a new structure

$$HF(R) = \langle HF(A); P_A, +, \times, 0, 1, \in \rangle,$$

where P_A is the predicate defining A in HF(A), $+, \times, 0, 1$ are defined on A as before and \in is the membership predicate on HF(A).

The main point:

The first-order theory of HF(R) has the same expressiveness as the weak second order theory of R.

For example: one can use arithmetic in HF(R), finite sequences of of elements from R, define the lengths of the sequences by formulas, take their components, concatenations, etc. - extremely powerful language.

Theorem (Bauval)

Rings of polynomials of finite number of variables over infinite fields F[X] and K[Y] are elementarily equivalent if and only if |X| = |Y| and $HF(F) \equiv HF(K)$.

Corollary

If F and K are computable (for instance, \mathbb{Q} , and f.g. extensions of \mathbb{Q} , or algebraic closure of \mathbb{Q}), then the polynomial rings F[X] and K[Y] are elementarily equivalent iff they are isomorphic.

Theorem (Bauval)

Rings of polynomials of finite number of variables over infinite fields F[X] and K[Y] are elementarily equivalent if and only if |X| = |Y| and $HF(F) \equiv HF(K)$.

Corollary

If F and K are computable (for instance, \mathbb{Q} , and f.g. extensions of \mathbb{Q} , or algebraic closure of \mathbb{Q}), then the polynomial rings F[X] and K[Y] are elementarily equivalent iff they are isomorphic.

By Bauval's theorem the model HF(F) of hereditary finite sets over F is uniformly definable in the ring F[x]. Hence $F[X] \equiv K[Y] \implies HF(F) \equiv HF(K)$, and

$$HF(F) \equiv HF(K) \iff F \equiv_{w.s.o.l.} K.$$

・ロン ・四 と ・ ヨ と ・ ヨ

18/43

Conversely, we can enumerate all the monomials in F[X] and represent each element in F[X] as a finite set of coefficients in F. Multiplication in F[X] is interpretable in the weak second order logic of F. Therefore the theory of F[X] is interpretable in the weak second order theory of F uniformly on F[X].

Theorem (Bauval)

A noetherian ring R is first-order equivalent to F[X] if and only if it is isomorphic to a polynomial ring K[Y] where |X| = |Y| and $HF(F) \equiv HF(K)$. In applications it is convenient to use the list superstructure of \mathbb{A} :

$$S(\mathbb{A},\mathbb{N}) = \langle \mathbb{A}, S(A), \mathbb{N}; t(s,i), l(s), \frown, \rangle,$$

where

- S(A) =all finite sequences of elements from A.
- ullet \frown is the operation of concatenation of two sequences
- $\mathbb{N} = \langle \textit{N} \mid +, \cdot, 0, 1
 angle$ is the standard arithmetic,
- $I: S(A) \rightarrow N$ is the length function on sequences
- t: S(A) × N → A is the coordinate function: t(s, i) is the i's component of s.

Fact: $HF(\mathbb{A})$ and $S(\mathbb{A}, \mathbb{N})$ are bi-interpretable in one another.

In applications it is convenient to use the list superstructure of \mathbb{A} :

$$S(\mathbb{A},\mathbb{N}) = \langle \mathbb{A}, S(A), \mathbb{N}; t(s,i), l(s), \frown, \rangle,$$

where

- S(A) =all finite sequences of elements from A.
- ullet \frown is the operation of concatenation of two sequences
- $\mathbb{N} = \langle \textit{N} \mid +, \cdot, 0, 1
 angle$ is the standard arithmetic,
- $I: S(A) \rightarrow N$ is the length function on sequences
- t: S(A) × N → A is the coordinate function: t(s, i) is the i's component of s.

Fact: $HF(\mathbb{A})$ and $S(\mathbb{A}, \mathbb{N})$ are bi-interpretable in one another.

Let F be an infinite field and X an arbitrary non-empty set. Then the following hold:

- 1) for a given non-invertible polynomial $P \in F[X]$ one can interpret $S(F, \mathbb{N})$ in F[X] using the parameter P uniformly in F, X, and P.
- 2) for any non-invertible polynomials P, Q ∈ F[X] the canonical (unique) isomorphism of the interpretations above S(F, N)_P → S(F, N)_Q is definable in F[X] uniformly in F, X, P, and Q.

