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FO theory of a monoid

Structure :
M := 〈M, ·, 1M , aM , bM , · · · ,=〉

Formulas :
first-order formulas on the signature

(·, 1, a, b, · · · ,=)

Decision problem :
Instance : a formula ϕ

Question : M|== ϕ?
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FO theory of a monoid

For the free monoid :

〈{a, b}∗, ·, ε, a, b,=〉

the FO theory is undecidable.
For the free group :

〈FG({a, b}), ·, ε,=〉

the FO theory is decidable.
[Kharlampovich-Myasnikov 2006]
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Free inverse monoid

FIM(A) := the Free Inverse Monoid over the finite set A.

(A ∪ Ā)∗ ։ FIM(A) ։ FG(A)

5 / 32



First-order logic with idempotent variables over free inverse monoids

Introduction

Main result

Theorem

Suppose |A| ≥ 6. The FO-theory of FIM(A), with idempotent
variables only, is undecidable or decidable.
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Free inverse monoid

Inverse monoids

Let (M, ·, 1) be a monoid, and let u, u′ ∈ M.
u′ is an inverse for u iff

u · u′ · u = u ∧ u′ · u · u′ = u′
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Inverse monoids

Let (M, ·, 1) be a monoid, and let e ∈ M. The element e is
idempotent iff

e · e = e
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Inverse monoids

Definition

A monoid (M, ·, 1) is called an inverse monoid iff

∀u ∈ M,∃!u′ ∈ M, u · u′ · u = u ∧ u′ · u · u′ = u′.

Fundamental example : monoid of partial injections from E to E.
Inverse of u : u′ = {(x , y) ∈ E × E | (y , x) ∈ u}
Idempotent : e = {(x , x) | x ∈ E ′} where E ′ ⊆ E .
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free inverse monoids

Free inverse monoids exist : [Scheiblich 73,Munn 74 .]
The domain of FIM(A) is the set of pairs :

(T , g)

where
1- g ∈ FG(A) (the free group over A)
2- T is a subtree of the Cayley-graph of FG(A),
such that g ∈ T .
The operations are defined by :

(T , g)× (U, h) = (T + g · U, g · h).

(T , g)′ = (g−1 · T , g−1)
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free inverse monoids

Such pairs (T , g) are also called Munn trees, or bi-rooted trees.
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Free inverse monoid

Equations

Theorem (Rozenblat 1986)

The satisfiability problem for equations in the free inverse monoid is
undecidable.

bad start for the FO theory.
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Free inverse monoid

Equations

BUT :

[Deis-Meakin-Sénizergues 2007] :
satisfiability is decidable for equations in the free inverse monoid
with idempotent variables (reduction to [Rabin 71]).

[Diekert-Martin-S.-Silva CSR’15] :
the above problem is EXPTIME (reduction to
[Baader-Narendran 91])

[D-M-S-S 2016] :
the above problem is EXPTIME-complete (red. from equations over
finite sets, shown complete in [Baader-Narendran 91]). 15 / 32
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Free inverse monoid

Link with non-empty prefix-closed subsets of F(A)

PCf (FG(A)) := The set of all non-empty p-closed subsets of F (A).
Additive structure, with left-translations :

〈PCf (FG(A)),+, (S 7→ aS + ε)a∈A∪A−1 ,=〉

The FO theory of non-empty p-closed subsets of FG(A) reduces to
the FO theory of FIM(A) with idempotent variables (and
conversely).
method : given in [DS-D-M-S CSR’15].
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Theories of trees

Trees :
Let F a graded alphabet. For f ∈ F :

f̂ (t1, . . . , fk) := f (t1, . . . , fk)

〈T (F ), (f̂ )f ∈F ,=〉

[Malcev <71] : FO of terms is decidable
[Comon 90] : FO of terms, with rational constraints, is decidable
[Comon 91],[Comon-Treinen 94], etc ... : many structures on trees
have a decidable FO theory.
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Theories of trees

Prefix-closed Sets :
PCf (A

∗) : set of finite prefix-closed subsets of A∗.
Additive structure :

〈PCf (A),+,=〉

[Rabin 71] : FO-theory of finite prefix-closed subsets of A∗ is
decidable

〈PCf (FG(A)),+,=〉

[Muller-Schupp 81] : FO-theory of finite prefix-closed subsets of
FG(A) is decidable.
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First-order theories of WORDS
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Theories of words

Theories of words

The FO-theory of
〈A∗, ·,=〉

for |A| ≥ 2, is undecidable.
[folklore ]
The FO-theory of

〈A∗,≤f 〉

for |A| ≥ 2, where ≤f is the factor-ordering, is undecidable.
[(tiring) exercise ]
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FO theories of FIM(A)
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FO theories of FIM(A)

Decidable or undecidable ?

