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Preface

I gave a course on Combinatorial Group Theory at ETH, Zürich, in the Winter term of 1987/88.

The notes of that course have been reproduced here, essentially without change. I have made

no attempt to improve on those notes, nor have I made any real attempt to provide a complete

list of references. I have, however, included some general references which should make it

possible for the interested reader to obtain easy access to any one of the topics treated here.

In notes of this kind, it may happen that an idea or a theorem that is due to someone other

than the author, has inadvertently been improperly acknowledged, if at all. If indeed that is

the case here, I trust that I will be forgiven in view of the informal nature of these notes.
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CHAPTER I History

1. Introduction

This course will be devoted to a number of topics in combinatorial group theory. I want to begin

with a short historical account of the subject itself. This account, besides being of interest in

its own right, will help to explain what the subject is all about.

2. The Beginnings

Combinatorial group theory is a loosely defined subject, with close connections to topology

and logic. Its origins can be traced back to the middle of the 19th century. With surprising

frequency problems in a wide variety of disciplines, including differential equations, automorphic

functions and geometry, were distilled into explicit questions about groups. The groups involved

took many forms – matrix groups, groups preserving e.g. quadratic forms, isometry groups and
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numerous others. The introduction of the fundamental group by Poincaré in 1895, the discovery

of knot groups by Wirtinger in 1905 and the proof by Tietze in 1908 that the fundamental

group of a compact finite dimensional arcwise connected manifold is finitely presented served

to underline the importance of finitely presented groups.

Just a short time earlier, in 1902, Burnside posed his now celebrated problem.

Problem 1 Suppose that the group G is finitely generated and that for a fixed positive

integer n

xn = 1 forall x ∈ G.

Is G finite?

Thus Burnside raised for the first time the idea of a finiteness condition on a group.

Then, in a series of extraordinarily influential papers between 1910 and 1914, Max Dehn

proposed and partly solved a number of problems about finitely presented groups, thereby

heralding in the birth of a new subject, combinatorial group theory. Thus the subject came

endowed and encumbered by many of the problems that had stimulated its birth. The problems

were generally concerned with various classes of groups and were of the following kind: Are all

the groups in a given class finite (e.g., the Burnside Problem)? Finitely generated? Finitely

presented? What are the conjugates of a given element in a given group? What are the

subgroups of that group? Is there an algorithm for deciding for every pair of groups in a given

class whether or not they are isomorphic? And so on. The objective of combinatorial group

theory is the systematic development of algebraic techniques to settle such questions. In view

of the scope of the subject and the extraordinary variety of groups involved, it is not surprising

that no really general theory exists. However much has been accomplished and a wide variety

of techniques and methods has been developed with wide application and potential. Some of

these techniques have even found a wider use e.g. in the study of so-called free rings and their

relations, in generalisations of commutative ring theory, in logic, in topology and in the theory

of computing. The reader might wish to consult the book by Chandler, Bruce and Wilhelm

Magnus, The History of Combinatorial Group Theory: A Case Study in the History of Ideas,

Studies in the History of Mathermatics and the Physical Sciences 9 (1982), Springer-Verlag, New

York, Heidelberg, Berlin.
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I do not want to stop my historical account at this point. However, in order to make it

intelligible also to those who are not altogether familiar with some of the terms and notation I

will invoke, as well as some of the theorems and definitions I will later take for granted, I want

to continue my discussion interspersing it with ingredients that I will call to mind as I need

them.

3. Finitely presented groups

Let G be a group. We express the fact that H is a subgroup of G by writing H ≤ G; if H is

a normal subgroup of G we write H / G.

Let X ⊆ G. Then the subgroup of G generated by X is denoted by gp(X). Thus, by definition,

gp(X) is the least subgroup of G containing X. It follows that

gp(X) = {x1
ε1 . . . xn

εn | xi ∈ X, εi = ±1}.

We call the product

x1
ε1 . . . xn

εn (xi ∈ X, εi = ±1)

an X-product. An X-product is termed reduced if

xi = xi+1 implies εi + εi+1 6= 0 (i = 1, . . . , n− 1).

If G =gp(X) and every non-empty reduced X-product is 6= 1 then we term X a free set of

generators of G and G itself is termed free; we also say that X freely generates G or that G is

free on X. Notice that if G is free on X, then two reduced X-products are equal if and only

if they are identical.

Theorem 1 (i) If G is free on X and also on Y , then |X| = |Y |; this common cardinal

number is termed the rank of the free group G.

(ii) Let X be a set. Then there exists a free group G freely generated by X, the so-called

free group on X.
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(iii) Let G be free on X. Then for every group H and every map θ : X −→ H there

exists a homomorphism ϕ : G −→ H such that ϕ
X = θ

Corollary 1 Every group is isomorphic to a factor group of a free group.

A group is termed an α-generator group if it can be generated by a set of cardinality α, it is

termed finitely generated if it can be generated by a set of finite cardinality.

Let G again be a group, X ⊆ G. Then the least normal subgroup of G containing X, the

so-called normal closure of X in G, is denoted by gp
G

(X). So

gp
G

(X) = gp(g−1xg
 g ∈ G, x ∈ X).

Now suppose G is a group, F a free group on X, θ a map from X into G such that

G = gp(Xθ).

Then the extension ϕ of θ to F maps F onto G with kernel K. Suppose

K = gp
F

(R).

Then we write

G = 〈X;R〉 (1)

and term 〈X;R〉 a presentation of G. Notice that such a presentation (1) comes with an

implicit map θ : X −→ G such that the extension of θ to the free group F on X yields a

homomorphism ϕ with kernel gp
F

(R).

If we identify X with its image in G then (1) simply means that X generates G and everything

about G can be deduced from the fact that r = 1 in G for every r ∈ R.

Example 1 Let

G = 〈 a, b ; a−1bab−2, b−1aba−2 〉.

Notice that in G

a−1ba = b2 , b−1ab = a2.
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So

a = a−1a2 = a−1b−1ab = (a−1ba)−1b = b−2b = b−1.

But then this implies

b = b2 or b = 1.

So

a = 1.

In other words

G = {1}

is the so-called trivial group.

The lesson here is that groups given by presentations can be very tricky.

Definition 1 A group is finitely presented if it has a finite presentation i.e.

G = 〈X;R〉

where X and R are both finite.

It is time now to return to more history and to Dehn.

4. More history

In his paper in 1912 Dehn explicitly raised three problems about finitely presented groups.

The word problem

Let G be a group given by a finite presentation

G = 〈X;R〉.
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Is there an algorithm which decides whether or not any given unworked out X-product –

often referred to as a word – is the identity in G?

The conjugacy problem

Let G be a group given by a finite presentation

G = 〈X;R〉.

Is there an algorithm which decides whether or not any pair of words v, w are conjugate in

G i.e. if there exists an X-word z such that

w = z−1vz in G

Finally:

The isomorphism problem

Is there an algorithm which determines whether or not any pair of groups (in some well-

defined class of groups) given by finite presentations are isomorphic?

Notice that the point of the example I worked out is made more clear in the light of these

three problems of Dehn. Dehn came to them while looking at the fundamental groups of two-

dimensional surfaces. The question as to whether a given loop is homotopic to the identity

is the word problem, whether two loops are freely homotopic is the conjugacy problem and

whether the fundamental groups of two surfaces are isomorphic reflects the problem as to

whether the spaces are homeomorphic.

Some 20 years after Dehn proposed these problems Magnus proved his famous Freiheitssatz:

Theorem 2 (W. Magnus 1930) Let G be a group with a single definition relator i.e.

G = 〈x1, . . . , xq; r〉.

Suppose r is cyclically reduced i.e., the first and last letters in r are not inverses of each

other. If each of x1, . . . , xq actually appears in r, then any proper subset of {x1, . . . , xq}
freely generates a free group.
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This led to the first major break-through on solving the word problem.

Theorem 3 (W. Magnus 1932) The word problem for a 1-relator group has a positive

solution.

It took almost 50 years before all of Dehn‘s questions were finally answered.

First, Novikov proved, in 1954, the remarkable

Theorem 4 There exists a finitely presented group with an insoluble word problem.

Notice that such a group with an insoluble word problem also has an insoluble conjugacy

problem. Novikov’s proof was a combinatorial tour-de-force. New and simpler proofs were

obtained by Boone in 1959 and Britton in 1961.

The very existence of a finitely presented group with an insoluble word problem led Adyan in

1957 to prove a most striking negative theorem about finitely presented groups. In order to

explain we need the notion of a Markov property.

Definition 2 An algebraic property (i.e., one preserved under isomorphism) of finitely

presented groups is termed a Markov property if

(i) there exists a finitely presented group with the property,

(ii) there exists a finitely presented group which cannot be embedded in, i.e. is not

isomorphic to a subgroup of, a group with the property.

Here is Rabin’s formulation, in 1958, of Adyan’s theorem:

Theorem 5 (Adyan 1957, Rabin 1958) Let M be a Markov property. Then there is no

algorithm which decides whether or not any finitely presented group has this property M.

To illustrate, notice that the following are Markov properties:
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(i) triviality;

(ii) finiteness;

(iii) commutativity;

(iv) having solvable word problem;

(v) simplicity;

(vi) freeness.

It is obvious that being trivial i.e., being of order 1, is a Markov property, as are finiteness,

commutativity, having solvable word problem as well as freeness. Now a finitely presented

simple group has a solvable word problem. Hence a finitely presented group with an insoluble

word problem cannot be embedded in a finitely presented simple group. This means that being

simple is also a Markov property.

Notice that the seemingly haphazard proof that the group in Example 1 is trivial was no accident

or lack of skill – the insolubility of the triviality problem makes such proofs ad hoc by necessity!

Adyan’s theorem was followed in 1959 by similar, much easier, theorems about elements and

subgroups of a group in work of Baumslag, Boone, B.H. Neumann.

Theorem 6 There is a finitely presented group G0 such that no effective procedure exists

to determine whether or not a word in the generators of G0 represents

(i) an element in the center of G0;

(ii) an element permutable with a given element of G0;

(iii) an n-th power with n > 1 an integer;

(iv) an element whose conjugacy class is finite;

(v) an element of a given subgroup of G0;

(vi) a commutator i.e. of the form x−1y−1xy;

(vii) an element of finite order.

Theorem 7 Let P be an algebraic property of groups. Suppose

(i) there is a finitely presented group that has P;

(ii) there exists an integer n such that no free group of rank r has P if r ≥ n. Then
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there is a finitely presented group G such that there is no algorithm which determines

whether or not any finite set of elements of G generates a subgroup with P.

So e.g., there is a finitely presented group G such that there is no algorithm which decides

whether or not any finitely generated subgroup of G is finite.

It follows that, from an algorithmic standpoint, finitely presented groups represent a completely

intractable class. For a general reference to this subject se the paper by C.F. Miller III: Decision

problems for groups–survey and reflections in Algorithms and Classification in Combinatorial

Group Theory MSRI Publications No. 23, edited by G. Baumslag and C.F. Miller III, Springer-

Verlag (1991).

5. Higman’s marvellous theorem

In a sense one aspect of the theory of finitely presented groups was brought to a close in 1961

when Graham Higman proved the following extraordinary

Theorem 8 Let G be a finitely generated group. Then G is a subgroup of a finitely

presented group if and only if G can be presented in the following form

G = 〈x1, . . . , xq ; r1, r2, . . . 〉 (q <∞)

where r1, r2, . . . is a recursively enumerable set of defining relations.

This theorem (G. Higman: Subgroups of finitely presented groups, Proc. Royal Soc. London

Ser. A 262, 455-475 (1961)) establishes a bond between recursive function theory and the

subgroup structure of finitely presented groups.

I want to briefly illustrate just how remarkable Higman’s theorem is by concocting a finitely

presented group with an insoluble word problem.
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To this end let f be a function with domain and range the positive integers and suppose that

(i) given any positive integer n we can effectively compute f(n);

(ii) given any positive integer m there is no effective method which decides whether or

not there is a positive integer n such that f(n) = m.

So f is a recursive (or computable) function whose range is not a recursive subset of the

positive integers.

Now form

G = 〈 a, b, c, d ; b−f(n)abf(n) = c−f(n)dcf(n) (n ≥ 1)〉.

G then is a finitely generated, recursively presented group. Moreover it can be shown that

b−mabm = c−mdcm if and only if m = f(n).

Thus

b−mabmc−md−1cm = 1 if and only if m = f(n).

This means that in order to solve the word problem in G we need to know the range of f . But

this, by assumption, is not a recursive set. So G has an insoluble word problem. By Higman’s

theorem

G ≤ H

with H finitely presented. So H has an insoluble word problem.

The one major problem still unsolved is: What can one say about the general subgroup structure

of finitely presented groups?

This brings me to the next part of the history.

6. Varieties of groups
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I want to turn my attention to an extremely interesting topic in group theory that received

much attention in the 1960’s. Although the subject lapsed into disfavour for a while, a lot

of old and seemingly impossible open problems have been solved recently. The results are

intriguing enough to merit some discussion. (See the book by Hanna Neumann: Varieties of

Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete 37, Springer-Verlag Berlin Heidelberg

New York (1967) for an introduction to varieties.)

Let me start out then with a definition.

Definition 3 A non-empty class V of groups is termed a variety (of groups) if it is closed

under homomorphic images, subgroups and cartesian products.

In order to give some examples, I need to introduce some notation. Suppose that G is a group,

x, y ∈ G. Then the commutator x−1y−1xy of x and y is denoted by [x, y] and the conjugate

of x by y is denoted by xy. Thus

[x, y] = x−1y−1xy , xy = y−1xy .

It is easy to check that the following identities, which we will refer to as the basic commutator

identities, hold:

xy = x[x, y]

(xy)z = xzyz

[x, y]−1 = [y, x]

[xy, z] = [x, z]y[y, z]

[x, yz] = [x, z][x, y]z .

These basic identities can be verified by direct calculation.

Suppose H and K are subgroups of G. Then we define

[H,K] = gp([h, k]
 h ∈ H, k ∈ K).
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The commutator subgroup or derived group of G is denoted by G′ and is defined by

G′ = [G,G].

Note that if H / G, K / G, then [H,K] / G. So G′ / G and indeed is the smallest normal

subgroup of G with abelian factor group. Inductively we define

G(n) = (G(n−1))′ (n ≥ 2)

where G(1) = G′, and the series

G = G(0) ≥ G′ ≥ G(2) ≥ . . . ≥ G(n) ≥ . . .

is termed the derived series of G. G is termed solvable if G(n) = 1 for some n, the least such

n being termed the derived length of G. Notice that subgroups, homomorphic images and

cartesian products of solvable groups of derived length at most d are again solvable of derived

length at most d. Thus the class Sd of all solvable groups of derived length at most d is a

variety.

Now let K be a field. Then GL(n,K) denotes the group of all n×n invertible matrices over K

and Tr(n,K) the subgroup of GL(n,K) of all lower triangular matrices (i.e. zeroes above the

main diagonal). We denote, in the case where K is commutative, the subgroup of GL(n,K)

of matrices of determinant 1 by SL(n,K). Note that in the commutative case Tr(n,K) is

solvable. In particular, if K = Q(x), the field of fractions of the polynomial algebra Q[x] in a

single variable, we have the two triangular groups

N = gp( a =
(

1 0
1 1

)
, d =

(
3/2 0
0 1

)
)

and

W = gp( a, t =
(
x 0
1 1

)
).

We leave it to the reader to prove

Exercise 1
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(a) N ′ ∼= Z[3/2][2/3] = Z [1/6] the additive group of the ring of integers with 1/6

adjoined;

(b) W ′ is a free abelian group of infinite rank;

(c) N ′′ = W ′′ = 1 i.e. N and W are metabelian.

Thus it might be noted that subgroups of even finitely generated metabelian groups need not

be finitely generated.

The centre of G is denoted by ζG; so

ζG = {x ∈ G
 [x, y] = 1 for all y ∈ G}.

The upper central series of G is defined to be the series

1 = ζ0G ≤ ζ1G ≤ . . . ζnG ≤ . . .

where inductively

ζi+1G/ζiG = ζ(G/ζiG) (i ≥ 0).

So ζ1G = ζG. The lower central series of G is defined to be the series

G = γ1G ≥ γ2G ≥ . . . ≥ γnG ≥ . . .

where inductively

γn+1G = [γnG,G] (n ≥ 1).

G is nilpotent if γc+1G = 1 for some c with the least such c the class of G.

Note

ζcG = G if and only if γc+1G = 1 .

Notice subgroups, homomorphic images and cartesian products of nilpotent groups of class at

most c are again nilpotent of class at most c. Thus the class Nc of all nilpotent groups of class

at most c is another variety. Notice that a group that is nilpotent of class at most c is solvable

of derived length at most c.
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Exercise 2 If G is a finitely generated nilpotent group of class c, prove γcG is finitely

generated and hence that every subgroup of G is also finitely generated.

Now suppose that U and V are varieties of groups. Then we define their product U .V to be

the class of all groups G which contain a normal subgroup N such that N ∈ U and G/N ∈ V.

We refer to the groups in U .V as U by V groups. It is not hard to see that the product U .V
is again a variety. It is also not hard to see that this product is associative and that it turns

the set of all varieties of groups into a semigroup with an identity. In 1962 B. H., Hanna and

Peter M. Neumann proved that this semigroup of varieties of groups is free. In more detail, let

E denote the variety of trivial groups and let O denote the variety of all groups. Moreover let

us term a variety V of groups, V 6= O,V 6= E indecomposable if it cannot be expressed as a

product of varieties different from O, E . Then we have the following

Theorem 9 The set of all varieties of groups with binary operation product is a semigroup

with the property that every variety different from E and O can be written as a product of

indecomposable varieties in exactly one way.

Olshansky, and independently at about the same time Vaughan-Lee (see the article by Kovacs

and Newman at the end of this chapter) proved in 1970 the

Theorem 10 There exist continuously many different varieties of groups.

More recently Kleiman has obtained a number of remarkable negative results about varieties

of groups ( see the paper by C.F. Miller cited earlier for further details).

There is in each variety of groups a counterpart to the notion of a free group, defined in terms

of a universal mapping property. More precisely

Definition 4 Let V be a variety of groups. Then a group F in V is said to be free in V or

a free V-group, if it is generated by a set X such that for every group G in V and every

mapping θ from X into G, there exists a homomorphism φ of F into G which agrees with

θ on X.
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We shall need the

Definition A group G is termed hopfian if G ∼= G/N implies that N=1.

Finitely generated free groups have this property and it was also the case for the free groups

in an arbitrary variety. However in 1989 S.V. Ivanov proved the surprising

Theorem 11 There exists a variety V such that all of the non-cyclic free groups in V are

not hopfian.

This remarkable theorem is proved by using a variation of small cancellation theory. I will have

a little more to say about this later. Many of the ideas involved can be traced back to Dehn,

Tartakovskii, Adian and Novikov and Olshansky (see the book by Roger C. Lyndon and Paul

E. Schupp: Combinatorial Group Theory, Ergebnisse der Mathematik und ihrer Grengebiete 89,

Springer-Verlag Berlin Heidelberg New York (1977)). Let me mention one more extraordinary

result, which is also due to Olshansky.

Theorem 12 For every sufficiently large prime p (e.g. p > 1075) there exists an infinite

group all of whose proper subgroups are of order p.

Theorem 12 provides another negative answer to one of Burnside’s problems. It also establish

the existence of a so-called Tarski monster.

We concentrate next on the class of solvable groups. Observe to begin with that a finitely

generated abelian group is a direct product of a finite number of cyclic groups. So all the

algorithmic problems mentioned at the outset can be solved for such groups. Solvable groups

can be viewed as generalisations of these finitely generated abelian groups. For a long time the

one remaining outstanding word problem concerned finitely presented solvable groups. Then

in 1981 O. Kharlampovich proved the

Theorem 13 There exists a finitely presented solvable group with an insoluble word
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problem.

This allied with more recent work of Baumslag, Strebel and Gildenhuys in 1985 puts the class of

finitely presented solvable groups in much the same place as that of finitely presented groups.

Theorem 14 The isomorphism problem for finitely presented solvable groups is recursively

undecidable.

Positive algorithmic results about finitely presented are few and far between. Perhaps the most

outstanding of these is due to Grunewald and Segal who proved in 1980 the

Theorem 15 The isomorphism problem for finitely generated nilpotent groups has a

positive solution.

In fact they proved somewhat more. In particular their techniques, which make use of the

theory of arithmetic and algebraic groups, give rise to a positive solution to the isomorphism

problem for finite dimensional Lie algebras over Q, a problem that had been open for almost

a century.

In 1978 Bieri and Strebel introduced an invariant of finitely generated metabelian groups which

detects whether or not such groups are finitely presented. Subsequently they showed that there

is a similar, less discriminating, invariant of an arbitrary finitely generated group, now termed

the Bieri-Strebel invariant. This work of Bieri and Strebel is extremely important and the

interested reader is referred to the survey article by Strebel (Ralph Strebel: Finitely Presented

Soluble Groups, in Group Theory, Essays for Philip Hall (1984) 257-314) for a detailed discussion

of this invariant and finitely presented solvable groups as a whole (see the references at the

end of the chapter).

7. Small Cancellation Theory
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In this work on the solution of the word and conjugacy problems in 1912 Dehn solved these

problems by veryfying that, in a sense, not too much cancellation takes place on forming

products of certain sets of defining relators. This point of view has led to what is now called

Small Cancellation Theory and it is with this theory that I want now to turn. (See the book

by Lyndon and Schupp cited above for more details.)

To this end then suppose G has a presentation

G = 〈X;R〉 .

I have already termed the elements of R defining relators. Assume that R is symmetrized

i.e. closed under inverses and cyclic permutations. It is called a one-sixth presentation if it is

symmetrized and satisfies the following condition: if r, s ∈ R and if either more than one sixth

the length of s cancels on computing the reduced word representing rs or more than one sixth

the length of r cancels on computing the reduced word representing rs, then r = s−1.

The following theorem of Greendlinger (1960) holds:

Theorem 16 Suppose that the group G has a one-sixth presentation as above and that w

is a non-empty reduced X-word. If w = 1 in G, then there exists r = a1 . . . al ∈ R such

that

w = b1 . . . bma1 . . . anc1 . . . cs

where

n >
l

2
,

i.e. w contains more than half a relator (here bi, aj , ck ∈ X ∪X−1).

This theorem provides an algorithm for solving the word problem in G when the above presen-

tation is finite. For if w is a reduced X-product, by inspecting the finitely many elements of

R, we can determine whether or not more than half of one of them is a sub-X-product of w.

If not w 6= 1. Otherwise, w = tuv where u is more than one half of r = us ∈ R. So

w = ts−1v in G



Combinatorial Group Theory: Chapter I 18

Now the reduced X-product w1 representing w is of smaller length than that of w. So we can

repeat the process with w replaced by w1. Inductively we can therefore determine whether or

not w = 1 in G. A similar argument applies also to the conjugacy problem.

This approach to the study of groups given by generators and relators was carried further by

Lyndon (1965) who re-introduced diagrams into the study of such groups allowing for the

use of geometric-combinatorial arguments in handling cancellation phenomena in group theory.

These methods and ideas have now been systematized and generalized, yielding important

and powerful theorems in group theory. I have already mentioned the work of Olshanski. I

want also now to mention the work of Rips, who independently, has created his own version

of smallcancellation theory and has used this theory to prove a number of remarkable results

about groups.

More recently Gromov has created a beautiful theory of what he terms Hyperbolic Groups (M.

Gromov: Hyperbolic Groups, in Essays on group theory, MSRI Publications No. 8, edited by

S. Gersten, Springer-Verlag (1987)). These groups are, to a certain extent, modelled on ‘small

cancellation groups ’and discrete groups of isometries of hyperbolic spaces.

There is another related theory of so-called automatic groups, that is of also of recent origin, due

to Cannon, Epstein, Holt, Paterson and Thurston ( J.W. Cannon, D.B.A. Epstein, D.F. Holt,

M.S. Paterson and W.P. Thurston: Word processing and group theory, preprint, University

of Warwick (1991)). Both of the above two theories are likely to have a profound effect on

Combinatorial Group Theory.

There are some other important developments in the study of Combinatorial Group Theory.

These include the so-called Bass-Serre theory of groups acting on trees (see Chapter VII), the

cohomology of groups, in particular the extraordinary proof by Stallings and Swan that groups

of cohomological dimension one are free (J.R. Stallings: Group Theory and 3-dimensional

Manifold, Yale Monographs 4 (1971) and the graph-theoretic methods of Stallings with appli-

cations by Gersten to the automorphisms of free groups, yielding for example his fixed point

theorem of 1984 (S.M. Gersten: On Fixed Points of Certain Automorphisms of Free Groups,

Proc. London Math. Soc. 48 (1984), 72-94)
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Theorem 17 Let F be a finitely generated free group and let ϕ be an automorphism of

F . Then

Fixϕ = {a ∈ F
 aϕ = a}

is a finitely generated group.

The following additional references may be useful to the interested reader.

Kovacs, L.G. and M.F. Newman, Hanna Neumann’s Problems on Varieties of Groups, Proc.

Second Internat. Conf. Theory of Groups Canberra (1973), 417-433.

Kurosh, A.G., The theory of groups, 2nd edition, translated from the Russian by K.A. Hirsch,

vols. I and II, Chelsea Publishing Company, New York (1955).

Magnus, Wilhelm, Abraham Karrass and Donald Solitar, Combinatorial Group Theory, Dover

Publications, Inc., New York (1976).