Interpretation of $S(F, \mathbb{N})$ in F[t]

$$(\alpha_0,\ldots,\alpha_n) \iff (\alpha_0 + \alpha_1 t + \ldots + \alpha_n t^n, t^n)$$

Definability of such pairs:

٠

$$degf(t) \leq n \Longleftrightarrow t^n f(rac{1}{t}) \in F[t]$$

Hence the formula: $\phi(f, t, t^n) =$

$$\exists g \forall \alpha \in F^* \exists \beta, \gamma \in F\left(t - \frac{1}{\alpha} \mid f - \beta \wedge t - \alpha \mid t^n - \gamma \wedge t - \alpha \mid g - \beta\gamma\right).$$

・ロ ・ ・ 一部 ト ・ 注 ト ・ 注 ・ う へ (C) 23 / 43 Denote by $\mathbb{A} = \mathbb{A}_F(X)$ a free associative unital algebra over a field F with basis X.

Approach to Tarski's problems for $\mathbb{A}_F(X)$:

Do the same as for commutative polynomials

Theorem [Bergman]

The centralizer in $\mathbb{A}_F(X)$ of a non-scalar polynomial is isomorphic to F[t].

Corollary

The ring F[t] is definable in $\mathbb{A}_F(X)$ uniformly in F and X.

The first-order theory of $\mathbb{A}_F(X)$ is undecidable for any F and X.

・ロ ・ <
同 ・ <
言 ・ <
言 ・ 、
言 ・ の へ
の
26 / 43
</p>

Free associative algebras $\mathbb{A}_{F_1}(X)$ and $\mathbb{A}_{F_2}(Y)$ of finite rank over infinite fields F_1, F_2 are elementarily equivalent if and only if their ranks are the same and $HF(F_1) \equiv HF(F_2)$.

This implies the answer to B. Plotkin's question showing that the variety of associative algebras is logically perfect, i.e. if a f.g. algebra is isotypic to a free algebra over the same field, then they are isomorphic.

Corollary

If F_1 and F_2 are computable (for instance, \mathbb{Q} , and f.g. extensions of \mathbb{Q} , or algebraic closure of \mathbb{Q}), then the algebras $\mathbb{A}_{F_1}(X)$ and $\mathbb{A}_{F_2}(Y)$ are elementarily equivalent iff they are isomorphic.

 $S(K, \mathbb{N})$ and $\mathbb{A}_{K}(X)$ are bi-interpretable, HF(K) and $\mathbb{A}_{K}(X)$ are bi-interpretable.

Theorem

The set of all free bases of $\mathbb{A}_{\mathcal{K}}(X)$ is 0-definable in $\mathbb{A}_{\mathcal{K}}(X)$.

Theorem

There is no quantifire elimination in the theory of $\mathbb{A}_{\mathcal{F}}(X)$.

Let $\mathbb{A}_F(X)$ be a free associative algebra of finite rank over an infinite field F. Assume that B is an arbitrary ring with at least one Noetherian centralizer. Then $\mathbb{A}_F(X) \equiv B$ if and only if $B \simeq \mathbb{A}_K(Y)$ where K is a field such that $HF(F) \equiv HF(K)$ and |X| = |Y|.

Let K be an infinite field and X an arbitrary non-empty set. Then for any non-invertible polynomials $P, Q \in \mathbb{A}_{K}(X)$ the canonical isomorphism of the centralizers $C_{\mathbb{A}}(P) \to C_{\mathbb{A}}(Q)$ is definable in $\mathbb{A}_{K}(X)$ uniformly in K, X, P and Q. Let $\mathbb{A}^0_F(X)$ be a free associative algebra with basis X without unity (non-commutative monomials on X without constant terms).

Main Problem: there is no subfield F in $\mathbb{A}^0_F(X)$!

The field F and its action on $\mathbb{A}^0_F(X)$ are interpretable in $\mathbb{A}^0_F(X)$ uniformly in F.

Corollary

Algebra $\mathbb{A}_F(X)$ is definable in $\mathbb{A}_F^0(X)$.

Indeed, $\mathbb{A}_F(X) = 1 \cdot F \oplus \mathbb{A}_F^0(X)$.

Theorem

Free associative algebras $\mathbb{A}_{F_1}^0(X)$ and $\mathbb{A}_{F_2}^0(Y)$ of finite rank over infinite fields F_1, F_2 are elementarily equivalent if and only if their ranks are the same and $HF(F_1) \equiv HF(F_2)$.

The field F and its action on $\mathbb{A}^0_F(X)$ are interpretable in $\mathbb{A}^0_F(X)$ uniformly in F.

Corollary

Algebra $\mathbb{A}_F(X)$ is definable in $\mathbb{A}_F^0(X)$.

Indeed, $\mathbb{A}_F(X) = 1 \cdot F \oplus \mathbb{A}_F^0(X)$.

Theorem

Free associative algebras $\mathbb{A}_{F_1}^0(X)$ and $\mathbb{A}_{F_2}^0(Y)$ of finite rank over infinite fields F_1, F_2 are elementarily equivalent if and only if their ranks are the same and $HF(F_1) \equiv HF(F_2)$.