Positive hint : Munn-trees are trees

Negative hint : FO of words with factor ordering is undecidable.
Prefix sets, combined with left-translations, might be enough to
express the factor ordering.
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Undecidable

FO of words with factor
reduces to
FO of non-empty, p-closed subsets of FG(A) (addition and
left-translation)
reduces to
FO theory of FIM(A) with idempotent variables.
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FO theories of FIM(A)

Finite sets of words

Starting alphabet A.
New alphabet ∆ := A ∪ {q0, q,#,m}.
Equation E over finite subsets of ∆∗ :

q · X +
∑

a∈A

q · Xq,a +
∑

a∈A

q0 · Xq,a =
∑

a∈A

p∈{q,q0}

q ·# · a · Xp,a + q0 · m
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FO theories of FIM(A)

Finite sets of words

Lemma (Baader-Narendran 91)

(X , (Xq,a)a∈A, (Xq0,a)a∈A) is a solution of E iff
1- X = Zm for some non-empty Z ⊆ (#A)+

2- Xq,a = set of suffixes of Z , starting after letter a, followed by
some #a′ (a′ ∈ A)
3- Xq0,a = set of suffixes of Z , starting after letter a, followed by m.

N.B.1 : Every minimal solution is of the form

X = {u · m} where u ∈ (#A)+
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FO theories of FIM(A)

finite p-closed sets of words

The equation E ′ over non-empty finite p-closed subsets of ∆∗ :

ε+q·X+
∑

a∈A

q·Xq,a+
∑

a∈A

q0·Xq0,a = ε+q+q·#+
∑

a∈A

p∈{q,q0}

q·#·a·Xp,a+q0+q0

Same kind of description of the minimal solutions.
N.B.2 : Every minimal solution fulfills

X = Pref(u · m) for some u ∈ (#A)+

X +
∑

a∈A

q · Xq,a = Fact(u · m) ∩ ((#A)∗(ε+#+ m))
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FO theories of FIM(A)

finite p-closed subsets of F (∆)

The equations E ′′ over non-empty finite p-closed subsets of F (∆) :

ε+#−1 · (X +
∑

a∈A

Xq,a) = ε+#−1 +
∑

a∈A

p∈{q,q0}

a · Xp,a

∑

a∈A

q0 · Xq0,a = ε+ m.

N.B.3 : minimal solutions are of the form :

X = Pref(u · m)

X +
∑

a∈A

q · Xq,a = Fact(u · m) ∩ ((#A)∗(ε+#+ m))

for some u ∈ (#A)+
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FO theories of FIM(A)

FO-interpretation

The interpretation :
ϕ : A+ →֒ PCf (F (∆))

u 7→ Pref(#u[0]#u[1] · · ·#u[ℓ− 1]m)

FO formula asserting that S ∈ Im(ϕ) :

∃(Xq,a)a∈A,∃(Xq0,a)a∈A),E
′′(S , (Xq,a)a∈A, (Xq0,a)a∈A)∧Minimal(S).
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FO theories of FIM(A)

FO-interpretation

FO formula asserting that ϕ−1(X ) is a factor of ϕ−1(Y ) :

∃(Xq,a)a∈A,∃(Xq0,a)a∈A),∃(Yq,a)a∈A,∃(Yq0,a)a∈A),∃X ′

E ′′(X , (Xq,a)a∈A, (Xq0,a)a∈A) ∧ E ′′(Y , (Yq,a)a∈A, (Yq0,a)a∈A)

∧X ′ is a maximal strict subset of X

∧X ′ ⊆ Y +
∑

a∈A

Yq,a.
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FO theories of FIM(A)

Main result

Theorem

Suppose |A| ≥ 6. The FO-theory of FIM(A), with idempotent
variables only, is undecidable.
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FO theories of FIM(A)

Open questions

- FO of FIM(A) for 1 ≤ |A|≤ 5
- existential theory of FIM(A) ?
- other fragments of the FO theory of FIM(A) ?
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