CHAPTER II The Weak Burnside Problem

1. Introduction

In 1902 Burnside wrote “A still undecided problem in the theory of discontinuous groups is

whether the order of a group may be not finite while the order of every operation it contains

is finite”. He tacitly assumed that the groups involved are all finitely generated.

In fact this quotation of Burnside has now been turned into the so-called Burnside Problem,

which I formulated in Chapter I.

The Burnside Problem

Let G be a finitely generated group. If for some fixed positive integer n

xn = 1 forall x ∈ G,

is G finite?
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Burnside already knew the answer for n = 2, 3.

Exercise 1 Prove that Burnside’s Problem has an affirmative answer when n = 2 or for

arbitrary n when the group is abelian.

In 1940 Sanov settled Burnside’s Problem for n=4. Then in 1957 M. Hall took care of the

case n=6 (see his book Marshall Hall, Jr.: The theory of groups, Chelsea Publishing Company

New York, N.Y. (1976)) for detailed references). To this day the case n=5 is still unresolved!

There are other forms of this problem.

The Weak Burnside Problem

Let G be a finitely generated group. Suppose that every element of G is of finite order. Is

G finite?

If V is a finite dimensional vector space, then we denote by GL(V ) the group of all invertible

linear transformations of V . Burnside himself solved the Weak Burnside Problem for the finitely

generated subgroups of GL(V ) when the ground field is the complex field.

In 1964 E.S. Golod showed that the answer to the Weak Burnside Problem is in the negative

(see the reference cited below to Golod and Shafarevich).

Then in 1968, in a monumental piece of work, S.I. Adyan and P.S. Novikov proved that the

Burnside Problem has a negative solution for every odd n ≥ 4381, which Adyan later improved

to every odd n ≥ 665.

There is one other facet of the Burnside Problem that has attracted much attention, partly

because of its connection with the theory of Lie rings.

The Restricted Burnside Problem

Let r and n be fixed positive integers. Is there a bound on the orders of the finite groups G
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with r generators satisfying the condition

xn = 1 forall x ∈ G ?

Here the major result is due to Kostrikin:

If n is any prime, then the Restricted Burnside Problem has a positive answer.

This has very recently been extended by Zelmanov to the case where n is an arbitrary power

of a prime.

My primary objective in this chapter is to give a negative solution to the Weak Burnside

Problem. The basic idea here is due to Grigorchuk, although the point of view and the

exposition I shall give here is due to Gupta and Sidki. Because of this I have elected to call

the groups described here the Grigorchuk-Gupta-Sidki groups.

2. The Grigorchuk-Gupta-Sidki groups

Let me recall that a group is called a p-group, where here p is a prime, if every element is of

order a power of p.

Then we have the following

Theorem 1 (Grigorchuk, Gupta & Sidki) There exists for every odd prime p a 2-generator,

infinite p-group.

We will restrict attention to the case where p=3. The Grigorchuk-Gupta-Sidki group will be a

group of automorphisms of a particularly nice graph. I will take a somewhat informal approach

to this graph. Later I will introduce some definitions which can be used to make a more rigorous

approach to graphs possible.
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The group then that we will examine is a subgroup G of the group of automorphisms of the

graph X of Fig.(II,1)

Fig.(II,1) Graph X
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Each vertex v of X is the base of another graph X(v) isomorphic to X. Thus

X = X() .

Using this notation we can redraw X as follows in Fig.(II,2).

Fig.(II,2)
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Notice the labelling system: if v is any given vertex then the other vertex of the left-most edge

emanating from v is labelled v1, the middle vertex is labelled v2 and the right-most vertex is

labelled v3. Notice that if you stand at any vertex in this graph and look upwards you have

exactly the same view.

The Grigorchuk-Gupta-Sidki group is generated by two elements τ and α which we define by

specifying their action on the vertices of X and deducing what happens to the edges. Notice

that since

X = X() ∼= X(v)

for every vertex v, each automorphism β of X has associated to it a corresponding automor-

phism of X(v) which we denote by β(v). This is not to be confused with the image of v under

β which, using algebraic notation, is properly denoted vβ !!

Now for the definition of τ :

We declare τ permutes X(1), X(2) and X(3) cyclically, mapping X(1) onto its isomorphic

image X(2) etc. (and leaving the base of X fixed).

We will find it convenient also, given an automorphism γ of X(v) (which leaves v fixed), v

some vertex of X, to continue γ to an automorphism of X. This we do by declaring that γ

leaves everything outside X(v) fixed. This automorphism of X we again denote by γ.

Next the definition of α:

α = τ(1) τ(2)−1
α(3) ! (1)

This definition of α needs to clarified. Notice that according to (1) α on X(1) is simply τ(1),

on X(2) it is τ(2)−1 and on X(3) it is α(3) ! What this means is that α has been defined by

‘delayed iteration’. If v is a vertex in X(1) or X(2) we know the effect of α. If v is a vertex

in X(3) we don’t know yet what α does to v. But, by definition,

α(3) = τ(31) τ(32)−1
α(33) .
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So if v is a vertex in X(31) or in X(32) we know what α does on v. Notice that

α(v) = τ(v1) τ(v2)−1
α(v3) .

It follows that α leaves all the vertices in the right-most set of vertices identically fixed. Even-

tually, then, either we find vα = v or else either

v = 3 . . . 3︸ ︷︷ ︸
m

1 or v = 3 . . . 3︸ ︷︷ ︸
m

2.

Hence

vα = vτ(3 . . . 3︸ ︷︷ ︸
m

1) or vα = vτ(3 . . . 3︸ ︷︷ ︸
m

2)−1
.

Another way of thinking about this is to note that if v is at level n, then observe that

α = τ(1) τ(2)−1
α(3)

= τ(1) τ(2)−1
τ(31) τ(32)−1

α(33)

= . . .

= τ(1) τ(2)−1
τ(31) τ(32)−1

. . . τ(3 . . . 3︸ ︷︷ ︸
n−1

1) τ(3 . . . 3︸ ︷︷ ︸
n−1

2)−1
α(3 . . . 3︸ ︷︷ ︸

n

) (2)

and so the effect of α on v is either to leave v fixed or else is obtained by applying the

appropriate τ(?).

As already noted, we define

G = gp(α, τ) .

Lemma 1 α and τ are of order 3

Proof Clearly α 6= 1 6= τ . We note first that

τ3 = 1 .

This is clear.



Combinatorial Group Theory: Chapter II 27

Next we prove that α3 = 1. It is enough to check that α3 leaves every vertex fixed. This is

clear from (2).

But let’s give a slightly different argument. Suppose v is a vertex at level n. If n = 0, α leaves

v fixed and therefore so does α3. Inductively let us assume α3 leaves every vertex at level

≤ n− 1 fixed and that n > 0. If v is a vertex in X(1) then

v α3 = v τ(1)3 = v

and if v is a vertex in X(2),

v α3 = v τ(2)−3 = v .

Finally if v is a vertex in X(3),

v α3 = v α(3)3
.

But now think of v as a vertex in X(3). There v is at level n − 1. Hence the inductive

assumption yields

v α(3)3 = v

as required.

Lemma 2 G is an infinite group

Proof Let v be a vertex in X. We put

H(v) = gp
(
α(v) , τ(v)−1

α(v)τ(v) , τ(v)−2
α(v)τ(v)2

)
and

H = H() = gp
(
α , τ−1ατ , τ−2ατ2

)
.

Now

H / G . (3)
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This is clear since H is generated by all of the conjugates of α under the powers of τ .

Next we compute the forms of these conjugates of α. First

α = τ(1)τ(2)−1
α(3) . (4)

It follows that

τ−1ατ = α(1)τ(2)τ(3)−1 (5)

and

τ−2ατ2 = τ(1)−1
α(2)τ(3) . (6)

These assertions can be checked by simply carrying out e.g. τ−1, α and τ in this order to get

(5).

Put

G(v) = gp
(
α(v) , τ(v)

)
where v is a vertex in X. Then G = G() ∼= G(v).

Next notice that

τ(1), α(1) ∈ G(1) , τ(2), α(2) ∈ G(2) , τ(3), α(3) ∈ G(3)

and that

gp
(
G(1), G(2), G(3)

)
= G(1)×G(2)×G(3) .

In particular we also note that

H ≤ G(1)×G(2)×G(3) . (7)

It follows that τ 6∈ H, because by (7), every element of H leaves the vertices at level 1 fixed.

So G/H = 3 . (8)
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Now it follows from the positioning of H (see (7)) and (4) and (5) that the projection π of H

into G(1) is actually onto. So if K = ker π, the kernel of π,

H/K ∼= G .

So we have a series

G• G/H = 3

H• (9)

H/K ∼= G

K•

So G has a proper subgroup that maps onto G. This certainly means G is infinite.

We turn now to the final step in the proof.

Lemma 3 Every element of G is of order a power of 3.

Proof We put ai = τ−iατ i (i = 0, 1, 2). Then by its very definition

H = gp(a0, a1, a2) .

Notice that if h ∈ H then h can be expressed as a Y -product where Y = {a0, a1, a2} . Since

ai
−1 = ai

2 we can express every such h as a ‘positive ’Y -product i.e. no negative powers

occur:

h = y1y2 . . . yn (yi ∈ Y ) . (10)

Now an arbitrary element g ∈ G can be written in the form (see (9))

g = hτk (h ∈ H, 0 ≤ k ≤ 2) .

Suppose that, in addition we now write h in the positive form (10):

g = y1y2 . . . ynτ
k (yi ∈ Y, 0 ≤ k ≤ 2) . (11)
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We term this representation of g a special representation of g and define the length l(g) of

such a special representation by

l(g) =
{
n if k = 0
n+ 1 if k 6= 0 (12)

Notice that y1y2 . . . yn is a positive product involving only a0, a1, a2 . We express this

dependence on a0, a1, a2 by using functional notation:

h = h(a0, a1, a2) .

So

g = h( a0, a1, a2 )τk (0 ≤ k ≤ 2) . (13)

We want to prove g is of order a power of 3. This we do by induction on l(g).

If l(g) ≤ 1 , this is obvious.

Suppose then that we have proved that every element of G with a special representation of

length at most n is of order a power of 3 and that

l(g) = n+ 1 (n ≥ 1) (14)

with g given by (13).

We consider now two cases.

Case 1 g = h( a0, a1, a2 )τk (0 < k ≤ 2) .

Thus here l(h) = n . Suppose a0 occurs i0 times in h, a1 i1 times and a2 i2 times. Thus

n = i0 + i1 + i2 .

The trick is to compute
g3 = hτkhτkhτk

= hτ3kτ−2khτ2kτ−khτk

= hτ−2khτ2kτ−khτk .
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Let’s consider the cases k = 1, 2 in turn, starting with k = 1.

In this instance

g3 = h( a0, a1, a2 ) h( a2, a0, a1 ) h( a1, a2, a0 ) . (15)

Now this means that a0 occurs i0 times in h( a0, a1, a2 ) , i1 times in h( a2, a0, a1 ) and i2

times in h( a1, a2, a0 ) , i.e.

n = i0 + i1 + i2

times in all. Similarly for each of a1 and a2 and similarly in the case k = 2.

Now notice that by (4), (5) and (6)

a0 = τ(1) τ(2)−1
α(3)

a1 = α(1) τ(2) τ(3)−1

a2 = τ(1)−1
α(2) τ(3) .

We can therefore re-express g3 as an element in

G(1) × G(2) × G(3)

(see (7)). For definiteness let’s consider the case k = 1 , using (15).

Notice that the first component of g3 is then

h
(
τ(1), α(1), τ(1)−1)

h
(
τ(1)−1

, τ(1), α(1)
)
h
(
α(1), τ(1)−1

, τ(1)
)
. (16)

Let’s look at the τ(1) that replaces a0 in forming the first component of (15). It occurs i0

times in the first h, i1 times in the second and i2 times in the third, exactly as before, i.e.

τ(1) occurs n times, counting its occurences stemming from a0. Similarly α(1) occurs n times

and finally τ(1)−1 occurs n times. Let’s continue to focus on this first component of g3 given

in (16). We may view it as an element of G(1). As such it has a corresponding form to that

of g given by (13) i.e. we move all the occurences of τ(1) to the right-most-side and write the

first component in the form

w1

(
α(1) , τ(1)−1

α(1)τ(1) , τ(1)−2
α(1)τ(1)2

)
τ(1)m

= w1

(
a0(1), a1(1), a2(1)

)
τ(1)m .
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Notice that this form w1

(
a0(1), a1(1), a2(1)

)
is a positive word in a0(1), a1(1), a2(1) of

length exactly n. And since both τ(1) and τ(1)−1 occur n times in (16),

m = 0 !

So it follows that we can continue this argument for each one of the components of g3, yielding

g3 = w1w2w3 ∈ G(1)×G(2)×G(3)

with

l(w1) = l(w2) = l(w3) = n .

Inductively since G ∼= G(i) (i = 1, 2, 3) , we find each of w1, w2, w3 is of order a power of

3. So g is also.

Case 2 g = h( a0, a1, a2 )

So again l(g) = n+ 1 i.e. l(h) = n+ 1 . Now again we assume a0 occurs i0 times, a1 i1

times and a2 i2 times in h. So here

i0 + i1 + i2 = n+ 1 .

Notice that if at least two of i0, i1, i2 are zero, then h is a power of one of a0, a1, a2 and

hence is of order a power of 3. So we may assume that at least two of i0, i1, i2 are non-zero.

Now view h as an element of G(1)×G(2)×G(3) , as usual:

h = h(a0, a1, a2)

= h
(
τ(1), α(1), τ(1)−1)

h
(
τ(2)−1

, τ(2), α(2)
)
h
(
α(3), τ(3)−1

, τ(3)
)

= h1 h2 h3 .

On re-expressing each of these components in the special form in G(1) , G(2) and G(3) we

either find that

hi = h′iτ(i)k (0 < k ≤ 2)

with l(h′i) ≤ n or else

hi = h′i
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with l(h′i) ≤ n again. In the first case we repeat the argument of Case 1 computing hi
3

and deduce hi is of order a power of 3 inductively. In the second case we can already use the

inductive assumption and deduce that hi is of order a power of 3. This completes the proof.

The argument given above is contained in:

N. Gupta, S. Sidki: On the Burnside Problem for Periodic Groups Math.Z. 182 (1983),

385-388.

As I remarked earlier, it is based on the paper

R.I. Grigorchuk: On the Burnside Problem for Periodic Groups English Translation: Func-

tional Anal. Appl. 14 (1980), 41-43.

3. An application to associative algebras

There is an analogous problem to that of Burnside for associative algebras over a field due to

Kurosh.

Kurosh’s Problem

Let A be an associative algebra over a field k. Suppose that each element a is the root of

some polynomial c0 + c1x+ . . .+ cnx
n (cn 6= 0 , n > 0) i.e.

c0 + c1a + . . .+ cna
n = 0 .

Is any finitely generated subalgebra of A finite dimensional?

The first counter-example was obtained by

E.S. Golod and I.R. Shafarevich: On towers of class fields Izv. Akad. Nauk SSSR Ser.Mat 28

(1964), 261-272.
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The Gupta-Sidki group provides another example. In order to see why, form the group algebra

F3[G] where F3 denotes the field of three elements. So

F3[G] =
{ ∑
finite

cigi
 ci ∈ F3 , gi ∈ G

}
with the obvious definition of equality, coordinate-wise addition and a multiplication defined

by distributivity and

cigi · cjgj = cicj(gigj) .

We claim that the so-called augmentation ideal

A = I(G) =
{ ∑

cigi
 ∑ ci = 0

}
of F3[G] provides a suitable example. Indeed note first that(∑

cigi

)3m

=
∑

ci
3mgi

3m =
∑

cigi
3m .

Since each gi is of order a power of 3, by choosing m sufficiently large we can ensure that each

gi
3m = 1 . So (∑

cigi

)3m

=
∑

ci = 0 !

It suffices then to prove that a is finitely generated since it is clearly infinite dimensional. But

we claim that A is generated by

α − 1 , τ − 1 .

this follows from the identity

xy − 1 = (x− 1)(y − 1) + (x− 1) + (y − 1) ;

Finally in closing, it is clear that the Grigorchuk-Gupta-Sidki group G has a recursive presen-

tation. I have been told G is not finitely presented, but I do not know of a proof. Perhaps one

way of proving this fact is to show that H2(G,Z) , the second homology group with coefficients

in Z (see Chapter VI for a definition of H2(G,Z)), viewed as a trivial G-module, is not finitely

generated.



CHAPTER III Free groups, the calculus of presentations and the

method of Reidemeister and Schreier

1. Frobenius’ representation

Let G be a group. Then we say G acts on a set Y if it comes equipped with a homomorphism

ϕ : G −→ SY

where SY is the symmetric group on Y i.e. the group of all permutations of Y . If Y =

{ 1, 2, . . . , n } we sometimes write Sn in place of SY . In general a homomorphism of a group G

into another group is termed a representation of G, on occasion. Here ϕ is called a permutation

representation of G. We shall have occasion also to consider matrix representations later. A

representation is called faithful if it is one-to-one.

The most familiar faithful representation goes back to Cayley.
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Theorem 1 (Cayley) Let G be a group. Then the map

% : G −→ SG

defined by

g 7−→ ( g% : x 7−→ xg )

is a faithful permutation representation of G, called the right regular representation.

The proof is an immediate application of the definition.

Next I want to describe Frobenius’ version of Cayley’s representation. In order to do so, we

need some definitions.

Definition 1 Let G be a group, H ≤ G. Then a complete set of representatives of the right

cosets Hg of H in G is a set R consisting of one element from each coset. The element

in R coming from the coset Hg is denoted by g and is termed the representative of Hg or

sometimes the representative of g. If 1∈R , R is termed a right transversal of H in G.

Let us put δ(r, x) = rx (rx)−1 (r ∈ R, g ∈ G). The following lemma is proved directly from

the definitions.

Lemma 1

(i) Hg = Hg (g ∈ G) .

(ii) δ(r, x) ∈ H .

(iii) g1g2 = g1g2 (g1, g2 ∈ G) .

(iv) g = δ(g, 1)g (g ∈ G) .

The following theorem of Frobenius is a simple consequence of Lemma 1.

Theorem 2 (Frobenius) Let G be a group, H≤G , R a complete set of representatives of

the right cosets of H in G. Then the homomorphism

γ : G −→ SR
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defined by

g 7−→ ( gγ : r 7−→ rg )

is a representation of G, sometimes termed a coset representation of G.

This representation has turned out to be extremely useful. I want to make one simple deduc-

tion from its existence and then I want to look at the way the regular representation can be

reconstituted from a coset representation. This leads one to a very fertile area of investigation,

so-called induced representation theory and the theory of wreath products. I won’t go into

any of the details here, but extract two facts which might be useful later.

First some more notation. Suppose G acts on a set Y where ϕ is the ambient representation.

If y ∈ Y , then the stabilizer of y , denoted stabϕ(y) , is by definition,

stabϕ(y) = { g ∈ G
 y(gϕ) = y } ≤ G .

We have the following theorem of M. Hall.

Theorem 3 (M.Hall) Let G be a finitely generated group. Then the number of subgroups

of G of a given finite index j is finite.

Proof: We concoct for each subgroup H of index j in G a homomorphism

ϕH : G −→ Sj

in such a way that

stabϕ
H

(1) = H .

We need to define ϕH . To this end let us choose a complete set R of representatives of the

right cosets of H in G. We choose an enumeration of the elements of R which is arbitrary

except that the first element is in H:

R = { r1, r2, . . . , rj } with r1 ∈ H .
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Let γ be Frobenius’ coset representation and define

ϕH : G −→ Sj

by

i(gϕH) = k ⇐⇒ ri(gγ) = rk .

Notice that

stabϕ
H

(1) = H .

Thus if K is a second subgroup of G of index j,

ϕH = ϕK =⇒ H = K .

This means that the number of subgroups of G of index j is at most the number of homomor-

phisms of G into Sj . Now if G is an n-generator group, the number of such homomorphisms

is at most

(j!)n < ∞ .

This completes the proof.

Now let’s try to reconstitute Cayley’s representation % from Frobenius’ γ. To this end let G

be a group, H ≤ G , R a complete set of representatives of the right cosets of H in G. Think

of G as being partitioned into
R blocks with

H elements in each block:

G =
•⋃

r∈R
Hr ∼=

•⋃
r∈R

H × {r} = H × R .

If g ∈ G then let’s think of the way in which g% acts on these blocks:

hr(g%) = hrg = h rg (rg)−1
rg = h δ(r, g)

(
r(gγ)

)
.

Thinking some more allows us to view g as acting on these blocks in two stages. First, in the

block H×{r}, it right multiplies every one of the elements h ∈ H by the fixed element δ(r, g)

of H and then bodily moves the whole block to another one according to γ.
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There is another way of viewing what is going on. First the functions δ(? , g) are functions

from R to H. Thus let’s form

HR = { f : R −→ H } .

HR then can be thought of as a group of permutations of H ×R:

(h, r)f =
(
hf(r) , r

)
.

And for each g ∈ G, gγ can be thought of as a permutation of H ×R:

(h, r)(gγ) =
(
h , r(gγ)

)
.

Here is one consequence of this approach:

Theorem 4 Let G be a group generated by a set X, H≤G and R a right transversal of H

in G. Then

H = gp
(
δ(r, x) = rx(rx)−1  r ∈ R , x ∈ X )

.

Proof We simply trace out for each h ∈ H the effect of h% on (1, 1) ∈ H ×R. First notice

that

(h, r)(g%) =
(
hδ(r, g) , rg

)
.

So if h ∈ H
(1, 1)(h%) =

(
δ(1, h) , h

)
= (h, 1) .

Now express h in X-product form

h = x1
ε1 . . . xn

εn (xi ∈ X , εi = ±1) .

Then
(1, 1)(h%) = (1, 1)(x1

ε1%) . . . (xnεn%)

=
(
δ(r1, x1

ε1) . . . δ(rn, xnεn) , 1
)

where the ri are the elements of R that arise from this computation. This proves

h = δ(r1, x1
ε1) . . . δ(rn, xnεn) .
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Hence

H = gp
(
δ(r, x±1)

 r ∈ R , x ∈ X )
.

But

rx−1
(
rx−1

)−1

=
(
rx−1x

(
rx−1x

)−1
)−1

.

This completes the proof.

Corollary 1 A subgroup of finite index in a finitely generated group is finitely generated.

Exercise 1 Prove that the intersection of two subgroups of finite index in any group is

again of finite index.

2. Semidirect products

Let

1 −→ A
α−→ E

β−→ Q −→ 1 (1)

be a short exact sequence of groups. We term E an extension of A by Q. If

1 −→ A′
α′−→ E′

β′−→ Q′ −→ 1

is another short exact sequence, we term the sequences equivalent if there are isomorphisms,

as shown, which make the following diagram commutative:

1 −→ A
α−→ E

β−→ Q −→ 1

α∗
yo ε∗

yo ξ∗
yo

1 −→ A′
α′−→ E′

β′−→ Q′ −→ 1 .

Every short exact sequence (1) is equivalent to the sequence

1 −→ Aα ↪→ E −→ E/Aα −→ 1 .
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We will move freely between equivalent sequences.

The sequence (1) splits if there exists a homomorphism

η : Q −→ E

such that ηβ = 1. In this case we term (1) a split or splitting extension of A by Q. Every

such splitting extension (1) is equivalent to an extension

1 −→ A
α
↪→ E

β−→←−
η

Q −→ 1

where

(i) E = Q A ,

(ii) A / E ,

(iii) Q ∩ A = 1 .

For simplicity of notation we simply omit all the bars. Then it follows that every element e ∈ E
can be written uniquely in the form

e = q a (q ∈ Q, a ∈ A)

with multiplication

e e′ = q a q′a′ = q q′aq
′
a′ (q, q′ ∈ Q, a, a′ ∈ A) . (2)

Observe that the map

a 7−→ aq
′

(a ∈ A, q′ fixed, q′ ∈ Q)

is an automorphism q′ϕ of A. The underlying map

ϕ : Q −→ AutA

is a homomorphism of Q into AutA and the extension (1) can be reconstituted from A, Q

and ϕ.
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Conversely, let A and Q be arbitrary groups,

ϕ : Q −→ AutA

a homomorphism. Then we can form a split extension E of A by Q as follows. Set-theoretically

E = Q×A = { (q, a)
 q ∈ Q, a ∈ A } .

We define a multiplication on E by analogy with (2):

( q, a )( q′, a′ ) = ( qq′ , a(q′ϕ) a′) . (3)

It is easy to see then that E is an extension of A by Q, called the semidirect product of A by

Q and denoted by

E = A Q = A ϕ Q

the latter to express the dependence on ϕ. If we identify q ∈ Q with (q, 1), a ∈ A with (1, a)

then we find

(i) E = Q A ,

(ii) A / E ,

(iii) Q ∩ A = 1 ;

and the multiplication in E takes the form

q a q′a′ = q q′ a (q′ϕ) a′ (q, q′ ∈ Q , a, a′ ∈ A) . (4)

We often switch from the notation (3) to the notation (4).

Examples 2 (1) Let A be an abelian group, Q = 〈 q; q2 = 1 〉 a group of order 2. Let

ϕ : Q −→ AutA

be defined by

qϕ : a 7−→ a−1 .

Then we can form
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E = A Q .

(i) If A is cyclic of order 4, E is the dihedral group of order 8.

(ii) If A = C2∞ the quasicyclic group of type 2∞ i.e. the group of all 2n-th roots of 1 in

the complex field, E is an infinite 2-group all of whose proper subgroups are either

cyclic, dihedral groups or C2∞ .

Compute the upper central series of E.

