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Abstract. In this paper we discuss the splitting or decomposing of finitely generated groups
into free products, free products with amalgamation or HNN extensions and we discuss the JSJ
decomposition of finitely presented groups.

1 Introduction

The decompositions of a finitely generated group into a free product of freely indecomposable
groups have been completely classified by Grushko and Kurosh(see [6],[4]).

Theorem 1. If G is a finitely generated group, then G = G1 ∗ · · · ∗ Gn, where each Gi is
indecomposable, i.e. Gi = A ∗ B implies A or B is trivial. If also G = G1 ∗ · · · ∗ Gn =
H1 ∗ · · · ∗Hm where each Gi and Hj is non-trivial and indecomposable, then m = n and, by
re-ordering, we have Gi

∼= Hi for each i. Furthermore, for each i with Gi not infinite cyclic
we have Gi conjugate to Hi.

Thus, the splitting of G into indecomposable groups is unique up to automorphisms of
G. The above theorem also states that any finitely generated group G acts on a tree with
trivial edge stabilizers, or equivalently, that G is the fundamental group of a graph of groups
with trivial edge groups.

2 The JSJ Decomposition

A natural question at this point is to ask when a finitely generated group G can be viewed as
the fundamental group of a graph of groups with non-trivial edge groups, or in other words,
how does G “split”.

Definition. By a splitting of a group G, we understand a triple S = (G(V, E), T, φ) where
G(V, E) is a graph of groups with underlying vertex set V and edge set E, T is a maximal
subtree of (V, E), π(G(V, E); T ) is the fundamental group of G(V, E) with respect to T and
φ : π(G(V, E); T ) → G is an isomorphism.
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The JSJ decomposition as defined by Rips and Sela [5], Dunwoody and Sageev [2], and
Fujiwara and Papasoglu [3] gives a description of the possible splittings of G over certain
classes of subgroups. For example, Rips and Sela’s “generalized” JSJ decomposition “covers”
any splitting of a finitely presented group with either trivial, finite or cyclic edge groups.

Dunwoody and Sageev have enlarged the class of groups over which a finitely presented
group can split. Their JSJ decomposition describes all the splittings over slender groups,
with the assumption that the group doesn’t split over groups “smaller” than those considered.
A group is slender if all its subgroups are finitely generated, thus all the nilpotent and even
polycyclic groups are examples of slender groups. If H and K are subgroups of G, then H
is smaller than K if H ∩ K has finite index in H and infinite index in K. Fujiwara and
Papasoglu have removed the restriction that the group not split over smaller groups.

Each of the three above mentioned JSJ decompositions has been obtained using different
approaches. I will describe the different methods and state the results, but I will give details
only on the construction of the JSJ decomposition as given by Rips and Sela.

3 The Dunwoody Sageev Approach

In order to understand Dunwoody and Sageev’s Main Theorem a few terms need to be
clarified. Let us denote by K the class of slender groups and by LK the class of extensions
of groups in K by 2-ended groups. The set of ends of a locally compact space X is the
limsup over compact subsets C of the number of connected components of X − C. The set
of ends of a finitely generated group G is the set of ends of its Cayley graph. For example,
Z has two ends, Zn for n ≥ 2 has one end, and any free group on more than one generator
has infinitely many ends.

The generic name orbifold is used in the paper to denote a compact 2-orbifold. An
informal definition describes an orbifold as the quotient of a smooth, properly discontinuous
action of a discrete group on a smooth manifold.

The Main Theorem claims that if we consider a finitely presented group G that does not
split over any subgroup smaller than an element of LK, then either G is an extension of
a K-group by a closed orbifold group, or there exists a decomposition of G as a graph of
groups. The proof of the theorem uses the theory of simplicial trees, in particular patterns
and track zipping.

4 The Fujiwara Papasoglu Approach

In their paper Fujiwara and Papasoglu describe an inductive procedure which produces the
JSJ decomposition of a finitely presented group G over all its slender subgroups. All the
intermediary steps of the algorithm give rise to graph of groups decompositions of G with
the edge stabilizers being slender groups.
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The first step in the procedure is proving the existence of a minimal splitting, i.e. a
splitting that is not hyperbolic − elliptic (see next section for definition) with respect to
any other splitting of G over slender groups. Then this minimal splitting is being refined
into graph decompositions that contain more and more minimal splittings. There exists
an upper bound on the complexity of the graph decompositions, and therefore the process
must terminate with a graph decomposition that “contains” all minimal splittings. This
decomposition describes, in a sense, all splittings along slender groups that are not necessarily
minimal.

