Volker Diekert and Géraud Sénizergues

Stuttgart university, Bordeaux university

Tuesday March 8th 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 つくの

1/32

Introduction

INTRODUCTION

FO theory of a monoid

Structure :

$$\mathcal{M} := \langle M, \cdot, 1_M, a_M, b_M, \cdots, = \rangle$$

Formulas : first-order formulas on the signature

$$(\cdot, 1, a, b, \cdots, =)$$

Decision problem : Instance : a formula φ Question : $\mathcal{M} \models \varphi$?

FO theory of a monoid

For the free monoid :

$$\langle \{a,b\}^*,\cdot,arepsilon,a,b,=
angle$$

the FO theory is undecidable. For the free group :

 $\langle \operatorname{FG}(\{a,b\}),\cdot,\varepsilon,=\rangle$

the FO theory is decidable. [Kharlampovich-Myasnikov 2006] Introduction

Free inverse monoid

FIM(A) := the Free Inverse Monoid over the finite set A.

$$(A \cup \overline{A})^* \twoheadrightarrow \operatorname{FIM}(A) \twoheadrightarrow \operatorname{FG}(A)$$

Main result

Theorem

Suppose $|A| \ge 6$. The FO-theory of FIM(A), with idempotent variables only, is undecidable or decidable.

contents

1 Introduction

- 2 Free inverse monoid
- 3 Theories of trees
- 4 Theories of words
- **5** FO theories of FIM(A)

Free inverse monoid

FREE inverse monoid

< □ > < @ > < E > < E > E のへで 8/32

Inverse monoids

Let $(M, \cdot, 1)$ be a monoid, and let $u, u' \in M$. u' is an inverse for u iff

$$u \cdot u' \cdot u = u \land u' \cdot u \cdot u' = u'$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三日 ● ○○○

9/32

Inverse monoids

Let $(M, \cdot, 1)$ be a monoid, and let $e \in M$. The element e is idempotent iff

$$e \cdot e = e$$

Inverse monoids

Definition

A monoid $(M, \cdot, 1)$ is called an inverse monoid iff

$$\forall u \in M, \exists ! u' \in M, \ u \cdot u' \cdot u = u \land u' \cdot u \cdot u' = u'.$$

Fundamental example : monoid of partial injections from E to E. Inverse of $u : u' = \{(x, y) \in E \times E \mid (y, x) \in u\}$ Idempotent : $e = \{(x, x) \mid x \in E'\}$ where $E' \subseteq E$.

free inverse monoids

Free inverse monoids exist : [Scheiblich 73,Munn 74 .] The domain of FIM(A) is the set of pairs :

(T,g)

where

1- g ∈ FG(A) (the free group over A)
2- T is a subtree of the Cayley-graph of FG(A), such that g ∈ T.

The operations are defined by :

$$(T,g) \times (U,h) = (T + g \cdot U, g \cdot h).$$

 $(T,g)' = (g^{-1} \cdot T, g^{-1})$

Free inverse monoid

free inverse monoids

Such pairs (T, g) are also called Munn trees, or bi-rooted trees.

Free inverse monoid

Theorem (Rozenblat 1986)

The satisfiability problem for equations in the free inverse monoid is undecidable.

bad start for the FO theory.

Free inverse monoid

Equations

BUT :

[Deis-Meakin-Sénizergues 2007] :

satisfiability is decidable for equations in the free inverse monoid with idempotent variables (reduction to [Rabin 71]).

[Diekert-Martin-S.-Silva CSR'15] : the above problem is EXPTIME (reduction to [Baader-Narendran 91])

[D-M-S-S 2016] :

the above problem is EXPTIME-complete (red. from equations over finite sets, shown complete in [Baader-Narendran 91]).

Link with non-empty prefix-closed subsets of F(A)

 $PC_f(FG(A)) :=$ The set of all non-empty p-closed subsets of F(A). Additive structure, with left-translations :

 $\langle \mathrm{PC}_{f}(\mathrm{FG}(A)), +, (S \mapsto aS + \varepsilon)_{a \in A \cup A^{-1}}, = \rangle$

The FO theory of non-empty p-closed subsets of FG(A) reduces to the FO theory of FIM(A) with idempotent variables (and conversely). method : given in [DS-D-M-S CSR'15].

Theories of trees

First-order theories of TREES

<ロ > < 部 > < 書 > く 書 > き き と 書 の Q (C) 17 / 32 Theories of trees

Theories of trees

Trees :

Let F a graded alphabet. For $f \in F$:

$$\hat{f}(t_1,\ldots,f_k) := f(t_1,\ldots,f_k)$$

 $\langle T(F),(\hat{f})_{f\in F},= \rangle$

[Malcev <71] : FO of terms is decidable [Comon 90] : FO of terms, with rational constraints, is decidable [Comon 91],[Comon-Treinen 94], etc ... : many structures on trees have a decidable FO theory. Theories of trees

Theories of trees

Prefix-closed Sets : $PC_f(A^*)$: set of finite prefix-closed subsets of A^* . Additive structure :

$$\langle \mathrm{PC}_f(A), +, = \rangle$$

[Rabin 71] : FO-theory of finite prefix-closed subsets of A^* is decidable

 $\langle \mathrm{PC}_f(\mathrm{FG}(A)), +, = \rangle$

[Muller-Schupp 81] : FO-theory of finite prefix-closed subsets of FG(A) is decidable.