(2) Let A be a free abelian group of infinite rank on

. . . , a−1 , a0 , a1 , . . .

and let

Q = 〈t〉

be infinite cyclic. Let

ϕ : Q −→ AutA

be defined by

tϕ : ai 7−→ ai+1 (i ∈ Z) .

Form

E = A Q .

Prove (i) E is a 2-generator group

and (ii) E′ is free abelian of infinite rank.

(3) Let R be any ring with and let

A = R+

be the additive group of R. Let Q be any subgroup of the group of units of R and let

ϕ : Q −→ AutA

be defined by

q 7−→ (qϕ : a 7−→ aq) .
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Form

E = A Q .

(i) If R = Z[x, x−1] is the group ring of the infinite cyclic group and Q=gp(x) , prove

E ∼= the group in (2).

(ii) Let R = Z[ 1
6 ]. Then 2

3 is a unit in R. Let Q = gp(t = 2
3 ). Is E finitely generated?

Find a presentation of E.

(4) Let the group H act on a set Y and let the group Q act on a set X. Form

A = HX = { f : X −→ H} .

A becomes a group under coordinate-wise multiplication, and Q acts on A

q : f 7−→ fq

where

f q(x) = f(xq−1) (x ∈ X) .

We term the semidirect product AQ a wreath product of H by Q. Notice that AQ acts on

X × Y

by

(x, y )( q, f ) =
(
xq , y f(x)

)
.

If in place of HX we take H(X) the set of all functions from X to H which are almost

always 1, we get a corresponding group, the restricted wreath product of H by Q.

We denote the first wreath product by

W = H o Q

and the second by

W = H oQ .
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(i) Let G now be a group, H ≤ G , X a right transversal of H in G. Let H act on H

via the right regular representation and let γ be the Frobenius representation of G

on X. Let

Q = Gγ .

Verify that Cayley’s representation yields via γ a faithful representation of G in

W = H o Q .

Hint Use the discussion above and that relating to the Frobenius representation.

3. Subgroups of free groups are free

Recall that a group F is free if it has a so-called free set of generators X. So

(i) gp(X) = F

(ii) every non-empty reduced X-product x1
ε1 . . . xn

εn 6= 1 .

It follows that if f ∈ F , then f can be expressed as a reduced X-product

f = x1
ε1 . . . xn

εn

in exactly one way. We term this reduced X-product the normal form of f , and define the

length of f , denoted by l(f), to be n:

l(f) = n .

If f, g ∈ F and if

l(fg) = l(f) + l(g)

we write

f 4 g

to express the fact that no cancellation takes place on forming the product fg i.e. the reduced

X-product for fg is obtained by concatenating the reduced X-product for g with the reduced

X-product for f . If

l(fg) < l(f) + l(g)
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we sometimes write

f tg

expressing the fact that the last letter of f cancels the first letter of g.

Examples 3 (1) Consider the group of units of the formal power series ring in the

noncommuting variables Ξ with integer coefficients. Prove that

F = gp( 1 + ξ
 ξ ∈ Ξ )

is free on { 1 + ξ
 ξ ∈ Ξ }. This is a theorem of W. Magnus.

(2) Suppose that X is a set and that G = gp(σ, τ) is a subgroup of SX . Furthermore

suppose X1 and X2 are non-empty disjoint subsets of X and that

X1σ
m ⊆ X2

X2τ
n ⊆ X1

if m 6= 0

if n 6= 0

Prove that G is free on {σ, τ}.

Hint The trick is to verify that if

w = σm1τn1 . . . σmkτnk (m1, n1, . . . ,mk, nk 6= 0)

is a reduced {σ, τ}-product then

X1 w ⊂ X1 and X1 w 6= X1 .

The first step is to examine X1σ
m∩X1σ

m′ . This examination leads to the conclusion that

the images of X1 under the powers σm (m 6= 0) are disjoint subsets of X2. So

X1 σ
m1 6⊆ X2

yielding

X1 w 6⊆ X1 .
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Now let F be a free group freely generated by some set X, H ≤ F and S a right transversal

of H in F . We term F a Schreier transversal if

x1
ε1 . . . xn

εn ∈ S implies x1
ε1 . . . xn−1

εn−1 ∈ S

i.e. every ”initial segment” of a representative is again a representative.

The proof then of Schreier’s subgroup theorem goes as follows:

(i) There always exist Schreier transversals.

(ii) If S is a Schreier transversal then H is free on

Y = { δ(s, x) = sx(sx)−1 6= 1
 s ∈ S, x ∈ X } .

We already know that Y generates H. It remains to check that Y freely generates H.

Proof The scheme of the proof is very simple.

(i) If δ(s, x) 6= 1 , then we prove

δ(s, x) = s4x4(sx)−1

and so (
δ(s, x)

)−1 = sx4x
−1
4s
−1 .

(ii) If δ(s, x) 6= 1 , then

δ(s, x) = δ(t, y) only if s = t and x = y .

(iii) If

π = δ(s1, x1)ε1 . . . δ(sn, xn)εn

is a reduced Y -product in the symbols δ(s, x) (which by (ii) are distinct elements if the symbols

are distinct) then on expanding we find

π = •4x1
ε14 • . . . •4 xnεn4•
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i.e. the x and x−1 in the middle of δ(s, x) and
(
δ(s, x)

)−1
respectively never cancel on

computing the reduced X-product form of π.

Let me indicate how the proof goes.

(i) Suppose stx . Then

s = t4x
−1

and since S is a Schreier transversal t ∈ S i.e. t = t. Now

sx
(
sx
)−1 = tx−1x

(
tx−1x

)−1

= t t−1 = 1 .

Similarly if xt
(
sx
)−1

(or equivalently sxtx
−1 – note here sx x−1 = s).

(ii) By (i) s4x4
(
sx
)−1 = t4y4

(
ty
)−1

. If l(s) = l(t) , s = t , x = y and we are home. If

l(s) < l(t) , sx is an initial segment of t. So sx = sx and therefore sx
(
sx
)−1 = 1 !

(iii) Note that on computing any of the reduced Y -products

(
δ(s, x)

)±1(
δ(t, y)

)±1

we get the four possibilities
• 4 x 4 • 4 y 4 •

• 4 x 4 •4 y−1
4 •

• 4x−1
4 • 4 y 4 •

• 4x−1
4 •4 y−1

4 •

.

This establishes the form of π.

The rest of the proof follows along the same lines.

We are left with the proof of the existence of Schreier

transversals.

Proposition 1 Let F be a free group on the set X, H ≤ F . Then there exists a Schreier

transversal S of H in F.
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Proof Define the length l(Hf) of the right coset Hf of H in F by

l(Hf) = min{ l(hf)
h ∈ H } .

We choose the elements of S in stages. First 1 ∈ S . Now we proceed by induction. Suppose

representatives have been chosen for all cosets of length at most n in such a way that an initial

segment of a representative is again a representative. For the right cosets of length n+ 1 we

do the following: Let

l(Hf) = n+ 1 .

So there exists in Hf an element b1 . . . bn+1 of length n+ 1 . Consider the coset

Hb1 . . . bn .

Then

l(Hb1 . . . bn) ≤ n

so has a representative already, say a1 . . . am (m ≤ n) . Consider

a1 . . . ambn+1 .

Notice

Ha1 . . . ambn+1 = Hb1 . . . bnbn+1 .

So

l( a1 . . . ambn+1 ) = n+ 1

i.e. m = n and in particular

a1 . . . an 4 bn+1 .

We take

a1 . . . anbn+1

to be the representative of Hf . It is clear that every initial segment of a1 . . . anbn+1 is again

a representative, as desired.

To sum up then, suppose the group F is free on the set X, H ≤ F . If we choose a right

transversal S of H in F closed under initial segments, i.e. a Schreier transversal, then H is

freely generated by

Y = { δ(s, x) = sx(sx)−1 6= 1
 s ∈ S , x ∈ X } .
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Examples 4 Let F be free on {x, y} .

(1) Define ϕ : F −→ C2 = 〈a; a2〉 by x 7−→ a, y 7−→ 1 . Let H = kerϕ. So F/H ∼= C2 .

Note F = H∪̇Hx . Then S is readily chosen: S = {1, x}.

Y = { δ(s, ξ) 6= 1
 s ∈ S , ξ ∈ X } .

Since δ(1, x) = 1 , δ(1, y) = y , δ(x, x) = x2 , δ(x, y) = xyx−1 we get

Y = { y , xyx−1 , x2 }

and H is free on Y.

(2) Find a set of free generators for H = gp( f2
 f ∈ F ) . (F/H is the Klein 4-group.)

(3) Define ϕ : F −→ C∞ = 〈a〉 by x 7−→ a, y 7−→ 1 . Let H = kerϕ. So F/H ∼= C∞.

Note F = ∪̇i∈ZHx
i . Take S = {xi

 i ∈ Z} . The set Y of free generators of H we

obtain is

Y = { xiyx−i
 i ∈ Z } .

(4) For the commutator subgroup F ′ ≤ F we choose

S = { xmyn
 m,n ∈ Z } .

Since

δ(xmyn , x ) = xmynx(xmynx)−1 = xmynx(xm+1yn)
−1

= xmynxy−nx−(m+1) ,

δ(xmyn , y ) = xmyny(xmyny)−1 = xmyn+1(xmyn+1)
−1

= 1 ,

F ′ is free on {xmynxy−nx−(m+1)
n 6= 0 } .

Note Here we see that in a free group of finite rank subgroups may well be free of infinite

rank.

(5) Let ϕ be a homomorphism of F onto S3 . Find free generators for the kernel H of ϕ.
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(6) If G is any free group prove G/G′ is free abelian i.e. a direct sum of infinite cyclic

groups.

Definition 2 Let P be a property of groups. The we say a group G is virtually P or has P
virtually or is virtually a P-group if G has a subgroup of finite index with P.

So a virtually finite group is finite; a virtually abelian group is a finite extension of an abelian

group.

One of the remarkable consequences of the theorem of Stallings and Swan alluded to in Chapter

I is

Theorem 5 A torsion-free virtually free group is free.

Definition 3 Suppose H is a subgroup of a free group F. We term H a free factor of F if we

can find a free set

Y ∪̇ Z

of generators of F such that H is free on Y. If K is the subgroup generated by Z we write

F = H ∗ K

and term F the free product of H and K.

Notice K is also a free factor of F .

Definition 4 Let G be a group acting on a set S. We say G acts transitively on S if given

any pair of elements s, t ∈ S there exists g ∈ G such that

s g = t .

Then it is easy to prove the following
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Lemma 2 Suppose G acts transitively on S. Let s0 ∈ S be any chosen element of S and

for each t ∈ S let g ∈ G be chosen so that

s0 g = t .

Then the set R of such elements of G is a complete set of representatives of the right cosets

of the stabilizer J of s0 in G.

Proof Let c ∈ G. Consider

s0 c

There exists r ∈ R such that

s0 c = s0 r .

So cr−1 ∈ J i.e.

J c = J r .

So every right coset of J in G is represented by an element of R. Moreover if r1, r2 ∈ R and

J r1 = J r2

then

s0 r1 = s0 r2 .

So by the definition of R

r1 = r2 .

Our objective is to prove the following theorem of M. Hall (see his book that was cited in

Chapter II:

Theorem 6 Let H be a finitely generated subgroup of a finitely generated free group F.

Then H is virtually a free factor of F.

Proof Let F be free on X, R a Schreier transversal of H in F . Then H is free on

Y = { r1x1(r1x1)−1
, . . . , rnxn(rnxn)−1 } ( n <∞ , ri ∈ R , xi ∈ X ) .
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Let S consist of all initial segments of the elements

r1, r1x1, . . . , rn , rnxn .

S is then a finite subset of R.

Now for each x ∈ X define

S(x) = { s ∈ S
 sx ∈ S } .

Notice that S(x) may well be empty. Define

ϕ(x) : S(x) −→ S by s 7−→ sx

Then ϕ(x) is 1 − 1 and so can be continued to a permutation, again denoted by ϕ(x), of S.

So, allowing x to range over X, we can view this discussion as the definition of a map from

X into the set of all permutations of S and hence as a homomorphism, ϕ say, of F into the

permutation group on S. Now let s ∈ S, x ∈ X and suppose s4x ∈ S. This means s ∈ S(x)

and

sϕ(x) = ( sx = ) sx .

Similarly if s ∈ S, x ∈ X and s4x−1 ∈ S then sx−1 ∈ S(x) and

s x−1 ϕ(x) = s

or

sϕ(x−1) = sx−1 .

Now suppose t ∈ S and write t as a reduced X-product

t = x1
ε1 . . . xn

εn .

Then it follows that

1ϕ(t) = 1ϕ
(
x1
ε1 . . . xn

εn
)

=
(
. . .
(

1ϕ
(
x1
ε1
))
. . .
)
ϕ
(
xn

εn
)

= x1
ε1 . . . xn

εn = t .

Thus ϕ defines a transitive action of F on S and by the preceding lemma, S itself is a

complete set of representatives of the right cosets of the stabilizer J of 1 under this action. S
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is closed under initial segments and therefore is a Schreier transversal for J in F . Denote the

representative of a coset Jf in S by f̃ . Then J is free on

W = { sx s̃x−1 6= 1
 s ∈ S x ∈ X } .

Now consider the elements of Y , e.g. rixi (rixi)
−1 . Notice first, however, that if f ∈ F , then

f̃ = 1ϕ(f) !

Let us compute then

r̃ixi = 1ϕ(rixi) =
(
1ϕ(ri)

)
ϕ(xi) = ri ϕ(xi) .

But by the very definition

ri ∈ S(xi) .

So

ri ϕ(xi) = rixi .

In other words

r̃ixi = rixi .

So Y ⊆W which completes the proof of the theorem.

Exercise 2 A free factor H of a free group F is a normal subgroup of F if and only if either

H=1 or H=F.

Corollary 1 (Schreier) If H is a finitely generated normal subgroup of a free group F, then

either H = 1 or H is of finite index in F (and so F is finitely generated).

Definition 5 Let P be an algebraic property of groups. We term a group G residually in P
and write G ∈ RP (and the like) if for each g ∈ G , g 6= 1 , there exists a normal subgroup

N of G such that g 6∈ N and G/N ∈ P.

Note P ⊆ RP;
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R (R(P)) = RP, i.e. R is an idempotent operator.

Exercise 3 Prove finitely generated abelian groups are residually finite.

Theorem 7 (F.W. Levi) Free groups are residually finite.

Proof It is enough to consider the case of a finitely generated free group F . Let f ∈ F, f 6= 1.

Then gp(f) is a free factor of a subgroup J of finite index j in F . Thus we can find a free set

f, a1, . . . , ar

of generators of J . Now consider

L = gp( J ′ , a1, . . . , ar , f
2 ) .

Then

f 6∈ L

and J/L = 2.

Notice that L is of index 2j in F . It has only finitely many conjugates in F (there are only

finitely many subgroups of a given finite index in a finitely generated group). Let N be their

intersection. Hence N is a normal subgroup of F of finite index and f 6∈ N .

We recall the

Definition 6 A group G is termed hopfian if G/N ∼= G implies N=1.

Levi’s theorem can be used to prove that finitely generated free groups are hopfian on appealing

to

Theorem 8 (A.I. Malcev) A finitely generated residually finite group G is hopfian.
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Proof Suppose that

G/N ∼= G .

This means that the number of subgroups of a given finite index j in G/N is the same as the

number of subgroups of index j in G, which is finite by one of the theorems of M. Hall proved

earlier. Let

J1/N , . . . , Jr/N

be the subgroups of finite index j in G/N (note each Ji ≥ N). This means that

J1 , . . . , Jr

are the subgroup of index j in G. Turning this around we see that this implies that every

subgroup of finite index in G contains N . So

N ≤
⋂

L≤G, [G:L]<∞
L .

But G is residually finite. Hence the intersection of the subgroups of finite index in G is 1 i.e.

N = 1 .

Exercises 4 (1) Prove that a finite extension of a residually finite group is residually

finite.

(2) A cyclic extension of a finitely generated residually finite group is residually finite.

Examples 5 Let A = Z[ 1
2 ]+ i.e. the additive group of the ring Z of integers with 1

2

adjoined. Let B = A/gp(1) and let

C = { (l,m, n)
 l,m ∈ A , n = n+ gp(1) ∈ B } .

Define a multiplication in C as follows:

( l,m, n ) · ( l′,m′, n′ ) = ( l + l′ , m+m′ , n+ n′ −ml′ ) .

Prove
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(i) C is a group which is nilpotent of class two.

(ii) ζC ∼= C2∞
∼= B .

(iii) C/ζC ∼= A×A .

(iv) The mapping

( l,m, n ) 7−→ ( 2l,
m

2
, n )

is an automorphism α of C of infinite order.

(v) Let G be the semidirect product of C by an infinite cyclic group T = 〈t〉 where t

acts like α on C. Prove G is finitely generated.

(vi) Prove that G is not a hopfian group by verifying that

G/N ∼= G

where

N = gp
((

0, 0, 1
2

))
.

Theorem 9 (J. Nielsen 1918) Let F be a free group of finite rank n. Suppose F is generated

by some set X of n elements. Then X freely generates F.

Proof Suppose F is free on Y . let ϕ be a map from Y onto X. Then ϕ defines a

homomorphism, say ϕ again, of F onto F . So

F/ kerϕ ∼= F .

But F is hopfian. Hence kerϕ = 1 . Thus ϕ is an automorphism of F which means X freely

generates F .

4. The calculus of presentations

Let G be a group. Recall that we write

G = 〈X;R 〉 (5)
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where X is a set, R a set of reduced X-products if the set X comes equipped with a map

ϕ : X −→ G

such that the extension of ϕ to the free group F freely generated by X is a homomorphism,

again denoted by ϕ, with

kerϕ = gpF (R) .

The map ϕ, which is sometimes referred to as the presentation map is usually suppressed.

The pair 〈X;R〉 is, as usual, a presentation of G. We allow R = ∅ in which case G is simply

the free group on X. Each element r ∈ R is termed a relator in G with R called a set of

defining relators of G. Notice that if r ∈ R

r ϕ = 1 .

We often express this fact by writing

r = 1 in G .

More generally if w is any reduced X-product such that

wϕ = 1

we term w a relator and sometimes say

w = 1

is a relation in G. This suggests a variety of alternative notations for presentations e.g.

G = 〈 X ; { r = 1
 r ∈ R } 〉

and so on. In all instances such notations only make sense once they are recast in the form

(5).

Examples 6 (1) Let G = {±1} ⊆ Q• , the multiplicative group of non-zero rational

numbers. Then

G = 〈 a ; a2 = 1 〉 .
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Here X = {a} , ϕ : a 7−→ −1 .

(2) G = Z+ , the additive group of integers. Then

G = 〈a〉 .

Here X = {a} , R = ∅ and ϕ : a 7−→ 1 (or ϕ : a 7−→ −1 ).

(3) G = Z[x]+, the additive group of the ring of all polynomials in x with integer coeffi-

cients. Then

G = 〈 a0, a1, . . . ; { [ai, aj ] = 1
 i, j ≥ 0 } 〉 .

(4) G = S3 , the symmetric group of degree 3. Then

G = 〈 σ, τ ; σ3 = τ2 = στσ = 1 〉 .

(5) Every finite group has a finite presentation which is given by its multiplication table.

(6) Let G be the semidirect product of an infinite cyclic group A = 〈a〉 by a group

T = 〈t; t2 = 1〉 of order two where t acts on A by inversion. Then

G = 〈 a, t ; t2 = 1 , at = a−1 〉 .

(7) Find a presentation for the direct product of two groups.

(8) Prove that an extension of one finitely presented group by another is finitely presented.

(9) Let

G = 〈 a, t ; at = a2 〉 .

Prove that G is the semidirect product of

A = { l

2m
 l,m ∈ Z }
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(thought of as a subgroup of the additive group Q+ of rational numbers) by an infinite

cyclic group T = 〈t〉 where t acts on A by multiplication by 2.

(10) Let

G = 〈 X ∪̇ {y} ; y = 1 〉 .

Verify G is free on X.

We have tacitly taken for granted the construction of a group with a given presentation. In

more detail, suppose

〈X;R〉

is a pair where X is a set and R is a subset of reduced X-products. Then there exists a group

G such that

G = 〈X;R〉 . (6)

Indeed take F to be the free group on X and

G = F/gp
F

(R) .

The presentation map in (6) is simply

ϕ : x 7−→ x gp
F

(R) (x ∈ X) .

Definition 7 Suppose G = 〈X;R〉 and that w is a relator in G. So wϕ = 1 i.e. w ∈ kerϕ

where ϕ denotes the presentation map. We term w a consequence of R. Notice

w =
∏
i

fi
−1ri

±1fi (fi ∈ F, the free group on X, ri ∈ R) .

So every relation w=1 in G is a ”consequence” of the defining relations of G.

Of course a given group can well have lots of different presentations e.g. here is a presentation

of a free group:

G = 〈 x1, x2, . . . ; {xf(i) = 1
 i = 1, 2, . . .} 〉 (7)
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where f is a function from the positive integers into the positive integers. If f is recursive then

(7) is a recursive presentation; and if the complement of the range of f is not a recursively

enumerable subset of the positive integers, then (7) is a recursive presentation of a free group

(incidentally necessarily of infinite rank) with an insoluble word problem. Of course a free group

of countably infinite rank has a recursive presentation with a solvable word problem. So two

recursive presentations of a group can, from an algorithmic standpoint, be radically different.

We shall show that if we restrict our attention to finite presentations this behaviour cannot

occur i.e. if a group G is given by two finite presentations then either both presentations have

a solvable word problem or neither does. This means that having a solvable word problem is

an invariant of finite presentations i.e. having a solvable word problem is an algebraic property

of finite presentations of a given group.

This needs a little clarification.

Definition 8 Let 〈X;R〉 be a presentation where X = {x1, x2, . . .} is a countable, possibly

infinite, set. Then we say 〈X;R〉 has a solvable word problem if gp
F

(R) is a recursive

subset of the free group F on X. In other words we can not only effectively list the elements

of gp
F

(R) but also those of F −gp
F

(R). Incidentally the elements of F −gp
F

(R) are

sometimes termed irrelators.

Lemma 3 Let G = 〈X;R〉 be a recursive presentation of G. Then the consequences of R

form a recursively enumerable set.

Proof By assumption

X = { x1, x2, . . . } .

And R is a recursively enumerable subset of the free group F on X. So we can list R and

hence all products of conjugates of R and their inverses i.e. gp
F

(R) is a recursively enumerable

subset.

This preoccupation with presentations of this kind is no idle pursuit – as I have already noted

they play a critical role in the subgroup structure of finitely presented groups.
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Exercises 5 (1) Prove that the additive group Q+ of rational numbers has a recursive

presentation with a solvable word problem.

(2) Does Q+ have a recursive presentation with an unsolvable word problem?

(3) Prove that the restricted direct product of all the symmetric groups of finite degree has

a recursive presentation with a solvable word problem.

5. The calculus of presentations (continued)

There are four simple ways of going from one presentation of a group G to another, called

Tietze transformations, which we formulate in the form of a proposition.

Proposition 2 Let G be a group. Then the following hold:

T1 If G = 〈X;R〉 then G = 〈X ∪̇Y ; R ∪ { yw(x˜ )−1y ∈ Y } 〉 where here w(x˜ ) is a

reduced X-product corresponding to y ∈ Y i.e. different y’s may well have different

w(x˜ )’s attached to them.

T1′ If G = 〈X ∪̇Y ; R ∪ { yw(x˜ )−1y ∈ Y } 〉 then G = 〈X;R〉 .
T2 If G = 〈X;R〉 and S is a set of consequences of R, then G = 〈X;R ∪ S〉 .
T2′ If G = 〈X;R ∪ S〉 and S is a set of consequences of R, then G = 〈X;R〉 .

T1 and T1′ are called Tietze transformations of type 1;

T2 and T2′ are called Tietze transformations of type 2.

Once one interprets these transformations, the proofs are easy. E.g. consider T1: We have

G = 〈X;R 〉 .

So X comes with its presentation map ϕ. We infer, although this information is not given

explicitly, that the presentation map ϕ+ in 〈X ∪Y ; R∪{ yw(x˜ )−1y ∈ Y } 〉 is ϕ on X and
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that
y ϕ+ = w( xϕ˜) !

Our objective is to prove that ϕ+ is onto and that the kernel of ϕ+ is

kerϕ+ = gp
F+ (R ∪ { yw(x˜ )−1  y ∈ Y }〉 , (8)

where now

F = 〈X〉 and F+ = 〈X ∪ Y 〉 .

It is obvious that ϕ+ is onto. To prove (8) we observe first that

F+ is free on X ∪ Ỹ ,

where

Ỹ = { yw(x˜ )−1  y ∈ Y } .
We define then ϕ+ in stages:

F+ χ−→ F
ϕ−→ G

where

χ
X = id , χ

Ỹ = the trivial map.

Now

ϕ+ = χϕ .

So

kerϕ+ = χ−1
(
ϕ−1(1)

)
= χ−1

(
gp

F
(R)
)

= gp
F+

(
R ∪ { yw(x˜ )−1y ∈ Y } ) .

Theorem 10 (Tietze) Let

G = 〈X;R 〉 and also G = 〈Y ;S 〉 .

Then the first presentation can be transformed into the second by Tietze transformations.

Proof Let ϕ, ψ be the presentation maps involved in the two presentations. Then

y ψ = w(xϕ˜ ) foreach y ∈ Y .
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So, by T1,

G = 〈X∪̇Y ; R ∪ { yw(x˜ )−1y ∈ Y } 〉 .
Now each s ∈ S is a relator in this presentation. So, by T2,

G = 〈X∪̇Y ; R ∪ { yw(x˜ )−1y ∈ Y } ∪ S 〉 .
Again

xϕ = v(yψ˜ ) foreach x ∈ X .

