
Word and conjugacy problem in Baumslag-Solitar
groups

Armin Weiß

Universität Stuttgart / Stevens

Les Diablerets, March 8, 2016

Armin Weiß 1/24



Dehn’s fundamental problems

Let G be a group, generated by a finite set Σ with Σ = Σ−1 ⊆ G .
Write a for the letter a−1 ∈ Σ.

Word problem: Given w ∈ Σ∗. Question: Is w = 1 in G?

Conjugacy problem: Given v ,w ∈ Σ∗. Question: v ∼ w?

(∃ z ∈ G such that zvz−1 = w?)
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Overview: Baumslag-Solitar groups

Baumslag-Solitar group: BSp,q =
〈
a, t | tapt−1 = aq

〉
= HNN(〈a〉 , t; ap 7→ aq)

Generalized
Baumslag-Solitar group:

Fundamental group of graph of
groups with infinite cyclic vertex and
edge groups

W.l.o.g. 1 ≤ p ≤ |q|.

BSp,q is solvable ⇐⇒ p = 1, in this case

BS1,q = Z[1/q] o Z

BSp,q is linear ⇐⇒ p = |q| or p = 1,

BSp,q is not linear, otherwise.
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Overview: Word and conjugacy problem

The word problem of BSp,q is solvable in polynomial time.

The conjugacy problem is decidable (Anshel, Stebe, 1974).

Theorem (Lipton, Zalcstein, 1977 / Simon, 1979)

The word problem of a linear group (in particular, BSp,±p and free
groups) can be solved in LOGSPACE.

Theorem (Robinson, 1993 / Diekert, Miasnikov, W., 2014)

The word and conjugacy problem of BS1,q are uniform
TC0-complete.

TC0 = recognized by a family of circuits of constant depth with
unbounded fan-in ¬, ∧, ∨, and majority gates.
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Overview: Word and conjugacy problem

BSp,q contains a free subgroup
〈
t, ata−1

〉
if |p| , |q| 6= 1.

 word problem is NC1-hard (Robinson, 1993).

 no hope to solve it in TC0.

Theorem (W.)

The word and conjugacy problem of BSp,q (and generalized
Baumslag-Solitar groups) is in LOGSPACE. More precisely,

the word problem is uniform-TC0-many-one-reducible to the
word problem of the free group F2.

the conjugacy problem is uniform-AC0-Turing-reducible to the
word problem of the free group – (CP is in AC0(F2)).
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Crash Course Circuit Complexity

AC0 = recognized by a family of circuits of constant depth
and polynomial size with unbounded fan-in ¬, ∧, ∨ gates.

TC0 allows additionally majority gates.
For a group G , AC0(G ) allows additionally oracle gates for the
word problem of G .
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Crash Course Circuit Complexity

AC0 = recognized by a family of circuits of constant depth
and polynomial size with unbounded fan-in ¬, ∧, ∨ gates.
TC0 allows additionally majority gates.
For a group G , AC0(G ) allows additionally oracle gates for the
word problem of G .

Word problem of Z with generators {+1,−1 } is in TC0:

w = 0 in Z ⇐⇒ |w |+1 = |w |−1

⇐⇒ ¬(Maj+1(w)) ∧ ¬(Maj−1(w))
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Crash Course Circuit Complexity

AC0 = recognized by a family of circuits of constant depth
and polynomial size with unbounded fan-in ¬, ∧, ∨ gates.
TC0 allows additionally majority gates.
For a group G , AC0(G ) allows additionally oracle gates for the
word problem of G .

Iterated Addition

input: n-bit numbers r1, . . . , rn,

compute
∑n

i=1 ri .

Iterated Addition is in TC0.
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Crash Course Circuit Complexity

AC0 = recognized by a family of circuits of constant depth
and polynomial size with unbounded fan-in ¬, ∧, ∨ gates.
TC0 allows additionally majority gates.
For a group G , AC0(G ) allows additionally oracle gates for the
word problem of G .

Iterated Multiplication

input: n-bit numbers r1, . . . , rn,

compute
∏n

i=1 ri .

Integer Division

input: n-bit numbers a, b,

compute
⌊
a
b

⌋
.

Theorem (Hesse, 2001)

Iterated Multiplication and Integer Division are in TC0.
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Crash Course Circuit Complexity

AC0 = FO(+, ∗) Z/nZ with one monoid generator

ACC0 = FO(+, ∗;Mod) finite solvable

TC0 = FO(+, ∗;Maj) Z, BS1,q, linear solvable (e. g. poly-
cyclic)

NC1 = AC0(A5) finite non-solvable,
regular languages

AC0(F2) virtually free, BSp,q, GBS groups,
RAAGs, free products

LOGSPACE linear groups

P polynomial time
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The word problem of BSp,q

Britton’s Lemma

w ∈ 〈a〉 = A in BSp,q ⇐⇒ w can be reduced to some word in
{a, a}∗ by Britton reductions

tεakt−ε → a` (ε ∈ {±1 }), k ∈ pZ (resp. qZ).

 word problem in P by storing exponents in binary.

