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Abstract. In [BB] Benjamin Baumslag proved that being fully residually free
is equivalent to being residually free and commutative transitive (CT). Gaglione
and Spellman [GS] and Remeslennikov [Re] showed that this is also equivalent to
being universally free, that is, having the same universal theory as the class of
nonabelian free groups. This result is one of the cornerstones of the proof of the
Tarksi problems. In this paper we extend the class of groups for which Benjamin
Baumslag’s theorem is true, that is we consider classes of groups X for which
being fully residually X is equivalent to being residually X and commutative
transitive. We show that the classes of groups for which this is true is quite
extensive and includes free products of cyclics not containing the infinite dihedral
group, torsion-free hyperbolic groups (done in [KhM]), and one-relator groups
with only odd torsion. Further, the class of groups having this property is closed
under certain amalgam constructions, including free products and free products
with malnormal amalgamated subgroups. We also consider extensions of these
classes to classes where the equivalence with universally X groups is maintained.
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1. Introduction

Residual properties have played a major role in infinite group theory. Let X be a
class of groups. Then a group G is residually X if given any nontrivial element
g ∈ G there is a homomorphism φ : G → H where H is a group in X such that
φ(g) 6= 1. A group G is fully residually X if given finitely many nontrivial elements
g1, ..., gn in G there is a homomorphism φ : G → H, where H is a group in X ,
such that φ(gi) 6= 1 for all i = 1, ..., n. Fully residually free groups have played
a crucial role in the study of equations and first order formulas over free groups.
A universal sentence in the language of group theory is a first order sentence
using only universal quantifiers (see [FGMRS]). The universal theory of a group
G consists of all universal sentences true in G. All nonabelian free groups share
the same universal theory and a group G is called universally free if it shares the
same universal theory as the class of nonabelian free groups. Remeslennikov [Re]
and independently Gaglione and Spellman [GS] proved the following remarkable
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theorem which became one of the cornerstones in the proof of the Tarski problems
(see [Kh 1]and [Se 1].)

Theorem 1.1. Suppose G is residually free. Then the following are equivalent:

(1) G is fully residually free,

(2) G is commutative transitive,

(3) G is universally free.

Therefore the class of fully residually free groups coincides with the class of univer-
sally free groups. The equivalence of (1) and (2) in the theorem above was proved
originally by Benjamin Baumslag ([BB]), where he introduced the concept of fully
residually free.

In this paper we consider classes of groups X for which being fully residually X
is equivalent to being residually X and commutative transitive, thus extending
Baumslag’s result. We prove that the classes of groups for which this is true is
quite extensive and includes free groups, torsion-free hyperbolic groups, one-relator
groups with only odd torsion, groups acting freely on Λ-trees where Λ is an ordered
abelian group, free products of cyclics which do not contain infinite dihedral groups
and torsion-free RG-groups (see section 2). Further the classes of groups with this
property is closed under free products and certain amalgamated free products.

We then consider extending these ideas to classes where the equivalence with uni-
versally X groups is preserved. Here we need the so-called big powers condition.
We show that the class where this holds is quite extensive.

In the next section we introduce some basic definitions and background informa-
tion and then in section 3 prove our main results. In section 4 we look at closure
properties under amalgam constructions and in section 5 consider universally X
groups.

2. Background Information

A group G is commutative transitive or CT if commutativity is transitive on
the set of nontrivial elements of G. That is if [x, y] = 1 and [y, z] = 1 for nontrivial
elements x, y, z ∈ G then [x, z] = 1. We want to consider classes of CT groups X
for which the following property holds. We will denote this property by BX .

Definition 2.1. Let X be a class of groups. If a nonabelian group G is fully resid-
ually X if and only if G is residually X and CT , then we say that X satisfies BX .

With this definition B. Baumslag’s original theorem says that the class of free groups
F satisfies BF .
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In the next section we will prove that a class of groups X satisfies BX under very
mild conditions and hence the classes of groups for which this is true is quite exten-
sive. However, first we must present a collection of definitions that will play a role
in the results. We need the following straightforward characterizations of CT.