So, by T2,

G = 〈X∪̇Y ; R ∪ S ∪ { yw(x˜ )−1y ∈ Y } ∪ { xv(y˜)−1x ∈ X} 〉 .
We want to get rid of X. If we write R = {r(x˜ )

r ∈ R}, then, by T2,

G =
〈
X ∪̇Y ; {r(x˜ )

r ∈ R} ∪ S∪{ yw(x˜ )−1y ∈ Y } ∪ {xv(y˜)−1x ∈ X}
∪ {r

(
v(y)˜

)r ∈ R} ∪ { yw( v(y)˜
)−1y ∈ Y } 〉

and, by T2′,

G = 〈X∪̇Y ; S ∪ {xv(y˜)−1x ∈ X} ∪ {r( v(y)˜
)r ∈ R} ∪ { yw( v(y)˜

)−1y ∈ Y } 〉 .
By T1′, we can throw away X:

G = 〈Y ; S ∪ {r
(
v(y)˜

)r ∈ R} ∪ { yw( v(y)˜
)−1y ∈ Y } 〉 .

Finally, by T2′,

G = 〈Y ;S 〉 .

It follows immediately from the proof of this theorem that we have also proved the

Lemma 4 Let 〈X;R 〉, 〈Y ;S 〉 be finite presentations of the group G. Then 〈X;R 〉 can

be transformed into 〈Y ;S 〉 by a finite number of Tietze transformations where in each

instance the transformation involved ”adds” or ”subtracts” a single generator and a single

relator.

Now it is easy to prove – and the proof is left to the reader – that the following holds:
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Lemma 5 Suppose G = 〈X;R 〉 is a recursive presentation of the group G and that

G = 〈X ′;R′ 〉 is a second presentation of G obtained from the first by a single Tietze

transformation which adds or subtracts either a single generator or a single relator. Then

〈X ′;R′ 〉 is again a recursive presentation of G. Moreover 〈X;R 〉 has a solvable word

problem if and only if 〈X ′;R′ 〉 does.

Hence we find, on combining the previous two lemmas, that we have proved the

Theorem 11 Two finite presentations of a group G either both have a solvable word

problem or neither one does.

Exercise 6 Prove that if G has a finite presentation in which the word problem is solvable

in linear time, then every finite presentation of G has this property.

Theorem 12 (B.H. Neumann) Suppose the group G has a finite presentation. Then every

presentation of G on finitely many generators has a presentation on these generators with

only finitely many of the given relators i.e. if

G = 〈 y1, . . . , ym ; s1, s2, . . . 〉 (m <∞)

then

G = 〈 y1, . . . , ym ; s1, . . . , sn 〉 (n <∞) .

The following simple lemma is the key to the proof of Neumann’s theorem.

Lemma 6 Suppose

G = 〈 x1, . . . , xm ; r1, . . . , rl 〉 (m <∞, l <∞)

and also

G = 〈 x1, . . . , xm ; s1, s2, . . . 〉 .

Then

G = 〈 x1, . . . , xm ; s1, . . . , sn 〉 (n <∞) .



Combinatorial Group Theory: Chapter III 66

Proof Let ϕ be the underlying presentation map, F the free group on x1, . . . , xm . Then

gp
F

( r1, . . . , rl ) = kerϕ = gp
F

( s1, s2, . . . ) .

So each of ri can be expressed as a product of conjugates of the sj and their inverses. Since

only finitely many sj come into play

gp
F

( r1, . . . , rl ) = gp
F

( s1, . . . , sn )

for some n <∞ .

We are now in a position to prove Neumann’s theorem.

Proof We use Tietze transformations to reduce the theorem to Lemma 6. Suppose

G = 〈 x1, . . . , xk ; r1, . . . , rl 〉 (k <∞, l <∞) .

Then if

G = 〈 y1, . . . , ym ; s1, s2, . . . 〉

we add then yi to the generators for G and then remove the xi :

G = 〈 x1, . . . , xk, y1, . . . , ym ; {ri(x˜ )
i = 1, . . . , l} ∪ {yiw(x˜ )−1i = 1, . . . ,m} 〉

= 〈 x1, . . . , xk, y1, . . . , ym ; {ri(x˜ )
i = 1, . . . , l} ∪ {yiw(x˜ )−1i = 1, . . . ,m}

∪ {xiv(y˜)−1i = 1, . . . , k} 〉

= 〈 x1, . . . , xk, y1, . . . , ym ; {ri (v(y˜)˜ )
i = 1, . . . , l} ∪ {yiw (v(y˜)˜ )−1i = 1, . . . ,m}

∪ {xiv(y˜)−1i = 1, . . . , k} 〉

= 〈 y1, . . . , ym ; {ri (v(y˜)˜ )
i = 1, . . . , l} ∪ {yiw (v(y˜)˜ )−1i = 1, . . . ,m} 〉 .

Now apply Lemma 6.
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Notation Let N/G. Then

d
G

(N) = min
{ X  gpG(X) = N

}
.

Thus another way of putting Neumann’s theorem is as follows: Suppose G is a finitely generated

group and F is a finitely generated free group such that

G ∼= F/K .

Then G is finitely presented if and only if d
F

(K) is finite. Hence the following lemma holds:

Lemma 7 Let G be a finitely presented group and suppose

G ∼= H/N

where H is finitely generated. Then

d
H

(N) < ∞ .

So we find

Corollary 1 Let H be a finitely generated group, N a subgroup of the center of H which is

not finitely generated. Then H/N is not finitely presented.

The point here is that d
H

(N) is simply the minimum number d(N) of generators of N .

Exercise 7 (P. Hall) Let H be the following subgroup of GL(3,R):

H = gp

 τ =

 1 0 0
0 π 0
0 0 1

 , α =

 1 0 0
1 1 0
1 1 1

  .
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Prove

(i) ζH is free abelian of infinite rank;

(ii) H/ζH ∼= C∞ o C∞ = W.

Hence deduce that W is not finitely presented.

Next we record another useful fact:

Theorem 13 (W. Dyck) Suppose

G = 〈 X;R 〉

and

H = 〈 X;R ∪ S〉 .

If γ and ϑ are the respective presentation maps, then

x γ 7−→ xϑ (x ∈ X)

defines a homomorphisms of G onto H.

The proof is left to the reader.

Exercises 8 (1) Let G = 〈x, y ; x2 = y2 = 1〉 .
(i) Prove G maps onto C2.

(ii) Prove G is infinite.

(2) Let 〈x1, . . . , xm; r1, . . . , rn 〉 be a finite presentation of G. If m > n prove G has an

infinite cyclic factor group.

(3) If A = 〈X;R〉, B = 〈Y ;S〉 we define the free product G of A and B which we denote

by A ∗B by means of presentations, as follows:

G = 〈X∪̇Y ;R ∪ S 〉 .

Prove
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(i) A and B embed in G.

(ii) If a ∈ A, a 6= 1, and b ∈ B, b 6= 1, then [a, b] 6= 1.

(Hint: Map G onto A oB.)

(iii) If A and B are free, so is A ∗B.

(iv) If A ∗B is free, so are A and B.
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6. The Reidemeister – Schreier method

Suppose that

G = 〈X;R 〉 (9)

and that

H ≤ G . (10)

Now (9) comes with an underlying presentation map γ, say. So if F is the free group on X,

then γ induces an isomorphism

γ∗ : F/K
∼−→ G (11)

where

K = gp
F

(R) . (12)

Notice then that

γ∗
−1(H) = E/K (13)

where E is a subgroup of F . So (13) really is a presentation of H in the making. Indeed let

T be a Schreier transversal of E in F . Then E is free on Y , where

Y = { δ(t, x)
(
= tx(tx)−1) 6= 1

 t ∈ T, x ∈ X } . (14)

Now (13) tells us that

γ∗
E : E/K

∼−→ H . (15)

So, by (14),

γ
Y is a presentation map of H. (16)

Indeed, by (15),

H = 〈Y ;S 〉

where we have to properly interpret S !

Now, by (12),

K = gp
F

(R) = gp
E

(
{ trt−1

 t ∈ T, r ∈ R }) .
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But the elements trt−1 come to us as X-products, not Y -products. However

K ≤ E

and so each trt−1 can be expressed as a reduced Y -product. Let us denote this expression

for trt−1 by %(trt−1). Then what we mean by S above is precisely this set of all rewritten

X-products:

S = { %(trt−1)
 t ∈ T, r ∈ R } .

To repeat then, we have a presentation of H:

H = 〈 { δ(t, x) 6= 1
 t ∈ T, x ∈ X } ; { %(trt−1)

 t ∈ T, r ∈ R } 〉 . (17)

Examples 7 Let G = 〈 b, u ; ubu−1 = b2 〉 .
G maps onto C∞ by W. Dyck:

C∞ = 〈 b, u ; ubu−1 = b2, b = 1 〉 .

Let H be the kernel of this map. Then G/H is infinite cyclic with generator uH. So G/H =

∪̇
n∈Z u

nH. Thus if we go back to the ambient free groups E and F in the discussion of the

Reidemeister-Schreier method we find:

(i) T = {un
n ∈ Z }

(ii) Y = {unbu−n (= bn)
n ∈ Z }

(iii) S = { %
(
un(ubu−1b−2)u−n

)n ∈ Z } = { bn+1bn
−2
n ∈ Z } .

Thus

H = 〈 . . . , b−1, b0, b1, . . . ; . . . , b0 = b−1
2, b1 = b0

2, b2 = b1
2, . . . 〉 .

By Tietze transformations of type 1 we have

H = 〈 . . . , b−1, b0 ; . . . b−1 = b−2
2, b0 = b−1

2 〉 .

Now let’s map H into Q+ as follows:

bn 7−→ 2n n = 0,−1,−2, . . . .
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By W. Dyck’s theorem this defines a homomorphism µ of H into Q+. Indeed the image of

H is simply

D =
{ l

2n
 l, n ∈ Z

}
.

It is easy to see that µ is an isomorphism because D is a union of infinite cyclic groups!

Notice

D = Z
[

1
2

]+

.

Exercises 9 (1) Let

G = 〈 a, b, c, d ; aba−1b−1cdc−1d−1 = 1 〉 .

Find a presentation for

Hn = gp
G

( an, b, c, d ) n = 1, 2, . . .

(Hint: Hn has a presentation of the form

Hn = 〈 a1, b1, . . . , ag, bg ;
g∏
i=1

aibiai
−1bi

−1 = 1 〉 .

Find g.)

(2) Let G be as in (1) and let

H = gp
G

( b, c, d ) .

Prove H is free.

(3) Let

G = 〈 a, b ; a3 = b3 = (ab)3 = 1 〉 .

Prove G′ is free abelian of rank two and hence that G is infinite.
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7. Generalized free products

Suppose (
Gi = 〈Xi ; Ri 〉

)
i∈I

is an indexed family of groups Gi equipped with presentations, and suppose H is another group

equipped with monomorphisms

ϕi : H −→ Gi (i ∈ I) .

Then we term the group G defined by the presentation

G = 〈 ∪̇
i∈IXi ; ∪i∈IRi ∪ {hϕih−1ϕj

h ∈ H, i, j ∈ I } 〉 (18)

the generalized free product of the Gi amalgamating H. We write

G = ∗
H
i∈I

Gi .

If H = 1, then G is termed the free product of the Gi and we write

G = ∗
i∈I

Gi .

If I = {1, . . . , n} is finite we sometimes denote G by

G = G1 ∗
H
G2 ∗

H
. . . ∗

H
Gn

or if H = 1 by

G = G1 ∗G2 ∗ . . . ∗Gn

When n = 2, this reduces to
G = G1 ∗

H
G2

or again, as we have already noted before, when H = 1

G = G1 ∗G2 .

We assume that in (18) each hϕi is expressed as an Xi-product so that (18) actually looks

like a presentation. According to W. Dyck’s theorem there are canonical homomorphisms µi
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of each Gi to G. It turns out that the µi are monomorphisms and that if we identify Gi with

Giµi, then hϕi = hϕj for all h ∈ H, i, j ∈ I. So we can identify H with any one of its

images Hϕi (which we have already identified with Hϕiµi) and it then turns out that

Gi ∩Gj = H (i, j ∈ I, i 6= j) ,

i.e. the Gi intersect in precisely H. Notice that

G = gp
( ⋃
i∈I

Gi
)
.

It follows that every element g ∈ G can be expressed in the form

g = y1 . . . ynh (n ≥ 0) (19)

where (i) yj ∈ Gij −H and ij 6= ij+1 for j = 1, . . . , n− 1 ;

(ii) h ∈ H .

In particular then if g 6∈ H, then (19) can be rewritten as

g = z1 . . . zn (n ≥ 1) (20)

where (iii) zj ∈ Gij −H and ij 6= ij+1 for j = 1, . . . , n− 1 .

Theorem 14 (O. Schreier) Suppose G =∗ H
i∈I

Gi . Then

(a) the Gi embed into G.

(b) Gi ∩Gj = H (i, j ∈ I, i 6= j) .

(c) every product of the form (20) satisfying (iii) is 6= 1.

Moreover if conversely G is a group with a subgroup H and an indexed family of subgroups

(Gi)i∈I such that G = gp
(⋃

i∈I Gi
)

and also Gi ∩Gj = H (i, j ∈ I, i 6= j) then

G = ∗
H
i∈I

Gi

if and only if every product of the form (20) satisfying (iii) is 6= 1 in G. (For a proof see

e.g. A.G. Kurosh, Vol.2).
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Corollary 1 Let G =∗ H
i∈I

Gi and suppose Fi ≤ Gi (i ∈ I), K ≤ H and that

Fi ∩ Fj = K (i, j ∈ I, i 6= j) .

Then

F = gp
( ⋃
i∈I

Fi
)

= ∗
K
i∈I

Fi .

In particular for K = 1

F = ∗
i∈I

Fi .

Furthermore if each Fi is infinite cyclic, F is free.

This corollary explains the existence of many free subgroups in generalized free products.

The importance of generalized free products lies in the fact that they not only occur frequently

in a variety of different contexts, but that they can be used to construct important classes of

groups. (See the book by Kurosh cited at the end of Chapter1 for some additional references.)



CHAPTER IV Recursively presented groups, word problems and

some applications of the Reidemeister–Schreier

method

1. Recursively presented groups

The following lemma is due to G. Higman.

Lemma 1 A finitely generated subgroup of a finitely generated recursively presented group

is recursively presented.

Proof Let G = 〈X;R〉 be a recursive presentation of the group G with X finite. So

G ∼= F/K

where F is free on X and K = gp
F

(R). As we already noted before, K is a recursively

enumerable subset of F . Now let H be a finitely generated subgroup of G. Then

H ∼= EK/K
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where E is a finitely generated subgroup of F . So

H ∼= E/(E ∩K) .

Now E is a recursively enumerable subset of F and hence so too is E ∩K. Indeed if we list E

we find that we can produce a sublisting of the elements of E ∩K i.e. E ∩K is a recursively

enumerable subset of E.

Corollary 1 A finitely generated subgroup of a finitely presented group is recursively pre-

sented.

Lemma 2 Let G be a finitely generated subgroup of GL(n,K), where K is any commutative

field and n is any positive integer. Then G has a recursive presentation with a solvable

word problem. In particular, G is recursively presented.

Proof Since G is finitely generated, it can be viewed as a group of matrices over a finitely

generated subfield L of K. Now L can be embedded in the algebraic closure U of

P (x1, x2, . . .)

the field of fractions of the polynomial ring in infinitely many variables x1, x2, . . . over the

prime field P of K. Now according to a theorem of Rabin U is a computable field i.e. we can

effectively compute in U .

Since G is a finitely generated subgroup of GL(n,U) we simply list all elements of G and check

to see which of them are 1. This yields then a recursive presentation of G with a solvable word

problem.

In fact we have proved the

Lemma 3 Let U be a countable computable field. Then GL(n,U) is recursively presented.

Of course GL(n,U) is nothing but AutV , where V is an n-dimensional vector space over U .

A similar result, due to Baumslag, Cannonito and Miller, holds also for automorphism groups

of finitely presented groups.
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Theorem 1 Let G be a finitely presented group. Then AutG is recursively presented. If G

has a solvable word problem then AutG has a presentation with a solvable word problem.

Proof Suppose

G = 〈x1, . . . , xm ; r1(x1, . . . , xm) = 1, . . . , rn(x1, . . . , xm) = 1 〉 (m,n ≤ ∞) .

We first list all automorphisms of G. To do so, notice that if α ∈ AutG,

xiα = wi(x1, . . . , xm) for suitable words wi (i = 1, . . . ,m) (1)

Now α is a homomorphism. So

rj
(
w1(x1, . . . , xm), . . . , wm(x1, . . . , xm)

)
= 1 (j = 1, . . . , n) . (2)

Suppose β : G −→ G is the inverse of α. Then

xiβ = vi(x1, . . . , xm) for suitable words vi (i = 1, . . . ,m) . (3)

Again

rj
(
v1(x1, . . . , xm), . . . , vm(x1, . . . , xm)

)
= 1 (j = 1, . . . , n) . (4)

Moreover since α and β are inverses:{
vj
(
w1(x1, . . . , xm), . . . , wm(x1, . . . , xm)

)
= xi (i = 1, . . . ,m) ,

wj
(
v1(x1, . . . , xm), . . . , vm(x1, . . . , xm)

)
= xi (i = 1, . . . ,m) .

}
(5)

Conversely if (w1, . . . , wm) and (v1, . . . , vm) are pairs of m-tuples of words in x1, . . . , xm

satisfying (2), (4), (5) then the maps given in (1) and (3) are automorphisms of G which

are inverses. In any event we can recursively enumerate AutG. We take this entire set, viz.

AutG, as a set of generators of AutG. Now since G is finitely presented the set of such

pairs is recursively enumerable and if G has a solvable word problem this set of pairs is even

recursive.

Words in the above set of generators of AutG act on the generators x1, . . . , xm of G and a

given word is 1 if and only if it acts on each xi like the identity. In more detail, let w be such

a word. Thus

xiw = ui(x1, . . . , xm) (i = 1, . . . ,m) .
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So w = 1 in AutG if and only if

ui(x1, . . . , xm) = xi in G (i = 1, . . . ,m) . (6)

But the set of such equations is recursively enumerable. So AutG is recursively presented. If

in addition G has a solvable word problem we actually can decide whether or not (6) holds. So

AutG has a solvable word problem.

2. Some word problems

Here we consider two classes of groups which have solvable word problem. The first of them

goes back to work of McKinsey:

Theorem 2 A finitely presented residually finite group has a solvable word problem.

Proof Suppose G is a finitely presented residually finite group given by the finite presentation

G = 〈 x1, . . . , xm ; r1(x1, . . . , xm) = 1, . . . , rn(x1, . . . , xm) = 1 〉 .

We can enumerate the homomorphisms of G to all finite quotients of G. Indeed for each

symmetric group Sl , l = 1, 2, . . . , take every m-tuple (x1, . . . , xm) ∈ (Sl)
m and check

whether it satisfies

rj(x1, . . . , xm) = 1 (j = 1, . . . , n) ,

in which case we have a homomorphism

ϕ : G −→ gp(x1, . . . , xm) ≤ Sl , xi 7−→ xi (i = 1, . . . ,m) .

At the same time we can enumerate all consequences of the given defining relators of G.

So if w is any reduced {x1, . . . , xm}-product either we will find w = 1 or else, since G is

residually finite, that wϕ 6= 1 for some homomorphism ϕ of the kind mentioned above. This

solves the word problem for G.
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This algorithm is very complicated.

Next a theorem that goes back to Kuznetsov:

Theorem 3 A finitely generated recursively presented simple group G has a solvable word

problem. (Note that by definition G 6= 1.)

Proof Suppose G is given by the recursive presentation

G = 〈 x1, . . . , xm ; r1, r2, . . . 〉 (m <∞) .

To determine whether a reduced {x1, . . . , xm}-product w is 1 in G enumerate the consequences

of r1, r2, . . . . At the same time enumerate the consequences of w, r1, r2, . . . . If w appears in

the first list, w = 1 in G. If all of x1, . . . , xm appear in the second list, then w 6= 1 in G. This

algorithm solves the word problem for G.

Note This algorithm solves the word problem for a class of groups we know very little about.

In fact this algorithm, like the one above, is quite complex.

3. Groups with free subgroups

In 1972 J.Tits (Free subgroups in linear groups, J. Algebra 20 (1972), 250-270) proved the

following

Theorem 4 A finitely presented group of matrices over a commutative field is either

virtually solvable or contains a free subgroup of rank two.

This has led to what has now become known as the Tits alternative in accordance with the

following
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Definition 1 A group satisfies the Tits alternative if either it is virtually solvable or

contains a free subgroup of rank two.

Unlike matrix groups, finitely generated groups need not satisfy the Tits alternative – the

Grigorchuk-Gupta-Sidki group, for instance, is such an example. Finitely presented examples

are harder to find, but they do exist: Groups of piecewise linear homeomorphisms of the real

line by Matthew G. Brin & Craig C. Squier, Invent. math. 79 (1985), 485-498 and C.H.

Houghton (unpublished). Here is one of the Brin, Squier examples: Let G be generated by the

following two permutations τ, σ of the real line:

τ : x 7−→ x+ 1

σ : x 7−→

 x (−∞ < x ≤ 0)
2x (0 ≤ x ≤ 1)
x+ 1 (1 ≤ x <∞)

Then G turns out to be a finitely generated group which does not satisfy the Tits alternative.

The question therefore arises as to which finitely presented groups satisfy the Tits alternative.

I want to dicuss next some answers to this question which fall out of the Reidemeister-Schreier

method.

First let me recall that if

G = 〈X;R 〉 , H = 〈Y ;S 〉

and if C is a group equipped with two monomorphisms

ϑ : C −→ G , ϕ : C −→ H

then we term

K = 〈X∪̇Y ; R ∪ S ∪ {cϑc−1ϕ
c ∈ C } 〉

the generalized free product of G and H amalgamating C and denote it by writing

K = G ∗
C
H .

The canonical homomorphisms of G and H into K are monomorphisms and we identify G and

H with their images in K then

G ∩H = C .



Combinatorial Group Theory: Chapter IV 82

The point for us here is that we have the following

Lemma 4 If C 6= G and C 6= H and C has index at least three in one or other of G and

H, then G ∗
C
H contains a free subgroup of rank two.

The proof of this lemma is left as an exercise.

Next I want to introduce the notion of an HNN extension, taking some its properties for

granted, for the moment (see Chapter VI for more details).

Definition 2 Let

B = 〈X;R 〉

be a group given by a presentation and suppose U and V are subgroups of B equipped with

an isomorphism

τ : U
∼−→ V .

Then we term

E = 〈X, t ; R ∪ {tut−1 = uτ
u ∈ U} 〉 (where t 6∈ X)

an HNN extension of B with stable letter t, associated subgroups U and V and associating

isomorphism τ . It turns out that

(i) B embeds in E.

(ii) t is of infinite order in E and U and V are conjugate in E via t.

We term B the base group of E and sometimes write

E = 〈B, t ; tUt−1 = V 〉 .

E will be termed a degenerate HNN extension if either U=B or V=B.

Definition 3 A group G is termed indicable if there exists a homomorphism of G onto

the infinite cyclic group.

Notice then that a finitely generated group G is indicable if and only if Gab is infinite.
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We need one additional piece of notation. To this end suppose X is a subset of some group

and that

g = x1
ε1 . . . xn

εn (xi ∈ X, εi = ±1)

is an X-product. Then we define for x ∈ X

expx g =
∑
xi=x

εi

and term expx g the exponent sum of x in the X-product g.

Here is a version of the Tits alternative due to Bieri & Strebel,

1978:

Theorem 5 (Bieri & Strebel) Suppose that G is a finitely presented indicable group. Then

either G is a degenerate HNN extension with a finitely generated base or else G contains

a free subgroup of rank two.

Proof Let µ be a homomorphism of G onto the infinite cyclic group. So if H = kerµ, G/H

is infinite cyclic on say Ht (t ∈ G). Now G is finitely generated. So we can find a set of

generators for G of the form

t, a1, . . . , am (ai ∈ H) (m <∞) .

And since G is finitely presented, by Neumann’s theorem we can present G finitely using these

generators:

G = 〈 t, a1, . . . , am ; r1, . . . , rn 〉 (n <∞) .

It follows that

H = gp
G

(a1, . . . , am)

and that

expt rk = 0 (k = 1, . . . , n) .

Thus G = ∪̇
i∈Z

Hti and so we can use {ti
i ∈ Z} as a transversal for H in G and apply the

Reidemeister-Schreier process to obtain a presentation for H. To this end put

tiajt
−i = aj,i (j = 1, . . . ,m, i ∈ Z)
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and put the rewrite

%(tirkt−i) = rk,i (k = 1, . . . , n, i ∈ Z) .

We need to look more closely at the rewrites %(rk) of the rk. Since we lose nothing on replacing

each rk by a conjugate of itself by a power of t we may assume then that for k = 1, . . . , n ,

%(rk) = rk,0 = rk
(
a1,0, . . . , a1,λ, . . . , am,0, . . . , am,λ

)
.

Here we use λ to denote a positive integer, chosen once and for all. Our notation is functional

and is designed to reflect the fact that each rk is some product of the generators listed without

carrying with it the further implication that all of the generators listed actually appear! It

follows, in any case, that

rk,i = rk( a1,i, . . . , a1,λ+i, . . . , am,i, . . . , am,λ+i )

where k = 1, . . . , n, i ∈ Z. Hence if we put

Y = { aj,i
 j = 1, . . . ,m, i ∈ Z }

and

R = { rk,i
 k = 1, . . . , n, i ∈ Z }

then

H = 〈Y ;R 〉 .

