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Equations in rings

Equations in associative commutative rings R are the classical
polynomial equations in R:

p(x1, . . . , xn) = 0, where p ∈ R[x1, . . . , xn]

Solutions:
x1 → a1, . . . , xn → an (ai ∈ R)

such that
p(a1, . . . , an) = 0 in R .

Similar for systems of equations in variables x1, . . . , xn. If R is
Noetherian it suffices to consider only finite systems of
equations.

3 / 48



Equations in rings

Equations in associative commutative rings R are the classical
polynomial equations in R:

p(x1, . . . , xn) = 0, where p ∈ R[x1, . . . , xn]

Solutions:
x1 → a1, . . . , xn → an (ai ∈ R)

such that
p(a1, . . . , an) = 0 in R .

Similar for systems of equations in variables x1, . . . , xn. If R is
Noetherian it suffices to consider only finite systems of
equations.

3 / 48



Diophantine problems

Diophantine problems for a given ring R: if there exists an
algorithm that decides whether or not a given equation (finite
system of equations) in R has a solution in R.

Diophantine problem = decidability of equations = generalized
tenth Hilbert problem

For an integral domain R finite systems of equations are equivalent
to single equations provided the field of fractions of R is not
algebraically closed.

Remark: to consider Diophantine problems in R the coefficients of
the polynomial equations must be ”constructible” or
”computable”, say integers, or elements from a computable
subring R0 ≤ R.
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Examples: decidable DP

For the following fields Diophantine problem is decidable:

C, coefficients in Q̄. In fact, Th(C) is decidable.

R, coefficients are computable reals. Th(R) is decidable.

Qp, coefficients are computable p-adics. Th(Qp) is decidable.

By the way, there are rings where equations are decidable, but the
elementary theory is not.
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Tenth Hilbert Problem

Matiyasevich, 1970

Diophantine problem for Z is undecidable.

This truly fundamental result is the combined work of Martin
Davis, Yuri Matiyasevich, Hilary Putnam and Julia Robinson which
spans 21 years.
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Diophantine problem for Q

Tenth Hilbert Problem for Q
Diophantine problem for Q is a major open problem in number
theory.

J. Robinson showed that Z is definable in Q by some first order
formulas. But all attempts to define to define this Z by equations
failed so far.

All known examples of algebraic varieties over Q have the property
that the real topological closure of the Zariski closure of their
rational points has finitely many connected components. Barry
Mazur has conjectured that this holds for any variety over the Q.

If true Mazur’s conjecture implies that the integers are not
Diophantine over the rationals.
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Diophantine problem for Q

Another approach is to interprete Z in Q using elliptic curves or
abelian varieties over Q.

In any case, common believe is that the Diophantine problem over
Q is undecidable.
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Diophantine problem for number fields and their algebraic
integers

Conjectures

Diophantine problem in a ring of algebraic integers is
undecidable.

Diophantine problem in a finite extension of Q is undecidable.
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Further results

Theorem (Denef, 78)

Let R be an integral domain of characteristic zero. Then the
diophantine problem for R[t] with coefficients in Z[t] is
undecidable.

Theorem (Pappas, 85)

Let R be an integral domain of characteristic zero. Then the
diophantine problem for R[t, t−1] with coefficients in Z[t] is
undecidable.
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Equations in groups

A group equation in variables X and constants from a group G is a
formal expression of the type

w(x1, . . . , xn, g1, . . . , gm) = 1,

where w is a group word in X and constants from G .

Solutions:
x1 → u1, . . . , xn → un (ui ∈ G )

such that w(u1, . . . , un, g1, . . . , gm) = 1 in G .

Systems of equations, etc.
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Equations in other structures

Let M be an arbitrary structure in a language L.

An equation in M is equality of two terms in L with constants
from M:

t(x1, . . . , xn, a1, . . . , am) = s(x1, . . . , xn, b1, . . . , bm).

So one can consider equations in semigroups, associative or Lie
algebras, etc.
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Principal questions

The principal questions on equations in M:

Decidability of single equations and finite systems
(Diophantine problems).

Is every infinite system of equations in finite number of
variables and constants from M equivalent in M to some
finite subsystem of this system? In this case M is called
Equationally Noetherian.

Description of solution sets of finite systems of equations.

Algebraic geometry over M.