Two aspects:

Word problem of solvable Baumslag-Solitar groups.

Word problem of the free group F2.
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The word problem of BSp,q

Idea: assign different colors to letters t which cannot cancel:

w = t a t a t aaa t a t a t t aa t ∈ BS2,3

0

1

2

t t t t t t t t

 w ∈ 〈a〉 = A
Forget about letters a

w̃ = t t t t t t t t ∈

F (t, t, t)

 word problem of the free group
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The word problem of BSp,q

How to compute the color?

w = ak0tε1ak1 · · · tεi aki tεi+1aki+1 · · · tεjakj tεj+1akj+1 · · · tεnakn

with εµ ∈ {±1 }, kµ ∈ Z. Define

wi ,j = aki tεi+1aki+1 · · · tεjakj

ki ,j =

j∑
ν=i

kν ·
ν∏

µ=i+1

(
q

p

)εµ
∈ Z[1/pq]

Numbers ki ,j can be computed in TC0.

Lemma 1

wi ,j ∈ 〈a〉 ⇐⇒ wi ,j = aki,j in BSp,q

Proof.

Induction: by Britton’s Lemma, w = ak0 tε1w ′t−ε1 w ′′.
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The word problem of BSp,q

Define a relation ∼C ⊆ { 1, . . . , n } × { 1, . . . , n }:
For i < j :

i ∼C j ⇐⇒ εi = −εj and

j−1∑
`=i+1

ε` = 0 (same level)

and ki ,j−1 ∈

{
pZ if εi = 1

qZ if εi = −1.

For i > j : i ∼C j ⇐⇒ j ∼C i .

 i ∼C j ⇐⇒ tεi and tεj are on the same level and

cancel if everything in between cancels.

≈ = reflexive and transitive closure of ∼C

Lemma 2

If i ≈ j and εi = −εj , then i ∼C j .
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The word problem of BSp,q

How to compute the color? Color = ≈-class.

w = ak0tε1ak1 · · · tεnakn ∈ BSp,q

Let Σw =
{
t[i ], t [i ]

∣∣ i ∈ { 1, . . . , n }
}

be a new set of generators:

w̃ := tε1

[1] · · · t
εn
[n]

Example

w = t a t a t aaa t a t a t t aa t 7→ w̃ = t[1] t[2] t [3] t[3] t [2] t [1] t[1] t [1]

Proposition

w = 1 in BSp,q ⇐⇒ w̃ = 1 in F (Σw ) and k0,n = 0.
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The word problem of BSp,q

How to compute the color?

On input w , compute w̃ :

For every index i compute the smallest j with i ≈ j as
representative of [i ]: by Lemma 2, two steps of ∼C suffice.

i ∼C j can be checked in TC0:

check whether εi = −εj
compute

∑j−1
`=i+1 ε`

compute ki,j−1

check whether q | ki,j−1 (resp. p | ki,j−1)

 TC0-reduction to the word problem of F (Σw ) ≤ F2.

Corollary

The computation of Britton reduced words is in AC0(F2).
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Solving the conjugacy problem of BSp,q

Let g = ak ∈ 〈a〉. Then

aga−1 = g ,

tgt−1 = takt−1

{
= a

q
p
k if p | k

is Britton reduced otherwise.

Thus, for k 6= `:

ak ∼ a` ⇐⇒ ∃ j ∈ Z such that k ·
(
q

p

)j

= `

and

{
k ∈ pZ, ` ∈ qZ, if j > 0,

k ∈ qZ, ` ∈ pZ, otherwise.

There are only polynomially many possibilities for j
 check them all in parallel.

Corollary

It can be checked in TC0 whether ak ∼ a`.
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Solving the conjugacy problem of BSp,q

After a cyclic permutation we may assume that

w = ak0tε1ak1 · · · tεnakn ∈ BSp,q,

v = a`0tε1a`1 · · · tεna`n ∈ BSp,q.

and v ∼ w if and only if there is an integral solution
x , y1, . . . , yn for the system of equations

yi =
1

αi

x ·
i−1∏
µ=1

(
p

q

)εµ
+

i−1∑
ν=1

(kν − `ν) ·
i−1∏

µ=ν+1

(
p

q

)εµ ,

x = kn − `n + x ·
n∏

µ=1

(
p

q

)εµ
+

n−1∑
ν=1

(kν − `ν) ·
n∏

µ=ν+1

(
p

q

)εµ
.