Lemma 2.1. The following are equivalent:

(1) G is CT,

(2) Centralizers of nontrivial elements of G are abelian.

A group G is a conjugately separated abelian group or a CSA group if
maximal abelian subgroups are malnormal. We need the following concerning CSA
groups. We give the proofs (see [FGMRS] and the references there).

Lemma 2.2. Every CSA group is CT.

Proof. Let G be a CSA group and let z ∈ G with z 6= 1. We show that the centralizer
of z must be abelian and hence G is CT. Let a, c be in the centralizer of z and let M1

be the maximal abelian subgroup of G containing a, z and M2 the maximal abelian
subgroup of G containing b, z. We then have z ∈ M1 ∩M2. Let w ∈ M1 \M2. Then
w−1xw = z is a nontrivial element of w−1M2w∩M2 so that w ∈ M2 a contradiction.
Therefore M1 ⊂ M2. By maximality then M1 = M2 and hence the centralizer of z
is abelian. It follows that G is CT.

�

The converse is not true (see [FMgrRR ]). However, as we will show, in the presence
of property BX CSA is equivalent to CT.

Lemma 2.3. Let G be a CSA group and let H be a subgroup of G. Then H is also
a CSA group.

Proof. (see [GKM]) Let G be a CSA group and let H be a subgroup of G. Let
AH be a maximal abelian subgroup of H. We must show that AH is malnormal in
H. Let x ∈ H with xAHx−1 ∩ AH 6= {1}. AH is contained in a maximal abelian
subgroup AG of G. Since G is CSA it follows that AG is malnormal in G and so
x ∈ AG. Then x ∈ (AG ∩H) ⊂ AH and hence AH is malnormal in H. �

Recall that the infinite dihedral group has the presentation D =< x, y;x2 = y2 =
1 >. Then xxyx−1 = yxyy−1 = yx = (xy)−1 and hence D is not CSA. We need this
in considering classes satisfying BX .

Lemma 2.4. If G is a group that contains the infinite dihedral group D then G is
not CSA.

Beyond CSA we need the following ideas. A group G is power commutative if
[x, yn] = 1 implies that [x, y] = 1 whenever yn 6= 1. Two elements a, b ∈ G are in
power relation to each other if there exists an x ∈ G \ {1} with a = xn, b = xm
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for some n,m ∈ Z. G is power transitive or PT if this relation is transitive on
nontrivial elements.

A group G is an RG- group or Restricted-Gromov group if for any g, h ∈ G
either the subgroup < g, h > is cyclic or there exists a positive integer t with
gt 6= 1, ht 6= 1 and < gt, ht >=< gt > ⋆ < ht >. Note that torsion-free hyperbolic
groups are RG-groups.

The following ideas are crucial in handling property BX .

A group G is ALC if every abelian subgroup is locally cyclic. This is of course
the case in free groups. A group G is ANC if every abelian normal subgroup is
contained in the center of G. Finally a group is NID if it does not contain a copy
of the infinite dihedral group Z2 ⋆ Z2. If G has only odd torsion then clearly G is
NID.

3. Classes of groups X Satisfying BX

We now prove the following.

Theorem 3.1. Let X be a class of groups such that each nonabelian H ∈ X is CSA.
Let G be a nonabelian and residually X group. Then the following are equivalent

(1) G is fully residually X

(2) G is CSA

(3) G is CT

Therefore the class X has the property BX .

To prove this we first need the following lemmas.

Lemma 3.1. CSA implies ANC, that is, if G is a CSA group then G is ANC.
Hence if a class of groups satisfies CSA then it also satisfies ANC.

Proof. Let G be a CSA group and let A be an abelian normal subgroup of G. Then
A is contained in a maximal abelian subgroup B of G. Let a ∈ A and x ∈ G. Then
xax−1 ∈ A since A is normal. Now a ∈ B and hence xax−1 ∈ B. Since G is CSA it
follows that B is malnormal and therefore x ∈ B. Since B is abelian it follows that
xax−1 = a for all x ∈ G and therefore A is in the center of G. Hence G satisfies
ANC.