Algebraically (existentially) closed objects related to M.
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Developing the theory

Algebraic geometry over M.

Algebraically (existentially) closed objects related to M.
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Equations in groups

The principal questions are solved in the following groups:

Abelian (linear systems of equations).

Free groups (Makanin-Razborov, Kharlampovich-M.)

Hyperbolic and toral relatively hyperbolic groups (Rips-Sela,
Dahmani-Groves)

Right angled Artin groups (Diekert-Muscholl,
Casals-Ruiz-Kazachkov)

Free products of groups (Casals-Ruiz-Kazachkov)
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Complexity questions

If Diophantine problems are decidable in a group G the next
fundamental algorithmic question is on complexity of the decision
algorithms.
Initial Makanin’s algorithm was evaluated as non-elementary. At
present, due to brilliant ”compression” ideas introduced by
Plamdowski and Jeh,
It seems the current space complexity estimate is
NSPACE (n log n).

Major open problem

Are the Diophantine problems in free groups decidable in
non-deterministic polynomial time?

Kharlampovch, Lysenok, M., and Touikan showed that decidability
of quadratic equations in a given free group is NP-complete.
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Good descriptions of solution sets

Makanin-Razborov diagrams (process, not the description)

Ciobanu-Diekert-Elder (no cancellation, EDT0L)

Kharlampovich-Miasnikov (algebraic geometry)
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NTQ-systems

Triangular quasi-quadratic (TQ) system is a finite system that
has the following form

S1(X1,X2, . . . ,Xn,A) = 1,

S2(X2, . . . ,Xn,A) = 1,
. . .

Sn(Xn,A) = 1

where either Si = 1 is quadratic in variables Xi , or Si = 1 is a
system [xj , xk ] = 1 and, in addition, equations [x , u] = 1 for all
x , xj , xk ∈ Xi and some u ∈ FR(Si+1,...,Sn) or Si is empty.
A TQ system above is non-degenerate ( NTQ) if for every i ,
Si (Xi , . . . ,Xn,A) = 1 has a solution in the coordinate group
Gi = FR(Si+1,...,Sn), where Gn = F (or Gn = Γ).
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Description of solution sets of equations

Theorem

For a system of equations

S(X ,A) = 1

over F one can find finitely many NTQ systems

U1(Y1,A) = 1, . . . ,Um(Ym,A) = 1

such that

VF (S) = P1(V (U1)) ∪ . . . ∪ Pm(V (Um))

for some word mappings P1, . . . ,Pm. (Pi maps a tuple Ȳi ∈ V (Ui )
to a tuple X̄ ∈ VF (S).

Similarly one can effectively describe the solution set of a system
over a torsion-free hyperbolic group Γ.
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Groups with undecidable word and conjugacy problems

Especially constructed finitely presented groups:

with undecidable word problem,

with undecidable conjugacy problem

The main tool: simulating Turing or Minski machines in the
groups.
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Nilpotent and solvable groups

Two crucial results:

(Romankov) Single equations are undecidable in free nilpotent
groups of sufficiently large rank and nilpotency class.

(Romankov) Single equations are undecidable in free
metabelian groups of sufficiently large rank

The main tool: interpreting arithmetic in the groups.
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Systems of equations in Nilpotent groups

Theorem [Moon Duchin, Hao Liang, Michael Shapiro]

The following hold:

Single equations are decidable in UT (3,Z);

Finite systems of equations are undecidable in all non-abelian
free nilpotent groups.

Finite systems of equations are not equivalent to single equations
in UT (3,Z).
The main tool: interpreting arithmetic in the groups.
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Interpretations by equations.

E-definable sets.

A ⊂Mn is called e-definable in M if there exists a finite system of
equations Σ(x1, . . . , xn, ȳ) such that

(a1, . . . , an) is in A iff Σ(a1, . . . , an, ȳ) has a solution in ȳ .
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Examples

Positive numbers in R: x = y2;

Natural numbers N in integers Z:

x ∈ N⇐⇒ ∃y1, . . . , y4(x = y21 + . . . y24 )

Center of a f.g. group G ;

G ′ if it has a finite width : x = [y1, y2] · · · , [y2k−1, y2k ];

24 / 48



Interpretations by equations.