Theories of words

First-order theories of WORDS

< □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ 20 / 32 Theories of words

Theories of words

The FO-theory of

$$\langle A^*,\cdot,=
angle$$

for $|A| \ge 2$, is undecidable. [folklore] The FO-theory of

$$\langle A^*, \leq_f \rangle$$

for $|A| \ge 2$, where \le_f is the factor-ordering, is undecidable. [(tiring) exercise]

FO theories of FIM(A)

FO theories of FIM(A)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FO theories of FIM(A)

Decidable or undecidable?

Positive hint : Munn-trees are trees

Negative hint : FO of words with factor ordering is undecidable. Prefix sets, combined with left-translations, might be enough to express the factor ordering.

FO theories of FIM(A)

Undecidable

FO of words with factor reduces to FO of non-empty, p-closed subsets of FG(A) (addition and left-translation) reduces to FO theory of FIM(A) with idempotent variables. **FO** theories of FIM(A)

Finite sets of words

Starting alphabet A. New alphabet $\Delta := A \cup \{q_0, q, \#, m\}$. Equation *E* over finite subsets of Δ^* :

$$q \cdot X + \sum_{a \in A} q \cdot X_{q,a} + \sum_{a \in A} q_0 \cdot X_{q,a} = \sum_{\substack{a \in A \\ p \in \{q,q_0\}}} q \cdot \# \cdot a \cdot X_{p,a} + q_0 \cdot m$$

▲ □ ▶ < @ ▶ < @ ▶ < @ ▶ < @ ▶
 25 / 32

FO theories of FIM(A)

Finite sets of words

Lemma (Baader-Narendran 91)

 $(X, (X_{q,a})_{a \in A}, (X_{q_0,a})_{a \in A})$ is a solution of E iff 1 - X = Zm for some non-empty $Z \subseteq (\#A)^+$ $2 - X_{q,a} =$ set of suffixes of Z, starting after letter a, followed by some $\#a' \ (a' \in A)$ $3 - X_{q_0,a} =$ set of suffixes of Z, starting after letter a, followed by m.

N.B.1 : Every minimal solution is of the form

 $X = \{u \cdot m\}$ where $u \in (\#A)^+$

26 / 32

finite p-closed sets of words

The equation E' over non-empty finite p-closed subsets of Δ^* :

$$\varepsilon + q \cdot X + \sum_{a \in A} q \cdot X_{q,a} + \sum_{a \in A} q_0 \cdot X_{q_0,a} = \varepsilon + q + q \cdot \# + \sum_{\substack{a \in A \\ p \in \{q,q_0\}}} q \cdot \# \cdot a \cdot X_{p,a} + q_0 + q_0$$

Same kind of description of the minimal solutions. N.B.2 : Every minimal solution fulfills

$$X = \operatorname{Pref}(u \cdot m) \text{ for some } u \in (\#A)^+$$
$$X + \sum_{a \in A} q \cdot X_{q,a} = \operatorname{Fact}(u \cdot m) \cap ((\#A)^*(\varepsilon + \# + m))$$

27 / 32 First-order logic with idempotent variables over free inverse monoids \Box_{FO} theories of FIM(A)

finite p-closed subsets of $F(\Delta)$

The equations E'' over non-empty finite p-closed subsets of $F(\Delta)$:

$$\varepsilon + \#^{-1} \cdot (X + \sum_{a \in A} X_{q,a}) = \varepsilon + \#^{-1} + \sum_{\substack{a \in A \\ p \in \{q, q_0\}}} a \cdot X_{p,a}$$
$$\sum_{a \in A} q_0 \cdot X_{q_0,a} = \varepsilon + m.$$

N.B.3 : minimal solutions are of the form :

$$X = \operatorname{Pref}(u \cdot m)$$

$$X + \sum_{a \in A} q \cdot X_{q,a} = \operatorname{Fact}(u \cdot m) \cap ((\#A)^*(\varepsilon + \# + m))$$

for some $u \in (\#A)^+$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FO theories of FIM(A)

FO-interpretation

The interpretation : $\varphi: A^+ \hookrightarrow \mathrm{PC}_f(F(\Delta))$

$$u \mapsto \operatorname{Pref}(\#u[0]\#u[1]\cdots \#u[\ell-1]m)$$

FO formula asserting that $S \in Im(\varphi)$:

 $\exists (X_{q,a})_{a \in A}, \exists (X_{q_0,a})_{a \in A}), E''(S, (X_{q,a})_{a \in A}, (X_{q_0,a})_{a \in A}) \land Minimal(S).$

FO-interpretation

FO formula asserting that $\varphi^{-1}(X)$ is a factor of $\varphi^{-1}(Y)$:

$$\begin{aligned} \exists (X_{q,a})_{a \in A}, \exists (X_{q_0,a})_{a \in A}), \exists (Y_{q,a})_{a \in A}, \exists (Y_{q_0,a})_{a \in A}), \exists X' \\ E''(X, (X_{q,a})_{a \in A}, (X_{q_0,a})_{a \in A}) \land E''(Y, (Y_{q,a})_{a \in A}, (Y_{q_0,a})_{a \in A}) \\ \land X' \text{ is a maximal strict subset of } X \\ \land X' \subseteq Y + \sum_{a \in A} Y_{q,a}. \end{aligned}$$

FO theories of FIM(A)

Main result

Theorem

Suppose $|A| \ge 6$. The FO-theory of FIM(A), with idempotent variables only, is undecidable.

FO theories of FIM(A)

- FO of $\operatorname{FIM}(A)$ for $1 \leq |A| \leq 5$
- existential theory of FIM(A)?
- other fragments of the FO theory of FIM(A)?