�

Lemma 3.2. Let X be as in Theorem 3.1 and let G be nonabelian and residually
X . Let A be an abelian normal subgroup of G. Then A is contained in the center
of G. In particular if G is CT then A must be trivial.
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Proof. First notice that if G ∈ X then by assumption G is CSA and therefore G is
ANC from Lemma 3.1. Now let G be nonabelian and residually X . Let A be an
abelian normal subgroup of G. Suppose that A is not contained in the center of G.
Then there exist a ∈ A and b ∈ G such that [a, b] 6= 1. Since G is nonabelian and
residually X there exists a normal subgroup N of G with G/N ∈ X and [a, b] 6= 1
modulo N . However AN/N is a nontrivial normal abelian subgroup of G/N and
since G/N is ANC as a group in X , AN/N must be contained in the center of G/N .
But this contradicts [a, b] 6= 1 modulo N . Therefore A is contained in the center of
G.

If G is also CT and nonabelian then it is centerless so from the above it follows that
any normal abelian subgroup must be trivial. �

Now we give the proof of Theorem 3.1.

Proof. We first show that (1) implies (2). Suppose that G is fully residually X .
Since G is nonabelian it follows that G has nontrivial elements. Let u be a nontrivial
element of G and denote by M the centralizer CG(u) :

CG(u) = {x ∈ G;ux = xu} = M.

Then M is maximal abelian in G. We claim that M is malnormal in G. Suppose
that w = g−1ug 6= 1 lies in g−1Mg ∩M . If g /∈ M then [g, u] 6= 1. Then there is a
group H in X and an epimorphism φ : G → H taking x → x such that w 6= 1 and
[g, u] 6= 1. Let C = CH(u). Then w ∈ (g−1Cg) ∩C.

However H ∈ X and hence by assumption H is CSA so that the maximal abelian
subgroups of H are malnormal. This implies that g ∈ C contradicting [g, u] 6= 1.
This contradiction shows that g−1Mg ∩ M 6= 1 implies that g ∈ M . Hence the
maximal abelian subgroups of G are malnormal and therefore G is CSA. This proves
that (1) =⇒ (2).

We now show that (2) implies (3), that is that CSA implies CT. This follows from
Lemma 3.1.

Finally we show that (3) implies (1). Let G be a CT, nonabelian and residually X
group. We show that G is fully residually X .

Let g1, g2, ..., gn be a set of nontrivial elements of G. We must show that there is a
group H ∈ X and an epimorphism φ : G → H such that φ(gi) 6= 1 for all i = 1, ..., n.
Recall this is equivalent to showing that given g1, ..., gn nontrivial elements in G there
is a normal subgroup N with g1, ..., gn not in N and G/N ∈ X . We show this by
induction on the size n of the set of elements.

Since G is assumed to be residually X this is true for n = 1.

Assume that for n ≥ 1 given nontrivial elements g1, .., gn ∈ G there exists a nontrivial
g ∈ G such that for all normal subgroupsN of G if g /∈ N then gi /∈ N for i = 1, ..., n.
Since G is residually X this is true for n = 1. We show that given g1, ..., gn, gn+1 we
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can find a g′ 6= 1 such that if g′ /∈ N for any normal subgroup N of G then gi /∈ N
for i = 1, ..., n + 1. Let g be the assumed element for g1, ..., gn and for each x ∈ G
let c(x) = [g, xgn+1g

−1]. If c(x) = 1 for all x then each conjugate of gn+1 commutes
with g 6= 1. Then by commutative transitivity the normal closure Ngn+1

is abelian
and hence here trivial from Lemma 3.2. But gn+1 is contained in it and nontrivial.
Therefore c(x) 6= 1 for some x ∈ G. Choose this nontrivial c(x) as g′. Then if g′ /∈ N
for a normal subgroup N of G it follows that g1, ..., gn+1 /∈ N . It follows from this
induction that for each finite set g1, ..., gn ∈ G there is a g ∈ G such that if g /∈ N for
some normal subgroup N of G then g1, ..., gn is also not in N . Since G is residually
X it follows that there is such an N with G/N ∈ X . Therefore G is fully residually
X proving that (3) implies (1) and completing the proof of Theorem 3.1.