Put

H+ = gp( aj,i
 j = 1, . . . ,m, i ≥ 0)

and

H− = gp( aj,i
 j = 1, . . . ,m, i ≤ λ) .

Finally we put

U = gp( aj,i
 j = 1, . . . ,m, 0 ≤ i ≤ λ) .

So U is a finitely generated subgroup of both H+ and H−. We now form the generalized free

product H̃ of H+ and H− amalgamating U :

H̃ = H+ ∗
U
H− .
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In order to avoid confusion we present H̃ using different letters to those previously used. First

we present H+ and H−:

H+ = 〈 {xj,i
 j = 1, . . . ,m, i ≥ 0 } ;

{ rk(x1,i, . . . , x1,λ+i, . . . , xm,i, . . . , xm,λ+i)
 k = 1, . . . , n, i ≥ 0 } ∪ S+ 〉

where S+ is a set of additional relations, if needed, to define H+ in the manner indicated;

H− = 〈 { yj,i
 j = 1, . . . ,m, i ≤ λ } ;

{ rk(y1,i, . . . , y1,λ+i, . . . , ym,i, . . . , ym,λ+i)
 k = 1, . . . , n, i ≤ 0 } ∪ S− 〉

where S− is defined similarly to S+. So, adopting the obvious notation

H+ = 〈X;R+ ∪ S+ 〉 , H− = 〈Y ;R− ∪ S− 〉 .

Hence

H̃ = 〈X ∪ Y ;R+ ∪ S+ ∪R− ∪ S− ∪ {xj,i = yj,i
j = 1, . . . ,m, 0 ≤ i ≤ λ} 〉 .

The point of all of this is that we claim

H̃ ∼= H . (7)

First we concoct a homomorphism σ̃ of H̃ onto H. The thing to notice is that all of the

relations we have used to define H̃ go over into relations in H. More precisely, suppose we

define
xj,iσ̃ = aj,i (j = 1, . . . ,m, i ≥ 0)

yj,iσ̃ = aj,i (j = 1, . . . ,m, i ≤ λ)

then σ̃ maps the kernel of the presentation map of H̃ onto the identity of H. So σ̃ induces

a homomorphism of H̃ onto H – this is essentially a variation of W. Dyck’s theorem using

different sets of generators. And conversely the map σ : H −→ H̃ defined by

aj,iσ = xj,i (j = 1, . . . ,m, i ≥ 0)

aj,iσ = yj,i (j = 1, . . . ,m, i < 0)

similarly defines a homomorphism of H into H̃. These two homomorphisms are inverses of

each other. So we have proved (7) and essentially the theorem itself.
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To see why we notice that we now know that (cf (7))

H = H+ ∗
U
H− .

There are a number of possibilities. First if U 6= H+, U 6= H− and is of index at least three

in one of H+, H− then H (and therefore G) contains a free subgroup of rank two. If U

is of index two in both H+ and H− then they are both finitely generated. Hence H is also

and G is a degenerate HNN extension in which H is not only the base group but the pair of

associated subgroups as well. Finally if U = H+ or U = H− then again G is a degenerate

HNN extension with base group U (check). We note, for later use, also that if either H+

or H− is finitely generated, then again G is an HNN extension with a finitely generated base.

The technique involved in this proof can be exploited to yield the next theorem, which is due

to Baumslag and Shalen.

Theorem 6 Let G be a finitely presented indicable group which is not a degenerate HNN

extension with a finitely generated base. Then G is virtually a non-trivial generalized free

product of two finitely generated groups where the amalgamated subgroup is of infinite index

in one factor and of arbitrarily large index in the other.

Thus most finitely presented groups are virtually generalized free products of two finitely gen-

erated groups.

Proof The proof partly mimics and makes use of the proof of the Bieri-Strebel theorem just

given. Thus we assume the notation used there. In particular then

G = 〈 t, a1, . . . , am ; r1, . . . , rn 〉

where as before

expt rk = 0 (k = 1, . . . , n)

and G/H is infinite cyclic on Ht where

H = gp
G

( a1, . . . , am ) .
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Again we assume that

%(rk) = rk( a1,0, . . . , a1,λ, . . . , am,0, . . . , am,λ )

for some fixed integer λ > 0. Now we put

Hl = gp
G

( tl, a1, . . . , am )

where we assume only that l is a very large positive integer. Now, by assumption, G is not a

degenerate HNN extension with a finitely generated base. Hence if we put

C = gp
(
aj,0, . . . , aj,λ−1 ; aj,l−λ, . . . , aj,l−1 (j = 1, . . . ,m)

)
then it follows that C is of infinite index in H+ since H+ is not finitely generated. Thus if we

put

Hl
+ = gp

(
aj,0, . . . , aj,l−1 (j = 1, . . . ,m)

)
and make sure l is large enough then the index of C in Hl

+ can be made as large as we please.

Our next objective is to compute a presentation for Hl
+. We use 1, t, . . . , tl−1 as a Schreier

transversal for Hl in G. Then the generators of Hl are simply

{tl} ∪ { aj,i
 j = 1, . . . ,m, 0 ≤ i ≤ l − 1 } .

The relators of Hl have to be examined a little more closely. They take the form

rk,0

...

rk,l−λ−1

rk,l−λ
...

rk,l−1

= rk( a1,0, . . . , a1,λ, . . . , am,0, . . . , am,λ )

= rk( a1,l−λ−1, . . . , a1,l−1, . . . , am,l−λ−1, . . . , am,l−1 )

= rk( a1,l−λ, . . . , a1,l−1, t
la1,0t

−l, . . . , am,l−λ, . . . , am,l−1, t
lam,0t

−l )

= rk( a1,l−1, t
la1,0t

−l, . . . , tla1,λ−1t
−l, . . . , am,l−1, t

lam,0t
−l, . . . , tlam,λ−1t

−l ) .

Put

Hl
− = gp

(
tl ; aj,0, . . . , aj,λ−1 ; aj,l−λ, . . . , aj,l−1 (j = 1, . . . ,m)

)
.
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So Hl
− is a (1 + 2mλ)-generator group. Notice that, exactly as before in the proof of the

Bieri-Strebel theorem
Hl = Hl

+ ∗
C
Hl
−

where C is the 2mλ-generator group given above. Now t is of infinite order modulo H. Hence

C is of infinite index in Hl
−. This proves the theorem.

We can use the same kind of argument as we have just described together with an idea of B.

Baumslag & S.J. Pride to prove the next

Theorem 7 Let G be a finitely presented group and suppose that

W = Ch o C∞ (h ≥ 2) ,

the wreath product of a cyclic group of order h (possibly infinite) and an infinite cyclic

group, is a quotient of G. Then G contains a subgroup H of finite index which maps onto

the free product

K = C∞ ∗ Ch .

Notice that if we consider the normal closure J in K of the infinite cyclic factor, then by the

Reidemeister-Schreier method, J turns out to be a free group of rank h. Since J is of index

h ≥ 2 in K it follows that we have proved the

Corollary 2 If G satifies the hypothesis of the theorem, then it contains a subgroup of finite

index which maps onto the free group of rank two.

I shall say more about this in a little while, after giving the proof of the theorem.

Proof To begin with notice that W can be generated by two elements τ and α which have

the following properties:

(i) α is of order h and τ is of infinite order;

(ii) if we put

αi = τ iατ−i (i ∈ Z) ,
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then A = gp
W

(α) is the direct product of the cyclic groups Ai = gp(αi) of order h:

A =
∏
i∈Z

Ai .

We are now in a position to prove the theorem. By hypothesis there exists a surjective homo-

morphism

µ : G −→W .

Let t and a1 be pre-images in G of the elements τ and α in W . We can, using Neumann’s

theorem, supplement t and a1 with a finite set a2, . . . , am (a2, . . . , am ∈ kerµ) and present

G finitely on this set of generators:

G = 〈 t, a1, . . . , am ; r1, . . . , rn 〉 .

Notice that

expt rk = 0 (k = 1, . . . , n) .

As in the proof of the previous theorem and using the same notation as that employed in that

proof, decompose Hl = gp
G

(tl, a1, . . . , am):

Hl = Hl
− ∗
C
Hl

+ .

Now if we map G onto W via µ, then Hl maps onto gp
W

(τ l, α) and Hl
+ maps onto Bl =

gp(α0, . . . , αl−1) = A0 × . . . × Al−1. Notice that a1,i maps onto αi (0 ≤ i ≤ l − 1). Now

assume l is large as compared to λ and add the relations

ai,j = 1 (j = 1, . . . ,m, 0 ≤ i ≤ λ− 1, l − λ ≤ i ≤ l − 1) (8)

to Hl. Now observe that the resultant quotient group, say H l, of Hl is defined by the relators

rk,i (k = 1, . . . , n, 0 ≤ i ≤ l − 1) .

The only occurences of tl in each of these relators arise as

tlaj,it
−l (j = 1, . . . ,m, 0 ≤ i ≤ λ− 1, l − λ ≤ i ≤ l − 1) .
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This means that the addition of the relations (8) to Hl gives rise to a presentation for H l of

the form (cf. the proof of the previous theorem):

H l = 〈 tl, aj,i (j = 1, . . . ,m, 0 ≤ i ≤ l − 1) ;

aj,i = 1 (j = 1, . . . ,m, 0 ≤ i ≤ λ− 1, l − λ ≤ i ≤ l − 1)

rk(a1,0, . . . , a1,λ, . . . , am,0, . . . , am,λ) = 1
...

rk(a1,l−λ−1, . . . , a1,l−1, . . . , am,l−λ−1, . . . , am,l−1) = 1

rk(a1,l−λ, . . . , a1,l−1, 1, . . . , am,l−λ, . . . , am,l−1, 1) = 1
...

rk(a1,l−1, 1, . . . , 1, . . . , am,l−1, 1, . . . , 1) = 1 〉 .

Thus tl does not occur in any of the relators. So

H l = 〈tl〉 ∗ gp
(
aj,i (j = 1, . . . ,m, 0 ≤ i ≤ l − 1)

)
.

Here 〈tl〉 is the image of Hl
− and gp

(
aj,i (j = 1, . . . ,m, 0 ≤ i ≤ l − 1)

)
is the image of

Hl
+. We denote these groups by

H l
−

and H l
+
.

Thus H l
−

is infinite cyclic and H l
+

maps via µ again onto

Cl = Bl/gp
(
aj,iµ (j = 1, . . . ,m, 0 ≤ i ≤ λ− 1, l − λ ≤ i ≤ l − 1)

)
.

Now since l is large relative to λ and Bl is the direct product of l cyclic groups of order h,

factoring out a 2λ-generator subgroup of Bl cannot affect Bl too much. Indeed it follows from

the basis theorem for finitely generated abelian groups that, denoting the images of the αi in

Cl again by αi,

Cl = gp(αf ) × El

where αf is of order h (0 ≤ f ≤ l − 1). Putting this another way, there is a homomorphism

of H l
+

onto a cyclic group of order h which maps α1,f onto the generator of this cyclic group.

So H l itself maps onto the free product of an infinite cyclic group and a cyclic group of order

h. This completes the proof of the theorem.
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This brings me to the last result I want to deduce that I have already alluded to before, due to

B. Baumslag & S.J. Pride (J. London Math. Soc. (2) 17 (1978), 425-426). It is the first

in a series of three papers – the second by the same authors (Math. Z. 167 (1979), 279-281)

and the last by R. Stohr (Math. Z. 182 (1983), 45-47). Their results all follow, incidentally,

from the theorem I have just proved.

The first of the B. Baumslag & S.J. Pride results is:

Theorem 8 Let G be a group given by m+1 generators and n relations (m,n <∞). If

(m+ 1) − n ≥ 2

then G contains a subgroup of finite index which maps onto a free group of rank two.

The proof of this theorem follows from what we have already proved and the following

Lemma 5 Let G satify the above hypothesis. Then given any prime p there exists a

surjective homomorphism

µ : G −→W = Cp o C∞ .

Proof We proceed as follows: First we present G in the form

G = 〈 t, a1, . . . , am ; r1, . . . , rn 〉

where as usual

expt rk = 0 (k = 1, . . . , n) .

Let p be any given prime. Let

N = gp
G

( a1, . . . , am )

and let

M = N/(N ′Np) .

Here N ′ is the derived group of N and Np denotes the subgroup of N generated by the p-th

powers of elements of N . Now M is an abelian group of exponent p. We write M additively
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and turn it into a left module over the group ring Fp[t, t−1] of the infinite cyclic group on t

over the field Fp of p elements:(∑
i

cit
i

)(
aN ′Np) =

∑
i

(tiat−i)
ci
N ′Np .

View M as a module on m generators (the images of the aj in M) subject to n module

relations (the images of the rk written in Fp[t, t−1]-module form in terms of the generators of

M I have just described). Now the ring R = Fp[t, t−1] is a principal ideal domain. So every

finitely generated R-module is a direct sum of cyclic modules. Since n < m one of these cyclic

modules is free. Therefore M has a quotient which is free on one generator. The submodules

of M corresepond exactly to the normal subgroups of G contained in N and containing N ′Np.

So this translates into the existence of a normal subgroup L of G contained in N such that L

contains N ′Np with N/L, viewed as an R-module, free on one generator, say aL. This simply

means that modulo L the conjugates of a under the powers of t are independent elements of

the vector space N/L ! In other words

G/L = gp( aL, tL ) = gp(aL) o gp(tL) !

This completes the proof of the lemma.

Incidentally the same kinds of arguments yield also:

Theorem 9 Let G be a group defined by a single relation and at least three generators.

Then G is virtually an amalgamated product of the form

H+ ∗
U
H−

where U is of infinite index in H+ and also in H− and all of H+, H− and U are finitely

presented.

(The books by Magnus, Karrass and Solitar and by Lyndon and Schupp cited in Chapter 1 are

a good general reference for this chapter. See also the survey by Strebel, cited in Chapter I.)



CHAPTER V Affine algebraic sets and the representation theory

of finitely generated groups

1. Background

In the next few lectures I want to develop only the very beginnings of what one might call

geometric representation theory and then give two applications of this theory to combinatorial

group theory.

Before I begin, however, I want to give you an idea as to how this geometric representation

theory comes into play.

Let us suppose then that G is a given finitely generated group. We consider the set R(G)

of all representations of G in SL(2,C). This set R(G) carries with it the stucture of an

affine algebraic set (see the book by Robin Hartshorne: Algebraic Geometry, Graduate Texts in

Mathematics 52, Springer-Verlag, New York (1977), for a more detailed discussion of algebraic

geometry). If G has sufficiently many representations, then we can find so-called curves in

R(G). In 1983, Culler & Shalen in an important paper in the Annals of Mathematics, showed
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how such a curve of representations can be used to produce a canonical representation

γ : G −→ SL(2, F )

where F is a finite algebraic extension of the field C(x) of rational functions over C in a single

variable. Such a field F has a so-called discrete valuation. There is a theory due to Bass, Serre

and Tits which shows that such an SL(2, F ) acts as a group of automorphisms of a tree that

is associated to SL(2, F ). Hence G also acts on a tree. The Bass-Serre part of this theory (see

Chapter VII) yields a so-called graph product decomposition of G. This means that G can be

reconstituted from a select set of its subgroups by using HNN extensions and amalgamated

products, allowing for a detailed study of G. In fact Culler & Shalen applied this approach

in the case where G is the fundamental group of a 3-manifold and obtained important new

results about such groups as well as new proofs of earlier theorems of Thurston. This technique

promises to be an important tool also in combinatorial group theory. I want only to consider

here the geometric representation theory. In the last part of the course I will describe the

Bass-Serre theory and and also the way in which SL(2, F ) acts on a tree.

2. Some basic algebraic geometry

Let k be a fixed algebraically closed field, n a positive integer and An
k = An the set of all

n-tuples of elements of k:

An = { (a1, . . . , an)
 aj ∈ k } .

We sometimes denote An simply by A, which is usually referred to as affine n-space and its

elements are thenreferred to as points.

Let

A = k[T1, . . . , Tn]

be the polynomial algebra over k in the variables T1, . . . , Tn. An algebra B which is isomorphic

to a quotient of A is termed finitely generated – note here n <∞. It follows that the algebra

B can be generated by n elements, say t1, . . . , tn. We express this fact by writing

B = k[t1, . . . , tn] .
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Notice that these generators t1, . . . , tn are not necessarily algebraically independent. All alge-

bras dicussed here will be associative k-algebras with a multiplicative identity 1. We shall need

two theorems of Hilbert. The first of these is

Theorem 1 (The Hilbert Basis Theorem) Let B be a finitely generated commutative k-

algebra. Then every ideal of B is finitely generated (as an ideal).

It follows that such k-algebras satisfy the ascending chain condition for ideals.

Now let S be a subset of A. We define

Z(S) = { (a1, . . . , an) ∈ A
 f(a1, . . . , an) = 0 for all f ∈ S } .

Z(S) is termed the zero set or set of zeroes of S.

Definition 1 A subset X of A is termed an affine algebraic set if X = Z(S) for some

subset S ⊆ A.

We say X is the affine algebraic set defined by S. Notice that if A is the ideal of A generated

by S, then by the Hilbert Basis Theorem A is finitely generated, say by f1, . . . , fr. Thus it

follows that

Z(S) = Z(A) = Z(f1, . . . , fr) .

Thus

Lemma 1 Every affine algebraic set is defined by a finite set.

Next we record some simple facts about affine algebraic sets.

Lemma 2

(i) ∅ and A are affine algebraic sets.

(ii) Then union of two affine algebraic sets is again an affine algebraic set. More pre-

cisely if A1 and A2 are ideals of A then

Z(A1) ∪ Z(A2) = Z(A1 ∩ A2) = Z(A1A2) .
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(iii) The intersection of an arbitrary number of affine algebraic sets is again an affine

algebraic set. More precisely if {Ai
i ∈ I} is an indexed family of ideals of A then

⋂
i∈I

Z(Ai) = Z

(⋃
i∈I
Ai
)
.

(iv) If S1 ⊆ S2 ⊆ A then Z(S1) ⊇ Z(S2) .

The proof of Lemma 2 is left to the listener. Only (ii) needs a little thought – if necessary one

can use (iv) to help in the proof.

Lemma 2 can be used to put a topology on A. We take the closed sets in this topology to be

the affine algebraic sets. The resultant topology on A is termed the Zariski topology.

Exercises 1 (1) Prove Lemma 2.

(2) Observe that

(i) Sn−1 = { (a1, . . . , an) ∈ A
 ∑n

j=1 a
2
j = 1 }

(ii) H = { (x, y) ∈ A2
 xy = 1 }

are affine algebraic sets.

(3) Let M=M(n,k) be the set of all n×n matrices over k. Identify M with An2
by simply

writing down the rows of each matrix one after the other.

(4) Prove that SL(n, k) ⊆ An2
and GL(n, k) ⊆ An2+1 are affine algebraic sets.

(5) Prove that if k• is the multiplicative group of k, then

k• × . . .× k•︸ ︷︷ ︸
l

⊆ A2l

is an affine algebraic set.

(6) Prove that if X and Y are affine algebraic sets, then so is X × Y .
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Notice that the Zariski topology is not a particularly nice one. For instance the closed sets in

A1 are the finite sets and A1. So the topology is not even Hausdorff.

Definition 2 Let G be a group. Then a representation of G in SL(n,k) is a homomorphism

% : G −→ SL(n, k) .

Notice that if G is finitely generated, say by g1, . . . , gm, then % is completely determined by

its effect on g1, . . . , gm. So if R(G,n) is the set of all representations of G in SL(n, k) we

can parametrize R(G,n) by points in An2m. More precisely we associate with % the point(
%(g1), . . . , %(gm)

)
:

% 7−→
(
%(g1), . . . , %(gm)

)
.

Lemma 3 Let G be a group with g1, . . . , gm a finite set of generators of G. Then R(G,n)

carries with it the stucture of an affine algebraic set.

Proof Let

G = 〈 g1, . . . , gm ; r1 = 1, . . . 〉

be a presentation for G on the given generators. Let M1, . . . ,Mm be n × n matrices over k.

Then a point

u =
(
M1, . . . ,Mm

)
∈ An2m (1)

corresponds to a representation % of G in SL(n, k), i.e. the mapping defined by

% : gl 7−→ Ml (l = 1, . . . ,m)

is a representation of G in SL(n, k), if and only if

det Ml = 1 (l = 1, . . . ,m) and rh
(
M1, . . . ,Mm

)
= 1 (h = 1, . . .) .

Notice det M, M any n×n matrix, is a polynomial in the coefficients of M. Now if det M = 1

then M−1 can be expressed in the usual way in terms of the coefficients of M. In fact each of
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the coefficients of M−1 is a polynomial in the coefficients of M. Thus if we assume det Ml = 1

for l = 1, . . . ,m, then rh
(
M1, . . . ,Mm

)
is a matrix whose (i, j)-entry is a polynomial rh(i, j)

in the coefficients of the Ml. Thus rh
(
M1, . . . ,Mm

)
= 1 if and only if the polynomials

rh(i, j) = δij (the Kronecker delta). So u (given by (1)) corresponds to a representation of G

in SL(n, k) if and only if

det Ml = 1 (l = 1, . . . ,m) and rh(i, j) = δij (h = 1, . . .) . (2)

Thus R(G,n) is the set of zeroes of a (possibly infinite) set of polynomials which arise from a

set of defining relations for G written in terms of the given generators.

Exercises 2 (1) Suppose G is free on g1, . . . , gm. Then

R(G,n) = SL(n, k)m .

(2) Let G be a group given by a single defining relation. Then R(G,n) can be defined by

m+ n2 equations, where m is the number of generators of G.

(3) If M is any square matrix, the trace tr M of M is the sum of its diagonal entries.

Verify that

(i) tr
(
M1M2

)
= tr

(
M2M1

)
where M1 is an n×m matrix and M2 an m× n matrix.

(ii) tr
(
T−1MT

)
= tr M for M ∈ M(n, k) and T ∈ GL(n, k).

(iii) if det(t1−M) = f(t) is the characteristic polynomial of M ∈ M(n, k) and if

f(t) = tn + cn−1t
n−1 + . . .+ c0

then c0 = (−1)n det M and cn−1 = −tr M .

(iv) M ∈ SL(2,C) is of order e > 2 if and only if

tr M = ω + ω−1

where ω is a primitive e-th root of 1.

[Hint: Use Jordan normal forms and note that if

λ = ω + ω−1
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then the roots of the equation x2 − λx+ 1 = 0 are ω and ω−1.]

(4) Suppose that G is a group defined by a single defining relator which is a proper power

greater than 2:

G = 〈 g1, . . . , gm ;
(
r(g1, . . . , gm)

)e = 1 〉 .

Prove that R(G,2) can be defined by m+ 1 equations.

On the face of it the affine algebraic set R(G,n) appears to depend on the generators chosen

for G. This is not the case however. In order to prove the invariance of R(G,n) we need the

notion of a morphism from one affine algebraic set to another. We will prepare ourselves for the

introduction of this and other notions in the next two sections.

3. More basic algebraic geometry

Let Y be a subset of A. Then we define

I(Y ) = { f ∈ A
 f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈ Y } .

I(Y ) is clearly an ideal of A and is termed the ideal of Y. In order to better understand this

function I we will need the other theorem of Hilbert that I mentioned earlier.

Theorem 2 (Hilbert’s Nullstellensatz) Let k be an algebraically closed field, A an ideal of

A = k[T1, . . . , Tn]. If f ∈ A vanishes on Z(A) [i.e. f ∈ I
(
Z(A)

)
] then a positive power of

f lies in A.

Notice that if A 6= A, then Z(A) 6= ∅ is one of the consequences of Theorem 2. For if

Z(A) = ∅ then the polynomial 1 vanishes on Z(A) and hence 1 ∈ A i.e. A = A.

Recall that if B is a commutative k-algebra then an element b ∈ B is termed nilpotent if

br = 0 for some positive integer r. If B is an ideal of B then the radical of B, denoted
√
B,
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is defined by
√
B = { b ∈ B

 br ∈ B for some r > 0 } .

The radical
√
B of B is again an ideal of B and B/

√
B has no non-zero nilpotent elements.

We need two definitions for later use.

Definition 3 An ideal B of a commutative k-algebra B is termed a radical ideal if
√
B = B.

Definition 4 A finitely generated commutative k-algebra is termed an affine algebra if it

contains no non-zero nilpotent elements.

The function I has properties corresponding to those of Z.

Lemma 4 Let Y, Y1, Y2 be subsets of A. Then the following hold:

(i) If Y1 ⊆ Y2, then I(Y1) ⊇ I(Y2).

(ii) I(Y1 ∪ Y2) = I(Y1) ∩ I(Y2).

(iii) If A is any ideal of A, then I Z(A) =
√
A.

(iv) Z I(Y ) = Y , the closure of Y in the Zariski topology on A.

The proof of Lemma 4 is straightforward and is left to the reader.

On allying part of Lemma 2 with Lemma 4 it follows that we have proved

Lemma 5 Let X be the set of affine algebraic sets in A and R the set of radical ideals of

A. Then, restricting I to X and Z to R,

Z I = 1X , I Z = 1R .

Since both Z and I are inclusion reversing it follows that the maximal ideals of A correspond

via Z to the minimal affine algebraic sets in A.
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Notice that the minimal affine algebraic sets in A are simply points. Thus if M is a maximal

ideal in A then

M = I Z(M) = I {(a1, . . . , an)}

= the ideal generated by T1 − a1, . . . , Tn − an .