E-interpretation or Diophantine interpretation

Let A and M be algebraic structures. A map φ : X ⊂Mn → A is
called an e-interpretation of A in M if

φ is onto;

X is e-definable in M;

Preimage of ” = ” in A is e-definable:

Preimage of the graph of every function in A is e-definable;

25 / 48



Encoding equations.

Reduction of equations.

there is an effective procedure that given an e-enterpretation
φ : X ⊂Mn → A and a finite system of equations over A
constructs an equivalent system of equations over M.

Negative direction;

Positive direction.

26 / 48



Examples

Z (G ) for any finitely generated group G ; G ′ for any polycyclic
group G . They are e-interpretable as groups!

G/Z (G ) for any finitely generated group G ;

For a commutative associative ring R (f.g. additive group),
nillradical of R.
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Sytems of equations in nilpotent groups

Main theorem [ Albert Garreta Fontelles, M., Denis Ovchinnikov]

For every finitely generated non-virtually abelian nilpotent group G
there exists (and can be effectively computed) a ring of algebraic
integers O(G ) which e-interpretable in G . Hence, the Diophantine
problem in O(G ) reduces to the Diophantine problem in G .

Corollary The Diophantine problem in the class of torsion-free
finitely generated nilpotent groups of class 2 (or higher) is
equivalent to the Diophantine problem in the rings of algebraic
integers: G → O(G ), O → UT (3,O).

Probably, it is undecidable.
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Corrolaries

Polycyclic groups

For any polycyclic group G that contains at least one non virtually
abelian nilpotent subgroup, the analogue of the last theorem holds.
In particular any non virtually metabelian nilpotent subgroup is like
this.

Arithmetic groups

For any arithmetic group that contains a non virtually nilpotent
subgroup, the analogue of the last result holds.
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Random nilpotent groups

The elements a and b are said to be in general position in a
2-nilpotent group G if [a, b] 6= 1 and the only solutions to the
system

[a, x ] = 1, (1)

[b, y ] = 1,

[a, y ] = [x , b].

in G have the following form:

x = btmod Z (G ), y = atmod Z (G ),

for t any integer.
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Theorem

If a 2-nilpotent group G has a pair of elements in a general
position then O(G ) = Z. Hence the Diophantine problem in G is
undecidable.

Many 2-nilpotent finitely generated groups have elements in a
general position.
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The commutator equation in Nilpotent groups

The commutator problem in a group G : Is there an algorithm that
decides if a given element g ∈ G is a commutator or not?

Decidability of commutator equations [x , y ] = g in G .

Common intuition: The commutator equations are decidable in
most ”reasonable groups”.
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A surprising result

Theorem [Romankov, 2015]

There is a finitely generated 2-nilpotent group G with undecidable
Commutator Problem.
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Endomorphism Problem

The Endomorphism Problem in a group G : given two elements
u, v ∈ G decide whether there is an endomorphism φ ∈ End(G )
such that φ(u) = v .

Corollary of Romankov’s theorem

There is a finitely generated 2-nilpotent group H with undecidable
Endomorphism Problem.

Proof:
Let G be the group from Romankov’s theorem. Put

H = G × N2,2,

where N2,2 has basis {x , y}. Then an element g ∈ G is an
endomorphic image of [x , y ] if and only if g is a commutator in G .
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Retract Problem

The Retract Problem in a group G : given a finitely generated
subgroup H of G decide if H is a retract of G or not.

Corollary of Romankov’s theorem

There is no (uniform) algorithm to solve Retract Problem in all
finitely generated 2-nilpotent groups.

Proof:
Let H = G ×[x ,y ]=g N2,2. Then there is a retraction ϕ : H → G if
and only if g is a commutator in G .
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Equations in free associative algebras and group rings

Let AK (A) be a free associative algebra with basis X over field K .

An equation with variables in X = {x1, . . . , xn} and constants from
AK (A) is an expression

P(X ,A) = 0

where P(X ,A) is an element from AK (A ∪ X ).

Solutions are maps xi → ui ∈ AK (A) such that
P(u1, . . . , un,A) = 0 in AK (A).
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Diophantine problem in AK (A)

Diophantine problem in AK (A)

Is it true that there is an algorithm which given an equation in
AK (A) decides if the equation has a solution in AK (A) or not for
an algebraically closed field K? A finite field K?
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Solutions of bounded degree

We assume that the Diophantine problem in K is decidable.