�

Hence a class of groups X satisfies BX if each nonabelian H ∈ X is CSA. Examples
of BX classes abound. In particular we list the following.

Theorem 3.2. Each of the following classes satisfies BX :

(1) The class of nonabelian free groups.

(2) The class of noncyclic torsion-free hyperbolic groups (see [FR]).

(3) The class of noncyclic one-relator groups with only odd torsion (see [FR]).

(4) The class of cocompact Fuchsian groups with only odd torsion.

(5) The class of noncyclic groups acting freely on Λ-trees where Λ is an ordered
abelian group (see [H]).

(6) The class of noncylic free products of cyclics with only odd torsion.

(7) The class of noncyclic torsion-free RG-groups (see[FMgrRR] and [AgrRR]).

(8) The class of conjugacy pinched one-relator groups of the following form

G =< F, t; tut−1 = v >

where F is a free group of rank n ≥ 1 and u, v are nontrivial elements of F that are
not proper powers in F and for which < u > ∩x < v > x−1 = {1} for all x ∈ F .

The theorem follows from the fact that each of these classes has the property that
each nonabelian group in them is CSA.

Since CSA always implies CT we have the following corollary.

Corollary 3.1. Let X be a class of CSA groups. Then if G is a nonabelian residually
X group then CT is equivalent to CSA.

Commutative transitivity (CT) has been shown to be equivalent to many other
properties (see[AgrRR]) under the additional condition that abelian subgroups are
locally cyclic (ALC) Hence we get the corollary.
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Corollary 3.2. Let X be a class of groups such that each nonabelian H ∈ X is
CSA. Let Y be the subclass of X consisting of those groups in X which are ALC.
Let G be a nonabelian residually Y group which is ALC and has trivial center. Then
the following are equivalent.

(1) G is fully residually Y.

(2) G is CSA.

(3) G is CT.

(4) G is PC.

(5) G is PT.

This follows directly from the equivalences given in [AgrRR].

4. Some Results on Closure

Here we show that classes of groups satisfying BX are closed under certain amalgam
constructions. This follows from the fact that CT and hence CSA is preserved under
such constructions.

Proposition 4.1. Let X be a class of CSA groups closed under free products with
malnormal amalgamated subgroups, in particular under free products. Let G1 and
G2 be nonabelian, residually X and CSA. Then G1 ⋆ G2 and G1 ⋆A G2 where A is
malnormal in G1 and G2 are both residually X and CSA.

Proof. We show it for free products, as the proof for free products with malnormal
amalgamation is analogous. Let G1 and G2 be nonabelian, residually X and CSA.
We show that G1 ⋆ G2 is also residually X and CSA.

From Theorem 3.1 since G1 and G2 are nonabelian, residually X and CSA they are
both fully residually X and CT. Let g ∈ G1 ⋆ G2 with g /∈ G1 and g /∈ G2.. Then,
up to conjugacy,

g = a1b1a2b2 · · · anbn

where a1, ..., an, b1, ..., bn, the syllables of g, are nontrivial elements of G1, G2 respec-
tively. Then there exist maps φG1

: G1 → H1 and φG2
: G2 → H2 with H1,H2 in

X which do not annihilate any of the syllables in g. This can then be extended to
a map φg : G → H1 ⋆ H2 which does not annihilate g. Since X is closed under free
products this shows that G is residually X . Further a free product of CT groups is
CT (see [LR]) hence G1 ⋆ G2 is also CT. Since it is residually X and CT it is CSA
and fully residually X .

�

The following then follow easily from this proposition.
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Corollary 4.1. Let X be a class of nonabelian CSA groups. Hence X satisfies BX .
Let G1 and G2 be fully residually X groups and G = G1 ⋆ G2. Then G is fully
residually X .

Corollary 4.2. Let X be a class of nonabelian CSA groups. Hence X satisfies BX .
Consider the class of groups which are free products G1 ⋆G2 of groups from X . Then
this class also satisfies BX .