Thus the maximal ideals of A all have this form. Notice also that if x = (a1, . . . , an) then

x̂ : A −→ k defined by f 7−→ f(x)

is a homomorphism of A onto k with kernelM. So A is, in a sense, completely determined by

the maximal ideals of A. There is, as we shall see shortly, a similar result for affine algebraic

sets in general.

4. Useful notions from topology

We recall first the

Definition 5 A topological space X is termed irreducible if

(i) X 6= ∅ and

(ii) X is not the union of two proper closed subsets.

Then the following holds:

Lemma 6 (i) A topological space X 6= ∅ is irreducible if and only if every non-empty

open set U is dense in X i.e. U = X.

(ii) If Y is a subspace of a topological space then Y is irreducible if and only if Y is

irreducible.

(iii) The closure of a point in a topological space X is irreducible.

(iv) If ϕ : X −→ Y is a continuous map and X is irreducible, then so is ϕ(X).

The proof of Lemma 6 is straightforward and is left to the reader.
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Now let X be a topological space. Then by Zorn’s Lemma every irreducible subspace is

contained in a maximal one. By Lemma 6 (ii) a maximal irreducible subspace is closed.

Definition 6 Let X be a topological space. Then the maximal irreducible subspaces of X

are termed the irreducible components of X.

So by Lemma 6 (iii) every topological space is the union of its irreducible components.

Definition 7 A topological space X is termed Noetherian if its open sets satisfy the as-

cending chain condition i.e. every properly ascending chain of open sets is finite.

Note that X is Noetherian if and only if it satisfies the descending chain condition for closed

sets.

Lemma 7 Every affine algebraic set X is Noetherian.

Proof Every properly descending chain of closed subspaces of X gives rise, via I, to a properly

ascending chain of ideals in A. By the Hilbert Basis Theorem this latter chain is always finite.

Lemma 8 Let X be a non-empty Noetherian topological space. Then X has only finitely

many irreducible components, say X1, . . . , Xm and

X = X1 ∪ . . . ∪Xm .

Proof We already know that every topological space is the union of its irreducible components

(which we know also are closed). In order to prove m < ∞, let S be the set of all closed

subspaces of X which are the union of finitely many irreducible subspaces of X. If X 6∈ S
let Y be a minimal closed non-empty subspace of X which is not in S. Then Y is certainly

not irreducible. Hence Y = Y1 ∪ Y2 where Y1, Y2 are proper closed subspaces of Y . By the
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minimality of Y , each of Y1, Y2 can be written as a union of finitely many irreducible subspaces

of X. Hence so can Y . This contradiction proves the lemma.

It is time to identify the irreducible affine algebraic sets.

Lemma 9 An affine algebraic set X in A is irreducible if and only if I(X) is a prime

ideal in A.

Proof Suppose I(X) is prime and that X = X1 ∪X2 is a decomposition of X 6= ∅ into two

proper closed subsets. Then

I(X) = I(X1) ∩ I(X2) .

But I(X) is a prime ideal in A. So either I(X1) ⊆ I(X) or I(X2) ⊆ I(X). So, applying Z,

we find either X1 = X or X2 = X, a contradiction.

On the other hand suppose X is irreducible. We want to prove I(X) is prime. I(X) 6= A

since X 6= ∅. Suppose

f1f2 ∈ I(X) (f1, f2 ∈ A) .

Then

X = Z I(X) ⊆ Z(f1f2) = Z(f1) ∪ Z(f2) .

Hence

X =
(
X ∩ Z(f1)

)
∪
(
X ∩ Z(f2)

)
is a decomposition of X into two closed sets. By irreducibility, either

X ⊆ Z(f1) or X ⊆ Z(f2)

and so either

f1 ∈ I(X) or f2 ∈ I(X) .

Hence I(X) is prime as claimed.

Exercises 3 (1) Suppose the topological space X has only finitely many irreducible com-

ponents, say X1, . . . , Xm. Then

X = X1 ∪ . . . ∪Xm .
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Prove that if

X = Y1 ∪ . . . ∪ Yh (h <∞)

where the Yi are closed irreducible sets and Yi 6⊆ Yj if i 6= j, then h = m and the Y’s can

be renumbered so that Yi = Xi for i = 1, . . . ,m.

(2) Prove that if B is any radical ideal in any finitely generated commutative k-algebra B

then

(i) there are only finitely many minimal prime ideals containing B;

(ii) B is the intersection of these minimal prime ideals.

[Hint: Prove (2) first for A = k[T1, . . . , Tn] and then use the third isomorphism theorem.]

We come now to an important definition.

Definition 8 Let X be a non-empty topological space. Term a series

X0 ⊂ X1 ⊂ . . . ⊂ Xm

of distinct irreducible closed subspaces of X an irreducible chain of length m. Then we

define the dimension of X, denoted dimX, by

dimX = supremum of lengths of irreducible chains in X .

We note some simple consequences of the definition.

Lemma 10 Let X be a finite dimensional irreducible topological space. Then the following

hold:

(i) If dimX = 0 then the closure of every 1-point set is X. So if X is T1 i.e. every

1-point set is closed then X is a space with a single point.

(ii) If dimX > 0 and Y is a closed proper subspace of X, then dimY < dimX.

Proof We verify (ii), which is almost obvious. Indeed let

Y0 ⊂ Y1 ⊂ . . . ⊂ Ym
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be an irreducible chain in Y of length m. Since Y is closed this is an irreducible chain in X.

But then

Y0 ⊂ Y1 ⊂ . . . ⊂ Ym ⊂ X

is an irreducible chain in X of length m + 1. So this proves dimY < ∞ and also that

dimY < dimX.

Exercise 4 If X is a topological space of finite dimension m, prove that every subspace Y

of X is of finite dimension at most m.

5. Morphisms

Let X be an affine algebraic set contained in A.

Definition 9 A map

µ : X −→ k

is termed a polynomial function if there exists a polynomial f = f(T1, . . . , Tn) ∈ A such

that

µ(a1, . . . , an) = f(a1, . . . , an)
(

(a1, . . . , an) ∈ X
)
.

Thus the polynomial functions on X are simply the polynomials in A restricted to X

The set of such functions is denoted by k[X] and becomes a k-algebra using scalar multiplication

and coordinate-wise addition and multiplication of functions.

Definition 10 k[X] is termed the coordinate algebra of X.

Notice that for each f ∈ A we have the polynomial function f
X

, which is f restricted to X.
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The map

f 7−→ f
X

(f ∈ A)

is a homomorphism of A onto k[X]. The kernel of this homomorphism is simply I(X). So

Lemma 11 k[X] ∼= A/I(X) .

Thus the coordinate algebras of affine algebraic sets are affine algebras since I(X) is a radical

ideal of A. Let ti be the function Ti
X . Then

k[X] = k[t1, . . . , tn] .

The functions ti are termed the i-th coordinate functions of X (i = 1, . . . , n). So

ti(a1, . . . , an) = ai (i = 1, . . . , n) .

Exercises 5 Verify the following:

(1) k[A] = A .

(2) If X is a 1-point set, k[X] ∼= k .

(3) Let X and Y be affine algebraic sets. Prove (remember X ×Y is affine algebraic) that

k[X × Y ] ∼= k[X]⊗
k
k[Y ] .

By Lemma 9 an affine algebraic set X is irreducible if and only if I(X) is prime. We reformulate

this remark as

Lemma 12 An affine algebraic set X is irreducible if and only if k[X] is a domain.

Definition 11 Let X ⊆ Am, Y ⊆ An be affine algebraic sets. Then the map

ϕ : X −→ Y

is termed a morphism from X to Y if there exist f1, . . . , fn ∈ k[X] such that

ϕ(a1, . . . , am) = ( f1(a1, . . . , am), . . . , fn(a1, . . . , am) )
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for all (a1, . . . , am) ∈ X.

Definition 12 We term two affine algebraic sets X and Y isomorphic if there exist

morphisms

ϕ : X −→ Y , γ : Y −→ X

such that

γϕ = 1X , ϕγ = 1Y .

Note A morphism ϕ : X −→ Y from one affine algebraic set to another can be viewed as

a (possibly singular) polynomial change of coordinates and ϕ(X) then is ”X re-expressed in

terms of these new coordinates”.

Lemma 13 Let X ⊆ Am, Y ⊆ An be affine algebraic sets. A morphism ϕ : X −→ Y is

a continuous map in the Zariski topology.

Proof Suppose ϕ(a1, . . . , am) = ( f1(a1, . . . , am), . . . , fn(a1, . . . , am)) with the usual nota-

tion. We have only to prove that if Z is a closed set in Y , then ϕ−1(Z) is closed in X. Now

if g1, . . . , gh are polynomials which define Z then the polynomials

gi(f1, . . . , fn) (i = 1, . . . , h)

define ϕ−1(Z).

Finally we come to the proof of the

Lemma 14 Let G be a given finitely generated group, d a positive integer. Suppose

G = gp(g1, . . . , gm) (m <∞)

and that also

G = gp(h1, . . . , hn) (n <∞) .
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Then the respective affine algebraic sets R(G, d), R̃(G, d) associated with G are isomorphic.

Proof Notice that

hi = wi(g1, . . . , gm) (i = 1, . . . , n)

and that

gj = vj(h1, . . . , hn) (j = 1, . . . ,m) .

R(G, d) is parametrized in Ad2m by the affine algebraic set

X = { (%(g1), . . . , %(gm))
 % : G −→ SL(d, k) a representation }

and R̃(G, d) is parametrized in Ad2n by the affine algebraic set

Y = { (%(h1), . . . , %(hn))
 % : G −→ SL(d, k) a representation } .

Then w1, . . . , wn define a morphism

ϕ : X −→ Y

by (
%(g1), . . . , %(gm)

)
7−→

(
w1

(
%(g1), . . . , %(gm)

)
, . . . , wn

(
%(g1), . . . , %(gm)

))
(

=
(
%(h1), . . . , %(hn)

))
and a similar remark holds for v1, . . . , vm. These maps are clearly inverses and so, using the

obvious notation,

X ∼= Y

as claimed.

The affine algebraic sets together with the morphisms between them form a category, the

category of affine algebraic sets which we denote for the moment by C. Similarly the affine

k-algebras together with the k-algebra homomorphisms between them form a second category,

the category of affine k-algebras which we denote, again for the moment, by D. The following

theorem then holds.

Theorem 3 The categories C and D are equivalent.
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Proof The equivalence between C and D is essentially defined by the following contravariant

functor F : C −→ D. First we define F on objects:

F(X ) = k[X] .

Second on morphisms: if ϕ : X −→ Y , then

F(ϕ) = ϕ? : k[Y ] −→ k[X]

where

ϕ?(f) = fϕ .

It is easy to check that ϕ? is a k-homomorphism of k-algebras, that

F(ψϕ) = F(ϕ)F(ψ) , F(∞) = ∞ .

The corresponding functor G from D to C involves choosing for each affine k-algebra B a finite

set b1, . . . , bm of generators:

B = k[b1, . . . , bm] .

This choice is made separately for each affine k-algebra. Thus ”incompatible” choices may

well be made for isomorphic k-algebras, but once a choice is made, we stick to it.

Now let

σ : k[T1, . . . , Tm] −→ B

be the homomorphism defined by

σ : Ti −→ bi (i = 1, . . . ,m) .

Let

B = kerσ .

Then we define our functor G : D −→ C on objects as follows:

G(B) = X

where

X = Z(B) (⊆ Am) .
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Notice that

k[X] ∼= k[T1, . . . , Tm]/B ∼= B .

An element b ∈ B can then be viewed as a polynomial function on X; indeed using the above

isomorphisms bi defines the i-th coordinate function on X.

Now we need to define G on k-algebra homomorphisms. Let then

ϑ : B −→ C

be a homomorphism from one affine k-algebra into another. Both B and C come equipped

with finite sets of generators:

B = k[b1, . . . , bm] , C = k[c1, . . . , cn] .

So

ϑ(bi) = wi(c1, . . . , cn) (i = 1, . . . ,m) .

Notice

G(B) = X ⊆ Am , G(C) = Y ⊆ An .

Define

G(ϑ) : Y −→ X

by

G(ϑ)(a1, . . . , an) = (w1(a1, . . . , an), . . . , wm(a1, . . . , an) ) .

The point we made before is appropriate here – each wi(c1, . . . , cn) can be viewed as an

element of k[Y ].

Then one checks that G is a contravariant functor from D to C and that

GF ' 1C , FG ' 1D .

There are a couple of consequences of the proof that I want to draw attention to.
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Corollary 1 Let X and Y be affine algebraic sets and ϕ : X −→ Y a dominant morphism

i.e. ϕ(X) is dense in Y . Then

ϕ? : k[Y ] −→ k[X]

is a monomorphism.

Corollary 2 Let ϑ : B −→ C be a monomorphism from the affine k-algebra B to the

affine k-algebra C. Then

G(ϑ) : G(C) −→ G(B)

is a dominant morphism.

We shall make frequent use of Corollary 2, especially in the case where ϑ is actually an inclusion.

Indeed we note here for later ease of exposition the following special case of Corollary 2, which

follows immediately from what has already been noted.

Corollary 3 Let ϑ : B ↪→ C be an inclusion of affine k-algebras and suppose

B = k[s1, . . . , sm] , C = k[s1, . . . , sm, t1, . . . , tn] .

Suppose G(B) = X ⊆ Am, G(C) = Y ⊆ Am+n. If

X0 = { (z1, . . . , zm)
 (z1, . . . , zm, a1, . . . , an) ∈ Y

for some choice of a1, . . . , an ∈ k }

then

X = X0 .

We shall use Corollary 2 to manufacture the appropriate varieties that are our basic concern.

If ϕ : X −→ Y is a dominant morphism of affine algebraic sets, we sometimes refer to Y

as a quotient affine algebraic set. Our objective then is to construct such quotients, using

Corollary 2.
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Exercise 6 Illustrate Corollary 3 by means of the inclusion

ϑ : k[T ] ↪→ k[T, T−1] .

6. Dimension

We begin with a

Definition 13 An affine algebraic set X is termed an affine variety if I(X) is a prime

ideal.

Notice that X is an affine variety if and only if k[X] is a domain.

Exercises 7 (1) Let f ∈ k[T1, . . . , Tn] = A the polynomial algebra in n variables. Then

A is a unique factorization domain. Suppose f 6= 0. Then Z(f) is an affine variety if and

only if f is prime.

(2) Now let n = d2 and label the Tl (l = 1, . . . , n) as Tij (i, j = 1, . . . , d). Let

f = det(Tij) .

So f is a polynomial of degree d. Prove that f − 1 is prime and hence that SL(d,k) is an

affine variety.

(3) Prove that if X and Y are affine varieties, so is X × Y .

Now if X ⊆ A is an affine algebraic set then dimX is the length m of the longest chain

X0 ⊂ X1 ⊂ . . . ⊂ Xm
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of distinct irreducible closed subspaces of X. Applying the operator I yields then a chain

X0 ⊃ X1 ⊃ . . . ⊃ Xm (3)

of prime ideals of k[X]. So dimX is what is termed the Krull dimension of the affine k-algebra

k[X].

We take for granted some facts about the Krull dimension.

Theorem 4 Suppose that the affine k-algebra B is a domain. Then

(i) dimB is the transcendence degree over k of the field of fractions of B; hence dimB <∞.

(ii) if b1, . . . , bq ∈ B and if B is a minimal prime ideal of B containing b1, . . . , bq – so by

assumption B 6= B – then

dim(B/B) ≥ dimB − q .

Examples (1) dim An = dim k[An] = dim k[T1, . . . , Tn] = n .

(2) dim SL(d, k) = d2 − 1 .

k[SL(d, k)] = k[T11, . . . , Tdd]/
(
det(Tij)− 1

)
.

Since the ideal generated by the polynomial det(Tij)− 1 is prime, Theorem 4, (ii) applies.

(3) Let X and Y be affine varieties of dimension m and n respectively. Then

dim(X × Y ) = m+ n ( = dimX + dimY ) .

Since X is an affine variety, k[X] is a domain. We denote by k(X) its field of fractions.

Now X × Y is again an affine variety since

k[X × Y ] ∼= k[X]⊗
k
k[Y ]

is a domain. We claim that the field of fractions of k[X]⊗
k
k[Y ] is simply k(X)⊗

k
k(Y ).

Let u1, . . . , um , v1, . . . , vn be transcendece bases for k(X) over k, k(Y) over k, respectively.

Then

u1 ⊗ 1, . . . , um ⊗ 1, 1⊗ v1, . . . , 1⊗ vn
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is a transcendence basis for k(X)⊗
k
k(Y ) over k.

(4) Let F be the free group on q free generators. Then R(F,d) is an affine variety of

dimension q(d2 − 1). We have already seen that

R(F, d) = SL(d, k)× . . .× SL(d, k)︸ ︷︷ ︸
q

.

So

dim R(F, d) = q(d2 − 1) .

Note in particular that

dim R(F, 2) = 3q .

(5) Let G be a group defined by q generators and n defining relations. Then

dim R(G, d) ≥ (q − n)(d2 − 1) .

So if q > n, then dim R(G, d) > 0 for d ≥ 2.

We compute dim R(G, d) by using (ii) of Theorem 4. Thus notice that

dim R(G, d) = dim k[R(G, d)] ,

and that if f1, . . . , fl define R(G,d) then

k[R(G, d)] ∼= k[Aqd2
]/
√

(f1, . . . , fl) .

Let B be a minimal prime ideal containing
√

(f1, . . . , fl). Since R(G, d) always contains

the trivial representation, i.e. the representation that maps every element of G to the

identity matrix, R(G, d) 6= ∅. So
√

(f1, . . . , fl) 6= k[Aqd2
]. Hence B exists and so we need

only estimate l and then apply Theorem 4, (ii). Suppose then that % ∈ R(G, d) and that in

the parametrization of R(G,d)

% 7−→ (M1, . . . ,Mq) .
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In order to ensure % is a representation of G in SL(d,k) we need first to make sure that

det Mi = 1 (i = 1, . . . , q) .

This requires q polynomial equations. In addition we need

rj(M1, . . . ,Mq) = 1 (j = 1, . . . , n)

for each of the n defining relations for G. On the face of it this entails d2 equations ensuring

that the coefficients of the matrix rj(M1, . . . ,Mq) are either 0 or 1. Since the determinant

of rj(M1, . . . ,Mq) is 1 we need only d2 − 1 of these equations – specifying the off-diagonal

entries are 0 together with all excepting one of the diagonal entries are 1 suffices. So

dim R(G, d) ≥ qd2 − q − n(d2 − 1) = (q − n)(d2 − 1) .

(6) Let

G = 〈 g1, . . . , gq ;
(
r(g1, . . . , gq)

)e = 1 〉

where r is a non-trivial cyclically reduced {g1, . . . , gq}- product and e > 2.

Assume that there exists a representation of G in SL (2,C) such that the image of

r(g1, . . . , gq) is of order e. Verify

dim R(G, 2) ≥ 3q − 1 .

Suppose now

ϕ : X −→ Y

is a morphism of affine algebraic sets.

Definition 14 The fibres of ϕ are the closed sets ϕ−1(y) (y ∈ Y ).

The following theorem is a useful tool in computing dimensions.
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Theorem 5 Let ϕ : X −→ Y be a morphism of affine varieties. If y ∈ ϕ(X) then each of

the irreducible components Z of ϕ−1(y) has dimension at least dimX − dimY :

dimZ ≥ dimX − dimY .

We shall have occasion to use Theorem 5 later.

7. Representations of the free group of rank two in SL(2,C)

I want now to look at a particular example, in some detail, namely the affine algebraic set

R(F, 2) of the free group F of rank 2 on a and b in SL(2,C).

We already know that

R(F, 2) = SL(2,C)× SL(2,C) .

So

dim R(F, 2) = 6 .

We consider now the map

ϕ : R(F, 2) −→ C3 given by % 7−→
(
tr%(a), tr%(b), tr%(ab)

)
.

Thinking of ϕ as a map on the affine algebraic set representing R(F, 2) it is clear that ϕ is a

polynomial map:

ϕ(a11, a12, a21, a22, b11, b12, b21, b22)

= ( a11 + a22 , b11 + b22 , a11b11 + a12b21 + a21b12 + a22b22 )

i.e. ϕ is a morphism from the affine algebraic set R(F, 2) to the affine algebraic set C3.

Lemma 15 ϕ is onto.
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Proof Let (z1, z2, z3) ∈ C3 and consider the quadratic equations

λ2 − z1λ+ 1 = 0 and µ2 − z2µ+ 1 = 0

for λ and µ. Notice that by Vieta

λ+ λ−1 = z1 and µ+ µ−1 = z2 .

Put

A =
(
λ 0
z λ−1

)
and B =

(
µ 1
0 µ−1

)
with z still to be determined. Then

tr A = z1 and tr B = z2 .

Notice also that det A = 1 = det B. Now compute

AB =
(
λµ λ
zµ z + λ−1µ−1

)
So

tr (AB) = λµ+ λ−1µ−1 + z .

Now put

z = z3 − λµ− λ−1µ−1 .

Let % ∈ R(F, 2) then be defined by

%(a) = A and %(b) = B .

Then

ϕ(%) = (z1, z2, z3) .

So this easily gives us

Theorem 6 Let

G = 〈 a, b ; al = bm = (ab)n = 1 〉 (l,m, n > 1) .
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Then a is of order l, b is of order m and ab is of order n.

In order to verify Theorem 6 we need the following

Lemma 16 Let M be of order 2 in SL(2,C). Then M = −1.

Proof M is conjugate to a matrix

N =
(
x 0
y x−1

)
.

Thus

N2 =
(

x2 0
y(x+ x−1) x−2

)
.

Hence x = ±1. If x = 1 we get a contradiction: N = 1 or N is of infinite order. So x = −1.

But y(x+ x−1) = 0. So y = 0. Thus M is conjugate to an element in the center of SL(2,C).

So M = −1. In fact

ζ
(
SL(2,C)

)
= {±1} .

Now to the proof of Theorem 6: Consider the group

H = 〈α, β ; α2l = β2m = (αβ)2n = 1 〉 .

Then there exists a representation % of H in SL(2,C) such that

tr %(α) = λ+ λ−1, tr %(β) = µ+ µ−1, tr %(αβ) = ν + ν−1

where

λ, µ, ν

are primitive 2l-th, 2m-th and 2n-th roots of 1. So by one of the exercises, %(α) is of order

2l, %(β) is of order 2m, %(αβ) is of order 2n. So it follows from Lemma 16 that the images

of %(α), %(β) and %(αβ) are of orders l, m and n in PSL(2,C) = SL(2,C)/{±1}. This then

provides us with a representation of G itself in PSL(2,C) in which the images of a, b and ab

have the right order. So a, b and ab do too, in G.
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I want to look again at Lemma 15. First let’s observe that the coordinate algebra of A = C3

is C[x, y, z], the polynomial algebra over C in three independent variables. Indeed we can take

x, y, z to be the coordinate functions

x(z1, z2, z3) = z1, y(z1, z2, z3) = z2, z(z1, z2, z3) = z3 .

Now the map

ϕ : R(F, 2) −→ A

is onto. Hence the homomorphism

ϕ? : C[A] −→ C[R(F, 2)]

is a monomorphism. Observe that

ϕ?(x)(%) = tr %(a) etc.

The next thing I would like to point out is that the image of C[A] under ϕ? contains also the

polynomial functions fw where

fw(%) = tr %(w) (w ∈ F ) .

Notice ϕ?(x) = fa etc.

Lemma 17 If w ∈ F then fw ∈ C[fa, fb, fab]
(

= ϕ?C[A]
)
.

What this means is that fw is a polynomial in fa, fb and fab i.e. there exists a unique

polynomial pw in these variables such that

tr %(w) = pw
(

tr %(a), tr %(b), tr %(ab)
)
.

In order to prove Lemma 17 we need the following ”trace identities” for SL(2,C):

Lemma 18

(i) tr 1 = 2 .

(ii) tr (AB) = tr A tr B − tr (AB−1).
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Proof By Cayley-Hamilton we have for B ∈ SL(2,C)

B2 − (tr B) · B + 1 = 0 .

Hence

B + B−1 = (tr B) · 1

(which we also could have verified directly). Now compute

tr (AB) + tr (AB−1) = tr
(
A(B + B−1)

)
= tr

(
A · (tr B) · 1

)
= tr A tr B .

Remarks (i) Inserting A= 1 in Lemma 18 yields tr B−1 = tr B.

(ii) Lemma 18, (ii) appears in formula (7) of R. Fricke, F.Klein: Vorlesungen über die Theorie

der automorphen Functionen, Band 1; Leipzig: Teubner 1897, p. 338.

Lemma 17 follows from Lemma 18 by induction.

Exercise 8 Compute fw for w = aba−1b−1.

If we denote ϕ?(x) again by x, ϕ?(y) by y and ϕ?(z) by z then

fw = pw(x, y, z)

is a polynomial in three independent variables x, y, z . Let

λ = α+ α−1 , µ = β + β−1

be complex numbers with

α2 6= 1 , β2 6= 1 .

T. Jorgensen has proved that if

w = ar1bs1 . . . arkbsk (k ≥ 1, ri, si > 0)
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then

qw(z) = pw(λ, µ, z)

is a polynomial of degree k and that the coefficient of zk is given by the formula

k∏
i=1

(
αri − α−ri
α− α−1

)(
βsi − β−si
β − β−1

)
.

Exercise 9 Prove Jorgensen’s formula.