A group G is called Left Orderable (LO) if there is a linear ordering on G which respects left multiplication in G.

Free groups, special groups, etc., are LO.

It is not known if every torsion-free hyperbolic group is LO or not.

Fact

Every LO group satisfies the Kaplansky unit conjecture, i.e., the group of units in the group algebra K(G) is precisely $K \cdot G$.

Corollary

If G is LO then G is definable in K(G).

Centralizers

Let G be a commutative transitive and torsion free group and $g \in G$ such that $C_G(g) = \mathbb{Z}^n$. Then $C_{\mathcal{K}(G)}(g) = \mathcal{K}(\mathbb{Z}^n) = \mathcal{K}[t_1, \ldots, t_n, t_1^{-1}, \ldots, t_n^{-1}].$

Corollary

If G is torsion-free hyperbolic, then for any $g \in G$ the centralizer $C_{K(G)}(x) = K[t, t^{-1}]$ is the ring of Laurent polynomials in one variable.

Centralizers

Let G be a commutative transitive and torsion free group and $g \in G$ such that $C_G(g) = \mathbb{Z}^n$. Then $C_{\mathcal{K}(G)}(g) = \mathcal{K}(\mathbb{Z}^n) = \mathcal{K}[t_1, \ldots, t_n, t_1^{-1}, \ldots, t_n^{-1}].$

Corollary

If G is torsion-free hyperbolic, then for any $g \in G$ the centralizer $C_{\mathcal{K}(G)}(x) = \mathcal{K}[t, t^{-1}]$ is the ring of Laurent polynomials in one variable.

The following holds for every ring of Laurent polynomials $K[x, x^{-1}]$ over a field K of characteristic 0:

- The arithmetic $\mathbb{N} = \langle N \mid +, \cdot, 0, 1 \rangle$ is interpretable in $K[x, x^{-1}]$ uniformly in K.
- HF(K) is interpretable in $K[x, x^{-1}]$ uniformly in K.

Interpretability of arithmetic in group rings

Theorem

Let G be torsion free hyperbolic or toral relatively hyperbolic and K be an infinite field, then Th(K(G)) is undecidable.

Let G, H be groups and K, L fields such that $K(G) \equiv L(H)$. If G is LO then the following hold:

H is LO.
 K ≡ L and G ≡ H.

Theorem

Let G be LO and hyperbolic and H a group such that there is an element in H with a finitely generated centralizer. Then for any fields K and L, if $K(G) \equiv L(H)$ then

• $G \equiv H$

•
$$HF(K) \equiv HF(L)$$
.

Let F be a finitely generated free group and K an infinite field. Let H be a group such that there is an element in H with finitely generated centralizer and L be a field. Then $K(F) \equiv L(H)$ if and only if

- H is isomorphic to F,
- $HF(K) \equiv HF(L)$.

Let F be a finitely generated free group and K an infinite field. Let B be a ring that has an invertible element x with finitely generated centralizer, such that x + 1 is not invertible. If $K(F) \equiv B$ then

イロト 不得 とくき とくきとう き

39 / 43

- B is isomorphic to a group algebra L(H),
- H is isomorphic to F,
- $HF(K) \equiv HF(L)$.

Let K be an infinite field and F_n a free non-abelian group of rank n. Then:

- $Th(K(F_n))$ is undecidable.
- $K(F_n) \not\equiv K(F_m)$ for $n \neq m$.

Theorem

The set of all free bases of F is 0-definable in K(F).

Lie Algebras

Let $L_F(X)$ be a free Lie algebra with basis X with coefficients in F.

Theorem

The field F and its action on $L_F(X)$ are definable in $L_F(X)$ uniformly in F.

Corollary

The theory of $L_F(X)$ over \mathbb{Q} (any field with undecidable theory) is undecidable.

Theorem

If two free Lie algebras of finite rank over fields are elementarily equivalent, then the ranks are the same and the fields are elementarily equivalent.

If a ring B is elementarily equivalent to a free lie algebra $\mathbb{L}_F(X)$ of rank n, then B is a Lie algebra over a field F_1 , such that:

- F₁ is elementarily equivalent to F,
- B/Bⁿ ≡ C_n, where C_n is a free n-nilpotent Lie algebra with basis X over the field F₁.

In particular, if B is residually nilpotent, then B is para-free.

Problem

- Describe para-free Lie (associative) algebras which are elementarily equivalent to a free Lie (associative) algebra.
- Are free associative or Lie algebras equationally Noetherian?

Problem

- Describe para-free Lie (associative) algebras which are elementarily equivalent to a free Lie (associative) algebra.
- Are free associative or Lie algebras equationally Noetherian?