Corollary 4.3. Let X be a class of nonabelian CSA groups. Hence X satisfies
BX .Consider the class of groups which have the form G1 ⋆A G2 where G1, G2 are
groups from X and A is malnormal in G1 and G2. Then this class also satisfies
BX .

5. Universally X -groups and the Big Powers Condition

We now consider the equivalence with universally X groups. We say that a group G
is universally X if it satisfies the universal theory of a countable nonabelian group
from X . Recall that if X is the class of free groups we have the following equivalence
mentioned in the introduction.

Theorem 5.1. Suppose G is residually free. Then the following are equivalent:

(1) G is fully residually free,

(2) G is commutative transitive,

(3) G is universally free.

Our Theorem 3.1 shows the equivalence of (1) and (2) for any class X of CSA groups.
To prove an equivalence with (3) we need the big powers condition. This was
introduced originally by G.Baumslag in [GB].

Definition 5.1. Let G be a group and u = (u1, ..., uk) be a sequence of nontrivial
elements of G. Then

(1) u is generic if neighboring elements in u do not commute, that is [u1, ui+1] 6=
1 for every i ∈ {1, ..., k}.

(2) u is independent if there exists an n = n(u) ∈ N such that for any
α1, ..., αk ≥ n we have uα1

1 · · · uαk

k 6= 1.

(3) A group satisfies the big powers condition or BP if every generic sequence
in G is independent. We call such groups BP -groups.

G. Baumlsag proved that free groups are BP-groups [GB] while Olshansky [O]
showed that torsion-free hyperbolic groups are BP-groups. For BP groups the fol-
lowing results are known.

Lemma 5.1 (KMS). A subgroup of a BP-group is itself a BP-group.

Lemma 5.2 (O). Every torsion-free hyperbolic group is a BP-group
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A stronger version of this lemma for relatively hyperbolic groups is given in [KM].

Lemma 5.3. A free product of CSA BP-groups is also a BP-group

Lemma 5.4. Let G = F1 ⋆
u=v

F2 where F1, F2 are finitely generated free groups and

u, v are nontrivial elements of F1, F2 respectively with not both proper powers. Then
G is a CSA BP-group.

We now consider a class of groups Z in which each finitely generated nonabelian
group G in Z is CSA and BP. Reinterpreting a result in [BMR 1] and [BMR 2] (see
also [KM]) we obtain the following using the same proof utilizing the BP condition.

Theorem 5.2. Let Z be a class of finitely generated groups such that each non-
abelian H ∈ Z is CSA and BP. Let H ∈ Z and G a nonabelian group. Then the
following are equivalent.

(1) G is fully residually H,

(2) G is universally equivalent to H.

Finally combining our results we get

Theorem 5.3. Let Z be a class of finitely generated groups such that each non-
abelian H ∈ Z is CSA and BP. Let G be a nonabelain residually Z group. Then the
following are equivalent

(1) G is fully residually Z,

(2) G is CSA,

(3) G is CT,

(4) G is universally Z.

Equivalences (1),(2),(3) are from Theorem 3.1 and the fact that Z consists of CSA
groups while the equivalence with (4) follows from the BP condition. As before, in
the case of ALC groups there are additional equivalences.

Corollary 5.1. Let C be a class of finitely generated groups such that each non-
abelian group in C is CSA, ALC and BP. Let G be a nonabelian residually C group
which is ALCand has trivial center. Then the following are equivalent.

(1) G is fully residually C,

(2) G is CSA,

(3) G is CT,

(4) G is PC,

(5) G is PT,

(6) G is universally C.
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As with classes of CSA groups, the subclasses of these which are also BP are quite
extensive.

Theorem 5.4. The following classes of groups consist of groups that are both CSA
and BP. Hence the equivalences in Theorem 5.2 hold for any group G which is
residually in any of these classes.

(1) The class of nonabelian finitely generated free groups,

(2) The class of noncyclic torsion-free hyperbolic groups,

(3) The class of noncyclic cyclically pinched one-relator groups F1 ⋆
u=v

F2 with

not both u, v proper powers in their respective finitely generated free groups,

(4) The class of free products G1 ⋆ G2 where both G1 and G2 are nonabelian,
finitely generated and satisfy CSA and BP.
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