Jorgensen’s formula makes it relatively easy to deduce the following

Lemma 19 Let F be a free group on a1, . . . , am. Then the following hold:

(i) If w ∈ F, w 6= 1, there exists a homomorphism

% : F −→ SL(2,C)

such that %(w) 6= 1 i.e. F is residually a subgroup of SL(2,C).

(ii) If w ∈ F, w 6= 1, and if n > 2 is a given integer then there exists a representation %

of F in SL(2,C) such that %(w) is of order n.

The proof of Lemma 19 is not difficult once one observes that F can be embedded in a free

group of rank two. It is left to the reader as an exercise.

It follows then from Lemma 19 that we have proved the following corollary which is a special

case of a theorem of Magnus, Karrass and Solitar.

Corollary 4 Suppose

G = 〈 a1, . . . , am ; wn = 1 〉 (n > 1)

is a group with a single defining relation, where w 6= 1 in the free group on a1, . . . , am.

Then w 6= 1 in G; indeed w is of order n in G.

The argument is analogous to that used in the proof of Theorem 6 and is left to the reader.
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Lemma 19 has other uses. For instance it can be used, under special circumstances, to deduce

a strengthened form of the following celebrated theorem of W. Magnus:

Theorem 7 (W. Magnus 1932) Let

G = 〈 a1, . . . , am ; r = 1 〉

be a group defined by a single relation. Suppose r is cyclically reduced and involves the

generator a1. Then

gp(a2, . . . , am)

is a free subgroup of G freely generated by a2, . . . , am.

Theorem 7 is sometimes referred to as the Freiheitssatz.

8. Affine algebraic sets of characters

I should point out that it is, of course, impossible to obtain any definitive information about a

finitely generated group G from its affine algebraic set R(G, d) of representations in SL(d, k)

without knowing something about G. We have already seen how successfully this tactic works

in the case of a free group of rank two where knowledge gained led to some non-trivial results

about various classes of groups. However we really did not use any of the theory we have been

developing, only some of the ideas behind the theory. In point of fact we used not R(G, d)

but a quotient variety of R(G, d) [with G free of rank two, d = 2 and k = C], namely C3.

We need to define and better understand what this quotient is in general. This is our next

objective. The full Culler-Shalen approach employing the Bass-Serre-Tits theory can then be

applied. This approach is still little understood and little utilized. But it is certain to be used

more in time to come. I want to describe one purely group-theoretic application of this method.

But first let me give a definition.

Definition 15 Let G be a group given by the finite presentation

G = 〈 x1, . . . , xm ; r1, . . . , rn 〉 .
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Then the deficiency of this presentation for G is denoted, somewhat ambiguously, by defG

and defined by defG = m − n.

Let us denote the subgroup of a group G generated by its squares by G2. Then G/G2 is

an abelian group all of whose elements have order dividing 2. Hence it can be viewed as a

vector space over the field of two elements. We denote the dimension of this vector space by

dim (G/G2).

The following theorem can be proved by the Culler-Shalen approach.

Theorem 8 Let G be a group given by a finite presentation of deficiency def G = δ.

Suppose

3δ − 3 > dim(G/G2) .

Then G is an amalgamated product where the amalgamated subgroup is of infinite index in

one factor and of index at least two in the other.

As a consequence of Theorem 8 we find

Corollary 5 Let G be a group defined by a single defining relation with at least four

generators. Then G is an amalgamated product of the kind described in Theorem 8.

Recently, in fact after these lectures had been given, Baumslag and Shalen proved that any

finitely presented group, with a presentation of deficiency at least 2, can be decomposed as an

amalgamated product of two groups where the amalgamated subgroup is of index at least 2 in

one factor and of index at least 3 in the other.

We need a bunch of definitions in order to be able to describe a quotient X(G, d) of R(G, d)

which we term the affine algebraic set of characters of G in SL(d, k). Here, as usual, G is a

finitely generated group.

Definition 16 Let %, σ be representations of G in SL(d, k). Then we term % and σ
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equivalent if there exists a matrix T ∈ SL(d, k) such that

%(g) = Tσ(g)T−1 (all g ∈ G) .

In general it is not possible to parametrize the equivalence classes of equivalent representations

of G by the points of an affine algebraic set. However, the semi-simple representations can so

be parametrized. This is our objective. We need to recall some related definitions and notions.

To this end, let G be a group, V a finite dimensional vector space over k, SL(V ) the group

of all invertible linear transformations of V of determinant 1 and % a representation of G in

V i.e. a homomorphism from G into SL(V ). We say V affords the representation %. If now

k[G] denotes the group algebra of G over k, then a k[G]-module V can be viewed as a vector

space V together with a representation % of G in V . Then two representations % and σ of

G in V and W are equivalent if the corresponding k[G]-modules V and W are isomorphic.

A representation % of G in V is termed irreducible if V is a simple k[G]-module i.e. has no

non-trivial submodules and V 6= 0. Then according to Schur’s Lemma, the k-algebra EndV

is a division ring. Since k is algebraically closed it follows that EndV is simply k. V is termed

semi-simple if it is a direct sum of simple k[G]-modules, in which case the corresponding

representation is termed semi-simple.

Now suppose % is a representation of G in V . Then think of V as a k[G]-module and let

0 = V0 < . . . < Vl = V

be a composition series for V . Put

Wi = Vi/Vi−1 (i = 1, . . . , l) .

By the Jordan-Hölder theorem the k[G]-modules Wi are unique up to isomorphism. Put

W = W1 ⊕ . . .⊕Wl .

Then W is again a k[G]-module, indeed a semi-simple k[G]-module. Let %ss denote the

underlying representation of G in W . Then %ss is unique up to equivalence.
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Suppose next that G is a finitely generated group, V a finite dimensional vector space of

dimension d over k. If we fix a basis for V we have already seen how to view the set R(G, d) of

all representations of G in V as an affine algebraic set. As before then we have the coordinate

algebra k[R(G, d)] of R(G, d). For each g ∈ G define

ĝ : R(G, d) −→ SL(V )

by

ĝ(%) = %(g) .

Since we have fixed a basis for V , we can view SL(V ) in terms of this basis. Then ĝ is readily

seen to be a morphism of affine algebraic sets i.e. is defined as usual by polynomial functions.

Next we define, for i = 0, . . . , d− 1 and g ∈ G, the functions

f ig : R(G, d) −→ k

as follows:
f ig(%) = ± coefficient of the degree i− term in the

characteristic polynomial of%(g) .

The remark above about ĝ shows that

f ig ∈ k[R(G, d)] (i = 0, . . . , d− 1, g ∈ G) . (4)

Let C be the k-subalgebra of k[R(G, d)] generated by these functions given by (4). We have

the following theorem of Procesi:

Theorem 9 C is an affine k-algebra.

Let X(G, d) be the affine algebraic set defined by C via the categorical equivalence between

affine algebraic sets and affine k-algebras and let

p : R(G, d) −→ X(G, d)

be the canonical projection of R(G, d) to X(G, d) that comes from the inclusion

C ↪→ k[R(G, d)] .
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Definition 17 X(G, d) is termed the affine algebraic set of characters of G in SL(V ).

The nature of X(G, d) is clarified by the next theorem, which is also due to Procesi.

Theorem 10 (i) p : R(G, d) −→ X(G, d) is onto.

(ii) p(%) = p(%ss) .

(iii) If % and σ are semi-simple representations of G in V then p(%) = p(σ) if and only if

% and σ are equivalent.

(iv) If % is irreducible, then p−1
(
p(%)

)
is the equivalence class of representations of G in

V equivalent to %.

It follows from Theorem 10 that X(G, d) can be thought of as an affine algebraic set which

parametrizes the equivalence classes of equivalent semi-simple representations of G in V .

Notice that in the case d = 2, the functions f ig (i = 0, 1) are particularly easy to describe:

f0
g (%) = det %(g) = 1 ;

f1
g (%) = tr %(g) .

Let

χ% : G −→ k be defined by g 7−→ tr %(g) .

We term χ% the character of %.

Now our affine k-algebra C is generated by the functions

f1
g1
, . . . , f1

gl
(l <∞)

for some choice of elements g1, . . . , gl ∈ G and

p(%) =
(

tr %(g1), . . . , tr %(gl)
)
.

This means that if % and σ are semi-simple representations of G then χ% = χσ if and only if %

and σ are equivalent. So X(G, 2) parametrizes the characters of the semi-simple representations

of G.



Combinatorial Group Theory: Chapter V 127

Exercise 10 If G has an irreducible representation in V, a vector space of dimension d,

prove that

dim X(G, d) ≥ (m− n)(d2 − 1) − (d2 − 1)

if G has a presentation on m generators and n defining relations. Hence deduce that if G

is free of rank m, that

dim X(G, d) ≥ (m− 1)(d2 − 1) .

In order to delve deeper into this theory we need more information about HNN extensions and

generalized free products. This is our next objective.



CHAPTER VI Generalized free products and HNN extensions

1. Applications

Recall that if a group G is an amalgamated product

G = A ∗
H
B

then

(i) G = gp(A ∪B), where A and B are subgroups of G;

(ii) A ∩ B = H;

(iii) every ”strictly alternating” A ∪B-product

x1 . . . xn 6= 1 (n > 0)

(so here xi ∈ (A − H) ∪ (B − H) and if xi ∈ A then xi+1 6∈ A and if xi ∈ B then

xi+1 6∈ B (i = 1, . . . , n− 1)).

The very definition of such an amalgamated product ensures that G has the following universal

mapping property: for every group X and every pair of homomorphisms

α : A −→ X , β : B −→ X
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such that

α
H = β

H
there exists a homomorphism

µ : G −→ X

which agrees with α on A and β on B.

In this chapter I want to give some examples of the way in which generalized free products can

be used.

In the early 1940s H. Hopf asked whether a finitely generated free group can be isomorphic to

any of its proper factor groups. He later did prove that this is impossible, but he left open the

corresponding question for finitely generated groups. We start out here with Graham Higman’s

answer to this question (G.Higman : A finitely related group with group with an isomorphic

proper factor group, J. London Math. Soc. 26, 59-61 (1951)).

Theorem 1 (G. Higman 1951) There exists a finitely presented group G which is isomorphic

to one of its proper factor groups.

Proof Let

A = 〈 a, s ; as = a2 〉 , B = 〈 b, t ; bt = b2 〉 .

Recall that A and B are simply semidirect products of the dyadic fractions, i.e. the subgroup

of Q consisting of all rational numbers of the form l
2m , by an infinite cyclic group where the

infinite cyclic group acts by multiplication by 2. In particular then a and b are of infinite order.

So we can form the amalgamated product

G = { A ∗B ; a = b }

(using the obvious notation). So we have

H = gp(a)
(

= gp(b)
)
.

Let

α : A −→ G
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be defined by

α : a 7−→ a2 , s 7−→ s

(i.e. α is conjugation by s followed by the inclusion of A in G).

Similarly define

β : B −→ G

by

β : b 7−→ b2 , t 7−→ t .

Notice α and β agree on H:

α : a 7−→ a2 , β : a ( = b ) 7−→ a2 .

So they can be extended to a homomorphism

µ : G −→ G .

Since

Gµ a2, s, t ,

it follows that

Gµ sa2s−1 = a .

Thus

Gµ = G .

Now consider the element

g = sas−1︸ ︷︷ ︸ tb−1t−1︸ ︷︷ ︸ .
If we gather sas−1 together and tb−1t−1 together, g becomes a strictly alternating A ∪ B-

product. So

g 6= 1 .

But observe that

gµ = sa2s−1tb−2t−1 = ab−1 = 1 .

So

G/ kerµ ∼= G

with kerµ 6= 1.
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Next let me turn to a theorem of G. Higman, B.H. Neumann and Hanna Neumann proved in

1949.

Theorem 2 Every countable group can be embedded in a 2-generator group.

Proof Let G be a countable group. We enumerate the elements of G as an infinite sequence,

using repetitions of the elements of G if needed:

G = { g0 = 1 , g1, g2, . . . }

Let now

U = 〈u, v 〉 B = 〈 a, b 〉

be two free groups of rank two. Notice that the elements

u , vuv−1 , v2uv−2 , . . .

freely generate a free subgroup of U and similarly for

a , bab−1 , b2ab−2 , . . .

in B. Now let A be the free product of G and U :

A = G ∗ U .

Notice that the elements

g0u , g1vuv
−1 , g2v

2uv−2 , . . .

freely generate a free subgroup of A. To see this observe that every non-empty reduced product

of these elements is 6= 1 since its projection onto U has this property. Put

H = gp( g0u , g1vuv
−1 , g2v

2uv−2 , . . . )

and

K = gp( a , bab−1 , b2ab−2 , . . . ) .

Now H and K are both free of countably infinite rank. So we can form the amalgamated

product

P = { A ∗B ; H = K }
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where the equality H = K is defined by identifying the elements

giv
iuv−i with biab−i (i = 0, 1, 2, . . .) .

So A and B can be viewed as subgroups of P and

g0u = a , g1vuv
−1 = bab−1 , g2v

2uv−2 = b2ab−2 , . . .

in P . But this means

P = gp(u, v, a, b) .

Hence

P = gp(v, a, b)

since g0 = 1 and therefore u = a.

Now observe that v and a freely generate a free group of rank two, a and b freely generate

a free group of rank two. Form the HNN extension E with base P , associated subgroups

gp(v, a), gp(a, b) and associating isomorphism

ϕ : v 7−→ a , a 7−→ b

and stable letter t:

E = 〈 P, t ; tvt−1 = a , tat−1 = b 〉 .

Notice

E = gp(t, v)

is the desired 2-generator group.

2. Back to basics

We need to think again about amalgamated products and HNN extensions.

Suppose then that
G = A ∗

H
B
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is an amalgamated product. Here we adopt the point of view as before that

A ≤ G , B ≤ G , A ∩B = H .

Let us choose a left transversal S of H in A and a left transversal T of H in B. Then every

element g ∈ G can be expressed in the form

g = u1 . . . unh (n ≥ 0) (1)

where

ui ∈ (S ∪ T )− {1} (i = 1, . . . , n) , h ∈ H

and successive u’s come from different transversals. We define the length l(g) of g by

l(g) = n

and term (1) the normal form of g. The following lemma justifies these notions.

Lemma 1 Let
G = A ∗

H
B .

Then the following hold:

(i) If g ∈ G−H is written as a strictly alternating A ∪B-product

g = x1 . . . xn (n > 0) (2)

then n depends only on g, i.e. any two such representations for g have the same number

of factors.

(ii) If S and T are left transversals of H in A and B respectively, then the normal form

(1) for g ∈ G is unique.

(iii) If g is given by (2), then l(g) = n .

(iv) l(g) = 0 if and only if g ∈ H.

The proof of Lemma 1 rests on the fact that in an amalgamated product, strictly alternating

products of elements are 6= 1 and is left to the listener.

Similar remarks hold also in the case of an amalgamated product with more than two factors.

Returning to the amalgamated product G of Lemma 1, let us term the strictly alternating
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product (2) cyclically reduced if either n = 1 or if n > 1, if x1 and xn come from different

factors A,B. Since this is a property of g itself we say g is cyclically reduced.

Lemma 2 Let
G = A ∗

H
B .

Then every element of G which is cyclically reduced and of length at least two is of infinite

order.

Proof Let g ∈ G be cyclically reduced and of length at least two. Then g can be written in

strictly alternating form

g = x1 . . . xn (n ≥ 2) .

Then for every m > 0,

gm = x1 . . . xnx1 . . . xn . . . x1 . . . xn . (3)

Now g is cyclically reduced. Hence x1 and xn lie in different factors. It follows from (3) that

gm is also cyclically reduced and of length mn ≥ 2. So

gm 6= 1

(indeed gm does not lie even in H).

Corollary 1 In an amalgamated product every element of finite order is conjugate to an

element in one of the factors. Hence an amalgamated product of torsion-free groups is

torsion-free.

We recall now Corollary 4 of Chapter III as Lemma 3 and, for completeness, give a proof of it.

Lemma 3 Let G = ∗
H
i∈I

Gi, let Fi ≤ Gi (i ∈ I) be such that

Fi ∩ H = K = Fj ∩ H (i, j ∈ I) .

Then

P = gp

(⋃
i∈I

Fi

)
= ∗

K
i∈I

Fi .
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Proof Every strictly alternating
⋃
i∈I Fi-product (relative to K) is 6= 1 in P because this is

true in G!

It is time to turn our attention to HNN extensions, a special case of which was introduced

in Chapter IV. To this end let B = 〈X;R 〉 be a presentation of a given group B. We then

define an HNN extension E with base B, associated subgroups Hi, Ki (i ∈ I), associating

isomorphisms ϕi : Hi
∼−→ Ki (i ∈ I) and stable letters ti (i ∈ I) to be the group

E = 〈 X∪̇{ti
i ∈ I} ; R ∪ {tiht−1

i (hϕi)
−1h ∈ Hi, i ∈ I} 〉 .

As we have already noted previously, groups given by generators and defining relations can be

difficult to unravel. Our objective now is to show that E can be reasonably well understood by

finiding an isomorphic copy of E in a suitably chosen amalgamated product. To this end let

U = B ∗ 〈ui
i ∈ I〉 , V = B ∗ 〈vi

i ∈ I〉 .
Observe that the subgroup C of U generated by B together with the conjugates uiHiu

−1
i of

the Hi (i ∈ I) is their free product:

C = gp
(
B , uiHiu

−1
i (i ∈ I)

)
= B ∗ ∗

i∈I
uiHiu

−1
i .

Similarly in V we find

D = gp
(
B , v−1

i Kivi (i ∈ I)
)

= B ∗ ∗
i∈I

v−1
i Kivi .

There is an obvious isomorphism

ϕ : C
∼−→ D

which is the identity on B and maps uiHiu
−1
i onto v−1

i Kivi as prescribed by ϕi. So we can

form the generalized free product

G = { U ∗ V ; C
ϕ
= D }

using ϕ to identify C and D. We understand G well since it is an amalgamated product. Now

this means, in particular, that B embeds into G and if we set

t̃i = viui (i ∈ I)
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then

t̃iht̃i
−1

= hϕi (h ∈ Hi, i ∈ I) .

We claim that E is isomorphic to the subgroup Ẽ of G defined by

Ẽ = gp
(
B , t̃i (i ∈ I)

)
.

This is easy enough to check in a number of ways. For example, by W. Dyck we are assured

of a homomorphism

α : E −→ Ẽ

mapping B identically to B and ti to t̃i (i ∈ I). On the other hand we can define a homo-

morphism γ of G onto E by first defining γ on U and V as follows:

γ
B = id , γ(ui) = 1 (i ∈ I) ,

γ
B = id , γ(vi) = ti (i ∈ I) .

One checks that γ has the same effect on C and D to verify it continues to a homomorphism

of G onto E. Notice that if we put

β = γ
Ẽ

then α and β are mutually inverse, as required. This then permits us to deduce what we have

already assumed about HNN extensions, plus a little more, which we record here as

Theorem 3 Let

E = 〈 B , ti (i ∈ I) ; tiHit
−1
i = Ki (i ∈ I) 〉

be an HNN extension. Then

(i) the canonical homomorphism of B into E is a monomorphism;

(ii) if

w = b0t
ε1
j1
b1t

ε2
j2
. . . tεnjn bn (n > 0)

where

j1, . . . , jn ∈ I , b0, . . . , bn ∈ B , ε1, . . . , εn ∈ {1,−1}

and if

w = 1
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then there exists a ”pinch” in w i.e. for some m, 1 ≤ m ≤ n− 1, either

εm = 1 , bm ∈ Hjm and jm+1 = jm , εm+1 = −1

or else

εm = −1 , bm ∈ Kjm and jm+1 = jm , εm+1 = 1 .

Part (i) of Theorem 3 goes back to Higman, B.H. Neumann and Hanna Neumann in 1949,

while (ii) is an observation due to J.L. Britton and is usually referred to as Britton’s Lemma. It

follows immediately from our reconstruction of E as a subgroup of the generalized free product

G.

Notice that E contains elements of finite order only if B does.

(Prove!)

3. More applications

Theorem 4 (B.H.Neumann) There exist continuously many non-isomorphic 2-generator

groups.

Proof Let pi denote the i-th prime and let C(i) denote the cyclic group of order pi. For each

increasing sequence
(
σ(i)

)
i=1,2,...

of positive integers define

Aσ =
∞⊕
i=1

C
(
σ(i)

)
,

the direct sum of the cyclic groups of order pσ(i). Notice that

Aσ ∼= Aτ if and only if σ = τ ,

since σ 6= τ implies Aσ and Aτ do not have the same finite subgroups. Now embed each Aσ in

a 2-generator group Gσ, using the method in 1. Then it follows from the information obtained
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in 2 that the elements of finite order are precisely those which are conjugate to elements in

Aσ. So

Gσ ∼= Gτ ifandonlyif σ = τ .

Now the cardinality of such sequences
(
σ(i)

)
i=1,2,...

is that of the continuum. This proves

Theorem 4.

Now recall that the property M of finitely presented groups is termed a Markov property if

it is preserved under isomorphism, if there exists a finitely presented group G1 with M and

a finitely presented group G2 which cannot be embedded in any finitely presented group with

M.

My objective is to give Rabin’s proof of the following theorem of Adyan (see the book by R.C.

Lyndon and Paul E. Schupp: Combinatorial Group Theory, Ergebnisse der Mathematik und

ihrer Grenzgebiete 89, Springer-Verlag, berlin-Heidelberg- New York (1977)), which I mentioned

at the beginning of this course. We have, however, to assume here the existence of a finitely

presented group with an insoluble word problem.

Theorem 5 (Adyan) Let M be a Markov property. Then there is no algorithm which

decides whether or not any finitely presented group has M.

Proof Let U be a finitely presented group with an insoluble word problem. Put

U0 = U ∗ G2

where G2 is the finitely presented group which cannot be embedded in any finitely presented

group withM. U0 is finitely presented since U and G2 are; thus we can find a finite presentation

for U0:

U0 = 〈 x1, . . . , xm ; r1, . . . , rn 〉 .

Notice that U0 also has an insoluble word problem since U does (and U is a subgroup of U0).

We will construct for each w = w(x1, . . . , xm) in U0 a finitely presented group Gw with the

following property:

Gw has M if and only if w = 1.
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This then suffices to prove the theorem since U0 has an insoluble word problem.

The construction of Gw is carried out in stages.

First we form

U1 = U0 ∗ 〈y0〉

the free product of U0 and the infinite cyclic group on y0. Notice that if we put

yi = y0xi (i = 1, . . . ,m)

then the yi are all of infinite order and

U1 = gp(y0, y1, . . . , ym) .

Notice also that if w 6= 1, then [w, y0] 6= 1; indeed [w, y0] is of infinite order (it is cyclically

reduced and of length at least two). Now form an HNN extension U2 with base U1, associated

subgroups gp(yi), gp(y2
i ) (i = 0, . . . ,m) and stable letters t0, . . . , tm as follows:

U2 = 〈U1, t0, . . . , tm ; t0y0t
−1
0 = y2

0 , . . . , tmymt
−1
m = y2

m 〉 .

Notice that by Britton’s Lemma H = gp(t0, . . . , tm) is free on t0, . . . , tm and hence

ti 7−→ t2i (i = 0, . . . ,m)

defines an isomorphism from H onto K = gp(t20, . . . , t
2
m). So we can form another HNN

extension U3:

U3 = 〈U2, z ; ztiz−1 = t2i (i = 0, . . . ,m) 〉 .

Next let V1 be the free group on r. Form the HNN extension

V2 = 〈V1, s ; srs−1 = r2 〉 .

Again s is of infinite order. So we can form another HNN extension V3:

V3 = 〈V2, t ; tst−1 = s2 〉 .

Now a major move. Put

W = { U3 ∗ V3 ; r = z , t = [w, y0] } .
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Observe that if w 6= 1, then in U3, by Britton’s Lemma

gp(z, [w, y0]) is free on z, [w, y0].

Again in V3

gp(r, t) is free on r, t.

So if w 6= 1, W is an amalgamated product, where the amalgamated subgroup is a free group

of rank two, and therefore containes G2. This means that

W does not have M if w 6= 1 !

Let’s see what happens if w = 1. Tracing our way back through the construction we find

[w, y0] = 1 =⇒ t = 1 =⇒ s = 1 =⇒ r = 1 =⇒ z = 1 =⇒ t0 = . . . = tm = 1

=⇒ y0 = . . . = ym = 1.

In other words

W = {1} if w = 1 !

Now put Gw = W ∗G1.

We have therefore proved that Gw has M if w = 1 (Gw = G1 in this case) and, if w 6= 1,

Gw ≥W and hence does not have M i.e. we have proved Adyan’s Theorem.

It is worth noting that in the case where M is the property of being of order 1, G1 = 1 and

we have concocted a family of finitely presented groups Gw such that Gw = 1 if and only if

w = 1, where again w ranges over the words ofa finitely presented group with an unsolvable

word problem! This class of groups is tailor-made for obtaining further negative algorithmic

examples.

The following exercise will be of use in the proof of the next theorem.

Exercise 1 Let G = A ∗B (A 6= 1 6= B). Prove the following:

(i) there exists an element g ∈ G with infinite cyclic centralizer;

(ii) ζG = 1;

(iii) G is directly indecomposable [use (i)].



Combinatorial Group Theory: Chapter VI 141

The following theorem is a simple application of the existence of the groups Gw.

Theorem 6 There is no algorithm which decides whether or not any finitely presented

group

(i) is isomorphic to its direct square;

(ii) has an infinite automorphism group;

(iii) is a non-trivial free product;

(iv) is centreless;

(v) has an infinitely generated subgroup.