Theorem

For each m ∈ N there exists an algorithm which given a finite
system of equations in AK (A) decides whether there is a solution of
degree ≤ m of the system (and if it exists the algorithm finds one).
Hence the Bounded Diophantine Problem in AK (A) is decidable.

The result follows from the decidability of the Diophantine problem
in K .
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Solutions of bounded degree

width width(f ) of a polynomial f = the number of monomials in f .

Theorem

Assume that the Diophantine problem in K is decidable. Then for
each m ∈ N there exists an algorithm which given a finite system
of equations in AK (A) decides whether there is a solution of
degree ≤ m of the system (and if it exists the algorithm finds one).
Hence the Bounded Diophantine Problem in AK (A) is decidable.

The result follows from Makanin’s result on the decidability of the
systems of equations in a free semigroup.

Conjecture

Let K be a field with decidable Diophantine problem and AK (A) a
free associative algbera of finite rank. Then there is a computable
function c : N→ N such that if an equation P = 0 has a solution
in AK (A) then it has a solution of width at most f (degP).

If the conjecture holds then the Diophantine problem would be
decidable.
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Pell equation In R[t]

Pell equation in R[t] for an integral domain R of char 0:

X 2 − (t2 − 1)Y 2 = 1.

The solution set P of the Pell equation in R[t] (the Pell curve) is
precisely the set of pairs

P = (±Xn,±Yn−1), n ∈ N,

where Xn,Yn ∈ Z[t] are Chebyshev’s polynomials.

Recall that:

degYn = n

Yn(1) = n + 1, so {Yn(1) | n = 0, 1, 2, . . .} = Z.
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Undecidability of the Diophantine problem in R[t]

Notice that for f , g ∈ Z[t] one has

f (1) = g(1)⇐⇒ ∃h(f − g = h(t − 1))

So the equivalence relation f ∼ g ⇐⇒ f (1) = g(1) is definable by
equations in Z[t]. Hence

Z = {Yn | n = 0, 1, 2, . . .}/ ∼

and the standard operation + and × on Z are interpretable by
equations on the Pell curve:

m + n = k ⇐⇒ Ym + Yn ∼ Yk ,

m × n = k ⇐⇒ Ym × Yn ∼ Yk .
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Degrees of minimal solutions are unbounded

Theorem

Arithmetic Z is interpretable by equations on the Pell curve in
R[t]. In particular, the Tenth Hilbert Problem reduces to
decidability of equations on the Pell curve in R[t].

From undecidability of THP for Z follows that the least positive
solution of a Diophantine equation P = 0 in Z is not bounded by a
computable function on the size of P.

Hence the degrees of minimal solutions of polynomial equations on
the Pell curve are not bounded by any computable function.
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Diophantine problem in AK (A)

Theorem

Let AK (X ) be a free associative algebra over K . Then for any field
K of characteristic zero the Diophantine problem for AK (X ) is
undecidable.
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Diophantine problem in group rings

Theorem

Let G be a torsion-free hyperbolic group. Then for any field K of
characteristic zero the Diophantine problem for K (G ) is
undecidable.
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Zelmanov’s question

Towards Dehn functions

Given elements r , r1, . . . , rn ∈ AK (A), decide whether there exist
elements y1, z1, . . . , yn, zn ∈ AK (A) such that r = Σn

i=1yi rizi .

Solution to this problem would clarify the algorithmic nature of
Dehn’s functions in finitely generated associative algebras.

Observe, that existence of finitely presented algebras with
undecidable word problem does not imply undecidability of the
quadratic equations above.
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Open questions

Interesting topic

Study elliptic curves in AK (A).

Interesting topic

Is the algebra AK (A) equationally Noetherian?.
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Equations in free Lie algebras

Let LK (X ) be a free Lie algebra over a field K with basis X
(|X | ≥ 2).

General question

Is Diophantine problem in LK (X ) decidable?

Theorem

If DP is undecidable in K then it is undecidable in LK (X ).

Based on a result that the field K is interpretable by equations in
LK (X ).
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Equations in free Lie algebras

Interesting question

Is the Diophantine problem decidable in free Lie algebras over an
algebraically closed fields?

Question

Is there an analog of Pell equation in LK (X )?
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