Can be done in TC0.
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Conjugacy in Baumslag-Solitar groups

Theorem

The conjugacy problem of any Baumslag-Solitar group BSp,q is in
AC0(F2).
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Generalized Baumslag-Solitar groups

A generalized Baumslag-Solitar group (GBS group) is a

fundamental group of a finite graph of groups

with infinite cyclic vertex and edge groups.

A GBS group G is given by a graph of groups G:

an undirected graph (V ,E )
(with involution · : E → E , ι(t) the initial, τ(t) the terminal
vertex of t ∈ E ),

αt , βt ∈ Z \ { 0 } for t ∈ E such that αt = βt .

F (G) =
〈
V ,E

∣∣∣ tt = 1, tbβt t = aαt for t ∈ E , a = ι(t), b = τ(t)
〉

Fix a vertex a ∈ V : G = π1(G, a) ≤ F (G)

G = { a0t1a1 · · · tnan | ti ∈ E , ai = τ(ti ) = ι(ti+1), a0 = an = a }
= “all closed paths starting at a.”
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Generalized Baumslag-Solitar groups

Example

BSp,q a t
q

p

Example

ar
1

2

s

23

t
12

5

G = F (G) =
〈
a, r , s, t

∣∣∣ rar = a2, sa2s = a3, ta12t = a5
〉
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Word and Conjugacy Problem in GBS groups

Word problem

Britton reductions

Conjugacy for cyclically reduced words u, v 6∈ 〈a〉

work all as for ordinary Baumslag-Solitar groups.
 everything in AC0(F2)

But: Conjugacy for cyclically reduced words u, v ∈ 〈a〉 does
not work as for ordinary Baumslag-Solitar groups.

Remember:

ak ∼ a` in BSp,q ⇐⇒ ∃ j ∈ Z with k ·
(
q

p

)j

= ` and...

Now: more than polynomially many potential conjugating
elements.
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Word and Conjugacy Problem in GBS groups

Example

G = F (G) =
〈
a, r , s, t

∣∣∣ rar = a2, sa2s = a3, ta12t = a5
〉

ar
1

2

s

23

t
12

5

a15 ∼ a16?

sst a15 tss = ss a36 ss

Question: ak ∼ a`? Write k = rk · 2c · 3d · 5e ,

aaka = ak ,

rak r = ark ·2
c+1·3d ·5e ,

saks = ark ·2
c−1·3d+1·5e , takt = ark ·2

c−2·3d−1·5e+1
.

 suffices to consider (c , d , e).
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Word and Conjugacy Problem in GBS groups

Example
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〈
a, r , s, t

∣∣∣ rar = a2, sa2s = a3, ta12t = a5
〉

ar
1

2

s

23

t
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2 3 5

r s t2

+ inverse transitions

a15 (0, 1, 1)

t a15 t (2, 2, 0)

st a15 ts (3, 1, 0)

a16 = sst a15 tss (4, 0, 0)
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Word and Conjugacy Problem in GBS groups

Question: ak ∼ a`?
Let P = {primes occurring in αt , βt for t ∈ E }.

k = rk ·
∏
p∈P

pep(k), ` = r` ·
∏
p∈P

pep(`).

If rk 6= r`, then ak 6∼ a`. Otherwise,

ak ∼ a` ⇐⇒ (ep(k))p∈P ≈ (ep(`))p∈P

≈ = congruence on NP generated by (ep(αt))p∈P ≈ (ep(βt))p∈P

Theorem (Eilenberg, Schützenberger, 1969)

Congruences are semi-linear subsets of NP × NP .

Theorem (Ibarra, Jiang, Chang, Ravikumar, 1991)

Membership in a semi-linear set can be testet in NC1.

 conjugacy is in AC0(F2).
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Uniform Conjugacy Problem in GBS groups

Input:

a finite graph of groups G consisting of

(V ,E ),
αt , βt ∈ Z \ { 0 } for t ∈ E given in binary,

two words v ,w ∈ π1(G, a)

Question: v ∼ w in π1(G).
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Input:

a finite graph of groups G consisting of

(V ,E ),
αt , βt ∈ Z \ { 0 } for t ∈ E given in binary,

two words v ,w ∈ π1(G, a)

Question: v ∼ w in π1(G).

Theorem (W.)

The uniform conjugacy problem for GBS groups is
EXPSPACE-complete.

Proof.

The uniform reachability problem for symmetric Petri nets
(= uniform word problem for commutative monoids)
is EXPSPACE-complete (Mayr, Meyer, 1982).
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More General

Fundamental groups of finite graphs of groups with free abelian
vertex and edge groups:

Conjecture

Word problem in LOGSPACE.

If all edge groups have rank at most two, in AC0(F2).

Theorem (Bogopolski, Martino, Ventura, 2010)

Conjugacy problem is undecidable in general.

Theorem (Diekert, Miasnikov, W., 2015)

Conjugacy problem is strongly generically in P.

Thank you!
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