Fujiwara and Papasoglu’s approach to JSJ decompositions uses Haefliger’s theory of
complexes of groups and actions on products of trees.

5 The Rips and Sela Approach

Rips and Sela’s papers try to understand groups from the perspective of low dimensional
topology. For example, a separating simple closed curve on a surface corresponds, by van
Kampen’s theorem, to a free product with infinite cyclic amalgamation, G = A ∗C B, where
C ∼= Z.

Their approach is heavily based on the analysis of the most basic splittings, the elemen-
tary Z-splittings. A splitting is called a Z-splitting if all the edge groups are infinite cyclic,
and an elementary Z-splitting is a Z-splitting for which the graph of groups contains only
one edge. Consider two distinct elementary Z-splittings of a group, G = A1 ∗C1 B1 and
G = A2 ∗C2 B2, where C1 =< c1 > and C2 =< c2 >. The element c2 and the second splitting
are called elliptic with respect to the first splitting if c2 it is contained in a conjugate of A1

or B1, and hyperbolic otherwise; similarly for c1 with respect to the second splitting. For
example, the topological analog of a pair of hyperbolic-hyperbolic elementary Z-splittings is
a pair of intersecting simple closed curves. It turns out that the elementary Z-splittings of a
freely indecomposable group are either simultaneously elliptic or simultaneously hyperbolic.

The study of hyperbolic-hyperbolic splittings generates a “machinery” that produces
quadratically hanging (QH) subgroups. A subgroup H of G is a QH subgroup if it is free,
and if there exists a Z-splitting of G such that H is the vertex group of a QH vertex v in
this splitting. Geometrically, a QH vertex is a surface type vertex, where the surface has a
finite number of punctures, and H is correspondingly the fundamental group of the surface,
π1(S). The usefulness of the QH vertices resides in the fact that every simple closed curve
on a surface S gives an elementary Z-splitting of π1(S), and any elementary splitting of a
vertex group can be extended to an elementary splitting of G by introducing a new edge e
and its corresponding infinite cyclic group, and collapsing all other edges.

With the help of the “machinery” mentioned above, Rips and Sela construct certain
decompositions for a single-ended finitely generated group G, called canonical quadratic
decompositions. These decompositions describe all the hyperbolic-hyperbolic elementary
Z-splittings as splittings obtained from simple closed curves on one of the maximal QH
subgroups of G.
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The tool needed for studying elliptic-elliptic elementary Z-splittings is the unfolding of
elementary splittings. If H = A∗C B and C ⊆ C1 ⊆ A, then the splitting H = A∗C1 B1 with
B1 = C1 ∗C B is called a folding of H along C1. An unfolding is the inverse of a folding. An
important result concerning unfoldings states that every sequence of successive unfoldings
of a finitely generated freely indecomposable group eventually terminates. Thus there exist
elementary Z-splittings which do not admit unfoldings. Such splittings are called unfolded
elementary Z-splittings, and more generally, Z-splittings are called unfolded if all elementary
Z-splittings corresponding to their edges are unfolded.

Finally, a JSJ decomposition of a finitely presented single-ended group H will be defined
as a reduced, unfolded Z-splitting of H. In order to extend the JSJ decomposition from a
single-ended finitely presented group to a finitely presented group G one starts by applying
Grushko’s theorem and decomposing G into noncyclic freely indecomposable factors and a
free factor. Each of the noncyclic freely indecomposable factors can be replaced by its so
called Dunwoody decomposition(see [1]), and then every nonfinite single-ended vertex group
in this Dunwoody decomposition can be replaced by its JSJ decomposition. Thus G has a
reduced, unfolded splitting with trivial, finite and cyclic edge groups which will be called the
“generalized” JSJ decomposition.

The generalized JSJ decomposition “covers”any splitting of G with either trivial, finite
or cyclic edge groups in a number of ways. Every canonical maximal QH subgroup of G
is conjugate to a vertex group in the generalized JSJ decomposition. For a splitting Λ of
G with trivial, free and cyclic edge groups there exists a splitting Λ1 obtained from the
generalized JSJ decomposition by splitting the canonical maximal subgroups along weakly
essential simple closed cuves so that there exists a G-equivariant map between a subdivision
of the Bass-Serre tree TΛ1 and TΛ.
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