I have concocted these remarks somewhat at random. The listener might want to demonstrate

one of her or his favourite problem is algorithmically insoluble as a test of their skill.

To prove (i) for instance, note Gw ∗ Gw is isomorphic to its own direct square if and only if

Gw = 1 by (iii) of the Exercise. The other parts are left as an exercise to the listener.

Here is one further illustration of this technique. In order to explain let me remind you of some

definitions. Suppose G is any group. Then (see the book by P. J. Hilton and U. Stammbach:

A course in Homological Algebra, Graduate Texts in Mathematics 4, Springer-Verlag, New

York-Heidelberg-Berlin (1971)) define

H1(G,Z) = Gab .

H1(G,Z) is the first homology group of G with coefficients in the additive group Z of integers.

It is only one of a whole sequence, starting with

H0(G,Z) = Z , H1(G,Z) , H2(G,Z) , . . . .

The one which is of most direct interest in the study of finitely presented groups is H2(G,Z)

which has a direct group-theoretic definition, like H1(G,Z). Indeed let us express G in the

form

G ∼= F/R ,

where F is a free group. Then

H2(G,Z) = (F ′ ∩R)/[F,R] .
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This description of H2(G,Z) seems to depend on the ”presentation” F/R of G. However here

is an exercise for those who do not know about these things:

Exercise 2 (i) Use Tietze transformations to prove that if

G ∼= F/R ∼= E/S

where E and F are free, then

(F ′ ∩R)/[F,R] ∼= (E′ ∩ S)/[E,S] .

(ii) Prove H2(G,Z) = 0 if G is free.

We have the following simple

Lemma 4 Suppose G is finitely presented. Then H2(G,Z) is finitely generated, indeed if

G = 〈 x1, . . . , xm ; r1, . . . , rn 〉 (m,n <∞)

then H2(G,Z) is an abelian group that can be generated by n elements and hence is finitely

generated.

Proof We write

G ∼= F/R

where

F = 〈x1, . . . , xm 〉

and

R = gp
F

(r1, . . . , rn) .

Then

R/[F,R] = gp
(
r1[F,R] , . . . , rn[F,R]

)
.

Hence (F ′ ∩ R)/[F,R] can be generated by n elements, by the basis theorem for finitely

generated abelian groups.
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Thus to each finitely presented group G we can associate two finitely generated abelian groups,

H1(G,Z) and H2(G,Z). The first of these is computable, by the basis theorem for finitely gen-

erated abelian groups. Somewhat surprisingly, the second of them is not effectively calculable.

This result is due to Cameron Gordon.

It is easy enough to deduce this fact by making use of the groups Gw. First of all notice that

each Gw can be generated by a fixed number of generators and relations:

Gw = 〈 x1, . . . , xm ; r1, . . . , rn 〉 .

Of course these presentations depend on w. Now form the free product of Gw with the free

group on s and t:

Ew = Gw ∗ 〈s, t〉 .

Next observe that if w 6= 1, then

Hw = gp
(

[w, t] , s[w, t]s−1 , . . . , sα[w, t]s−α
)

is free of rank α+ 1 where we here choose

α = 2m+ 4 .

Let Ew be an isomorphic copy of Ew and let Hw be the corresponding copy of Hw in Ew.

Then form the amalgamated product

Pw =
{
Ew ∗ Ew ; Hw = Hw

}
.

Now there is a sequence, called the Mayer-Vietoris sequence, which links the homology groups

of Pw in a long exact sequence, part of which looks like this:

. . . −→ H2(Pw,Z) −→ H1(Hw,Z)
γ−→ H1(Ew,Z)⊕H1(Ew,Z) −→ . . . .

Now H1(Hw,Z) is free abelian of rank 2m+ 5 and H1(Ew,Z)⊕H1(Ew,Z) can be generated

by 2m+ 4 elements. Hence ker γ 6= 0. This means that H2(Pw,Z) 6= 0. This is all predicated

on the assumption that w 6= 1. If w = 1, then Gw = 1 and Pw is free. Hence H2(Pw,Z) = 0

by the Exercise. Thus we have proved:
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Theorem 7 There is no algorithm whereby one can decide whether any finitely presented

group has zero second integral homology group.

Here is one last application of HNN extensions, providing us with perhaps the simplest of

non-hopfian groups.

Theorem 8 The group

G = 〈 a, t ; t−1a2t = a3 〉

is non-hopfian.

Proof G is of course an HNN extension with a single stable letter t and an infinite cyclic

base 〈a〉. Consider the map

ϕ : a 7−→ a2 , t 7−→ t .

Since

t−1(a2)
2
t = (a2)

3

it follows from W. Dyck’s Lemma that ϕ defines a homomorphism, again denoted ϕ, of G into

G. Observe that

G = gp( a2, t ) .

So ϕ is onto. Now consider

g = (a−1t−1at)
2
a−1 = a−1t−1ata−1t−1ata−1 .

There is no pinch in g. So, by Britton’s Lemma, g 6= 1. But

gϕ = (a−2t−1a2t)
2
a−2 = a2a−2 = 1 .

So G ∼= G/ kerϕ is non-hopfian.

This theorem is due to G. Baumslag and D. Solitar (see the references cited in the book by

Lyndon and Schupp referenced earlier). Amalgamated products permit the construction of a

good many finitely generated groups which are not finitely presented.
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Theorem 9 Let A and B be finitely presented groups. Then

G = A ∗
H
B

is finitely presented if and only if H is finitely generated.

Proof One way is obvious. To prove that G is not finitely presented if H is not finitely

generated, let

A = 〈X;R 〉 , B = 〈Y ;S 〉

be finite presentations for A and B. Suppose that

H = gp
(
h1(x˜ ), h2(x˜ ), . . . )

is an infinite set of generators for H. Now

hi(x˜ ) = ki(y˜) (i = 1, 2, . . .) .

So G can be presented in the form

G = 〈 X ∪ Y ; R ∪ S ∪ {hi(x˜ )ki(y˜)−1  i = 1, 2, . . . } 〉 .

Since X ∪Y is finite, by Neumann’s theorem, if G is finitely presented we can present it in the

form
G = 〈 X ∪ Y ; R ∪ S ∪ {hi(x˜ )ki(y˜)−1  i = 1, . . . , n } 〉 (4)

for some positive integer n. Now observe that

H 6= gp
(
h1(x˜ ), . . . , hn(x˜ )

)
=: H1 .

So we can choose h(x˜ ) ∈ H −H1. Thus if k(y˜) is the corresponding element in B to h(x˜ ),

then
k(y˜) 6∈ K1 = gp

(
k1(y˜), . . . , kn(y˜)

)
.

Let us think of (4) as presenting a group which is supposed to be G but is perhaps more safely

denoted by G̃:

G̃ = 〈 X ∪ Y ; R ∪ S ∪ {hi(x˜ )ki(y˜)−1  i = 1, . . . , n } 〉 .

Now G̃ is, by its very presentation, an amalgamated product:

G̃ = {A ∗B ; H1 = K1 } .
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Now observe that
h(x˜ )k(y˜)−1 6= 1

in G̃ because it is a strictly alternating product! But G̃ is supposed to be G given by a finite

presentation. Since
h(x˜ ) = k(y˜)

in G, this contradicts this supposition. So G is not finitely presented.

Exercise 3 Suppose E = 〈B, t ; tHt−1 = K 〉 is an HNN extension with finitely presented

base B. Prove E is finitely presented if and only if H is finitely generated.

Examples (1) If F = 〈 a, b 〉 then G = F ∗
F ′
F is not finitely presented.

(2) A = 〈 a, s ; as = a2 〉 , B = 〈 b, t ; bt = b2 〉 then G = {A ∗B ; gp
A

(a) = gp
B

(b) }
is not finitely presented.

As one last illustration, here is an example of a finitely presented group with a finitely generated

subgroup which is not fintely presented.

Example Let Fi = 〈ai; bi〉 (i = 1, 2) be free of rank two. Consider

D = F1 × F2

the direct product of F1 and F2. Then D is clearly finitely presented. We claim that

H = gp
(
α = (a1, a2) , β = (b1, 1) , γ = (1, b2)

)
is not finitely presented. To see this let’s find a presentation for H:

H = 〈α, β, γ ; [β, γα
i

] = 1 (i ∈ Z) 〉 .

Suppose H were finitely presented. Then by Neumann’s theorem it has a presentation of

the form

H = 〈α, β, γ ; [βα
j

, γα
i

] = 1 (−N ≤ i, j ≤ N) 〉

for some positive integer N. We compute now a presentation for

K = gp
H

(β, γ) .
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Notice H/K = 〈αK〉 is infinite cyclic. So we have a ready-made Schreier transversal

S = {αi
i ∈ Z}. Put

βi = αiβα−i , γi = αiγα−i (i ∈ Z);

X = gp(β−N , . . . , βN ) , Y = gp(γ−N , . . . , γN ) .

Then in H, X and Y are free on the exhibited generators. Indeed

A = gp(X,Y ) = X × Y .

Similarly

B = gp(αXα−1, αY α−1 ) = αXα−1 × αY α−1 .

Now let’s put then these two groups together:

gp(A,B) = { A ∗B ; β−N+1 = β−N+1 , . . . , βN = β
N
, γ−N+1 = γ−N+1 , . . . , γN = γ

N
} .

But then [β−N , γN+1 ] 6= 1. This is false in H. So H is not finitely pre-

sented.

4. Some word, conjugacy and isomorphism problems

Definition 1 Let A be a group given by a finite presentation, H a finitely generated subgroup

of A given by a finite set of generators, each of which comes expressed in terms of the given

generators of A. Then we say that the occurence problem or extended word problem for A

relative to H is solvable if there exists an algorithm such that for each w ∈ A we can decide

whether or not w ∈ H and in this case exhibit w as a word in the generators of H.

Proposition 1 Suppose

G = { A ∗B ; H
ϕ
= K }

is an amalgamated product in which A and B are given by finite presentations and H and K

are finitely generated subgroups given respectively by means of generators of A and B and

that ϕ is defined by sending each generator of H to the correspondingly indexed generator



Combinatorial Group Theory: Chapter VI 148

of K. If the extended word problem for A relative to H and also that for B relative to K are

both solvable, then the word problem for G is solvable provided it is solvable for H relative

to its given generators.

The proof rests only on the fact that a strictly alternating product in G is different from 1 and

is left to the listener.

There are two classes of groups for which the extended word problem is solvable. In order to

explain, we need another definition.

Definition 2 Let A be a finitely presented group given by an explicit finite presentation, H

a finitely generated subgroup of A given explicitly by a finite set of generators. We term H

finitely separable from H if for each w ∈ A, w 6∈ H, there exists a normal subgroup N of

A of finite index such that

w 6∈ NH .

Lemma 5 Let A be a finitely presented group, H a finitely generated subgroup of A which

is finitely separable from A. Then the extended word problem for A relative to H is solvable

provided A has a solvable word problem.

Proof We simply list the finite quotients of A and also list the elements of H (as products

of the given generators of H). Then for any given w ∈ A we will either find that the image of

w 6∈ image of H or else we find w ∈ H, properly expressed.

Lemma 6 (Toh) Let A be a finitely generated nilpotent group, H a finitely generated

subgroup of A. Then H is finitely separable from A.

The proof is by induction of A and is left to the listener.

Lemma 7 Let A be a finitely generated free group, H a finitely generated subgroup of A.
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Then H is finitely separable from A.

Proof By Marshall Hall’s theorem, there exists a subgroup J of A of finite index such that H

is a free factor of J . Let w ∈ A, w 6∈ J . Since J is of finite index in A, there exists a normal

subgroup N of A contained in J of finite index in A. Then

w 6∈ NH .

So we are half-way to proving H finitely separable from A.

Suppose next w ∈ J, w 6∈ H. Now

J = H ∗ L .

Choose now normal subgroups H1 of H and L1 of L both of finite index – H and L are free

and hence residually finite – such that if J is the canonical image

J = H/H1 ∗ L/L1

of J , then the image of w, say w, satisfies

w 6∈ H = H/H1 .

Notice J is the free product of the two finite groups H and L = L/L1. Using the Reidemeister-

Schreier method it is not hard to see that the kernel K of the homomorphism of J onto H×L
is free. Thus J is a finite extension of a free group and hence residually finite. But H is a

finite subgroup of J . So we can find a normal subgroup S of finite index in J such that

w 6∈ S H .

Pulling this information back into J yields a normal subgroup S of finite index in J such that

w 6∈ SH

Now S is of finite index in J , hence of finite index in A. so the conjugates of S intersect in a

subgroup T of S which is of finite index in A and normal in A. But notice

w 6∈ TH
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since

TH ≤ SH .

So we have proved the

Theorem 10 The free product of two finitely generated free groups (or two finitely gener-

ated nilpotent groups) with a finitely generated subgroup amalgamated has a solvable word

problem.

Corollary 2 (Dehn) The fundamental groups of closed two-dimensional surfaces have

solvable word problem.

In fact these fundamental groups are even residually finite and so it follows again that they

have solvable word problem.



CHAPTER VII Groups acting on trees

1. Basic definitions

The exposition in this chapter is based on the book by Jean-Pierre Serre: Trees, Translated

from the French by John Stillwell, Springer-Verlag, Berlin-Heidelberg-New York (1980). The

reader should consult this work for more details, if needed.

Definition 1 A graph X is a pair of sets, V = V (X) 6= ∅ and E = E(X), termed the

vertices and edges of X, equipped with three maps

o : E −→ V , t : E −→ V , : E −→ E

satisfying the following conditions: if e ∈ E, then

(i) e 6= e and e = e (i.e. the map is of order two and is fixed point free);

(ii) o(e) = t(e) .

We term t(e) the terminus of e, o(e) its origin and e the inverse of e. Sometimes we refer to

o(e) and t(e) as the extremities of e. It is possible for o(e) = t(e) and in this case e is termed

a loop. Two distinct vertices are termed adjacent if they are the extremities of some edge.
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Graphs are often represented by diagrams in the plane, the vertices by points and the edges by

line segments joining its extremities. We usually affix to such line segments an arrow, whose

direction emanates from the origin of the edge and terminates in its origin. We customarily omit

one of e, e. Usually diagrams are drawn in such a way that the graphs can be reconstructed

from them without ambiguity.

We take for granted the usual notions involving morphisms of graphs, with the automorphism

group AutX of the graph X consisting of the invertible morphisms X −→ X using composition

as the binary operation.

Definition 2 A group G acts on a graph X if it comes equipped with a homomorphism

ϕ : G −→ AutX .

We often denote the image of v ∈ V (X) under the action of g ∈ G by gv etc.

Examples (1) Let G be a group, S a set of generators of G. We define the Cayley graph

X = X(G,S) of G relative to S by

(i) V (X) = G;

(ii) E(X) is the disjoint union of the sets G× S and S ×G;

(iii) o(g, s) = g ; t(g, s) = gs ; (g, s) = (s, g) .

Notice that G acts on X(G,S) by left multiplication:

(2) G = {1}. Then X
(
G, {1}

)
is a loop:
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Notice that despite the notation, we have the inverse edge (1, 1) which is different from

(1, 1).

(3) G = 〈a; an = 1〉 (n ∈ {1, 2, . . .}) , S = {a}. Then X(G,S) is what is often referred

to as a circuit of length n:

(4) G = 〈a〉 , S = {a} . Then X(G,S) can be drawn as follows:

•
a−1

(a−1,a)•
1

(1,a) •
a

(a,a) •
a2

(5)

(6) A point: •

(7) A segment: • •
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(8) A path of length n: Pn •
0

•
1

•
2

•
n−1

•
n

(n ∈ {0, 1, 2, . . .}) .

Definition 3 Let X be a graph. A morphism f : Pn −→ X is again termed a path (of

length n). We term f(0) and f(n) the extremities of f in X and say f goes from f(0) to

f(n). The path f is called a closed path if f(0) = f(n).

Definition 4 A graph is said to be connected if any two vertices are the extremities of at

least one path. The maximal connected subgraphs (under inclusion) are called the connected

components of a given graph.

A path f : Pn −→ X can be identified as a succession of edges

e1, . . . , en

where

ei = f ( •
i−1

•
i
) (i = 1, . . . , n) .

A consecutive pair of edges ei, ei+1 is termed a backtracking if ei+1 = ei. A path f with

extremities P and Q is termed a geodesic if it is of minimal length i.e. any path with the same

extremities has at least as great a length.

Definition 5 A graph X is termed a tree if it is connected and every closed path in X of

positive length contains a backtracking.

Examples of trees

(1)

(2) • • • • an infinite path.
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A rich source of trees comes from graphs of free groups. Here is a simple lemma which clarifies

the kinds of Cayley graphs one can get.

Lemma 1 Let G be a group, S a set of generators of G, X = X(G,S) the Cayley graph

of G relative to S. Then the following hold:

(i) X is connected;

(ii) X contains a loop if and only if 1 ∈ S;

(iii) G acts on X without inversion i.e. ge 6= e (e ∈ E(X), g ∈ G).

The proof of Lemma 1 is straightforward. The one feature I want to emphasize is that of an

inversion, which plays a crucial role in constructing quotients by group actions. I will return to

this in a moment. But first let me look at another example.

Example Let G be free on x,y, let S = {x, y} and let X = X(G,S). Then we claim X is

a tree. To begin with, of course, by Lemma 1, X is connected and contains no loops and G

acts on X without inversion. Here is an attempt to draw X in the plane:
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It is not hard to see X is a tree, for suppose we have a closed path in X of length n > 0,

beginning and ending at w. Then it can be viewed as a succession of edges

e1, . . . , en

where

o(e1) = w , t(en) = w .

Now notice

t(e1) = wz1 = o(e2) , t(e2) = wz1z2 = o(e3) , . . . , t(en) = wz1 . . . zn .

Here each zi ∈ {x, y, x−1, y−1}. Since t(en) = w,

z1 . . . zn = 1 .

So z1 . . . zn is not a reduced product i.e. for some i,

zizi+1 = 1 .

This means that the given closed path in X contains a backtracking, as required.

The relevance of groups acting without inversion on a graph is clarified next by Lemma 2. But

first we need some additional notions.

Definition 6 An orientation of a graph X is a decomposition

E = E+ ∪ E−

of E = E(X) into two disjoint sets E+ and E− such that

E+ = E− , E− = E+ .

Every graph has such an orientation since the map is of order two and is fixed point free.

Thus every orbit has two elements and we can take for E+ any set of representatives of these
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orbits and for E− the complementary set. Sometimes we then refer to the edges in E+ as

positive edges, those in E− as negative ones. A graph X with a prescribed orientation is

usually referred to as an oriented graph. Most of our diagrams represent oriented graphs.

Definition 7 A morphism of graphs f : X −→ X ′ is termed orientation preserving if there

exists orientations of X and X ′ preserved by f i.e. if there exists an orientation

E(X) = E+(X) ∪ E−(X)

of X and an orientation

E(X ′) = E+(X ′) ∪ E−(X ′)

of X ′ such that

f
(
E+(X)

)
⊆ E+(X ′) , f

(
E−(X)

)
⊆ E−(X ′) .

Lemma 2 Suppose G acts on a graph X. Then G acts without inversion if and only if G

is orientation preserving i.e. if there exists an orientation E = E+ ∪ E− of X preserved

by G.

Proof Decompose E into disjoint G-orbits:

E =
•⋃
〈e〉

where

〈e〉 = Ge and 〈v〉 = Gv (v ∈ V (X)) .

If G acts without inversion, acts as an involution on the orbits 〈e〉 and we can therefore

partition E into E = E+ ∪ E− in such a way that

E+ =
⋃
〈e〉 , E− =

⋃
〈f〉 .

The converse is an immediate consequence of this definition.
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Definition 8 Let G act without inversion on X. Define the quotient graph G\X as follows.

First

o〈e〉 = 〈o(e)〉 , t〈e〉 = 〈t(e)〉 , 〈e〉 = 〈e〉 .

The point here is that makes sense since G acts without inversion on X.

The map

f : X −→ G\X

defined by

f : e 7−→ 〈e〉 , v 7−→ 〈v〉

is a morphism of graphs.

Example Let G be free of rank two on x and y, S = {x, y, x−1, y−1} and X = X(G,S) as

before. So X is a tree. We now compute G\X.

So G\X is a two-leaved rose, reflecting the fact that G is free of rank two. We shall obtain a

general stucture theorem for groups acting on a tree. The clue to the structure of these groups

will come from an examination of the corresponding quotient graphs, from which we will be

able to reconstruct G itself. In order to try to motivate what follows let me digress for a few

minutes and take you through a quick trip into covering space theory.
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2. Covering space theory

In this quick trip though covering space theory, I will take for granted many elementary notions

of topology, such as a topological space, arc-wise connectedness and the fundamental group

π1(X, ∗) of a space X based at a point ∗. All spaces will be Hausdorff, i.e., distinct points

have disjoint neighborhoods, and locally arc-wise connected, i.e., if V is an open set containing

a point x, there exists an open subset U contained in V and containing x such that any pair

of points in U have a path in U joining them.

Definition 9 Let X and X̃ be two arc-wise connected, locally arc-wise connected spaces,

p : X̃ −→ X a continuous map. We term
(
X̃, p

)
a covering space of X if

(i) p is onto;

(ii) each x ∈ X has an open neighborhood U such that p−1(U) is a disjoint union of open

sets homeomorphic via p to U. (Such sets U are usually called elementary neighbourhoods.)

Examples (1) X = S1 =
{
z ∈ C

 |z| = 1
}
,

X̃ = R1 ,

p : X̃ −→ X

r 7−→ e2πir .

(2) X = P2
R the real projective plane. Points of X are lines in R3 through 0. Open sets

in X are open ”cones” of lines:

X̃ = S2 = { (x, y, z) ∈ R3
x2 + y2 + z2 = 1 } ,

p : X̃ −→ X maps a point (x, y, z) ∈ X̃ to the line through 0 passing through

(x, y, z).Noticethatp−1(line) = two points, i.e., ”p is a so-called 2-sheeted covering”.

(3) X = T 2 = S1 × S1 torus,
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X̃ = R2

p : X̃ −→ X

(r1, r2) 7−→
(
e2πir1 , e2πir2

)

A covering space of a space X is termed a universal covering space if it is simply connected,

i.e. if its fundamental group is of order 1. Such universal covering spaces are, in a sense,

unique and so are usually referred to as the universal covering of the space X. (See the book

by William S. Massey: Algebraic Topology: An Introduction, published by Harcourt, Brace &

World, Inc. (1968), New York, Chicago, San Francisco, Atlanta.) Definition 10 Let X̃ be

an arc-wise connected, locally arc-wise connected space. Then a group G is said to act

properly discontinuously on X̃ if it comes equipped with a homomorphism

ϕ : G −→ Aut X̃ (= the group of homeomorphisms of X̃)

such that every point x̃ ∈ X̃ is contained in a so-called proper open neighbourhood V such

that

V ∩ gV = ∅ (g ∈ G, g 6= 1) .

Let X = G\X̃ denote the quotient space of X̃. Points of X are the orbits Gx̃ of points

x̃ ∈ X̃. The topology of X is obtained by taking as a basis for X the sets U = p(V ) where

V is a proper open set in X̃. Then the canonical projection p : X̃ −→ X makes
(
X̃, p

)
a

covering space of X.

Theorem 1 Let X̃ be simply connected, arc-wise connected and locally arc-wise connected.
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Suppose that G acts properly discontinuously on X̃. Then

G ∼= π1

(
G\X̃, ∗

)
.

In other words if G acts properly discontinuously on a space X̃ with the right properties then

we can recapture G from the fundamental group of the quotient space G\X̃ of X̃. This is,

roughly speaking, the plan that we will follow here. More precisely, suppose that a group G

acts without inversion on a tree X. We form the quotient graph G\X̃, keeping track of the

stabilisers of some of the vertices and edges in X under the action of G. This information is

codified in terms of a so-called graph of groups, a subject to which we will turn next. The

group G is then recaptured using this information.

3. Graphs of groups

The following definition turns out to be an important tool in studying groups acting without

inversion on a tree.

Definition 11 A pair (G, Y ) satisfying the following conditions is termed a graph of groups:

(1) Y is a connected graph;

(2) G is a mapping from V (Y ) ∪ E(Y ) into the class of all groups;

(3) the image of P ∈ V (Y ) under G is usually denoted by G
P

and is termed the vertex

group at P or simply a vertex group;

(4) the image of y ∈ E(Y ) under G is usually denoted by Gy and is termed the edge group

at y or simply an edge group;

(5) Gy = Gy for every y ∈ E(Y );

(6) each edge group Gy comes equipped with a monomorphism

Gy −→ Gt(y) denoted by a 7−→ ay (a ∈ Gy) .
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We can now amplify a little the comment made above. To this end, suppose that G acts

without inversion on a tree X. We then associate with this action a graph (G, Y ) of groups.

The graph Y is the quotient graph G\X. The vertex groups and edge groups of the graph

(G, Y ) of groups are stabilisers of a carefully selected set of edges and vertices of X. Now given

any graph (G, Y ) of groups we associate to it a group which is analogous to the fundamental

group of a topological space, termed its fundamental group and denoted by π1(G, Y ). This

group π1(G, Y ) is constructed from its vertex groups and edge groups by using amalgamated

products and HNN extensions. The point here is that if we go back to our given group G

acting without inversion on a tree X and construct the corresponding graph of groups (G, Y ),

then it turns out that

G ∼= π1(G, Y ).

This then yields the desired structure theorem for groups acting without inversion on a tree.

Finally, the theory of groups acting on trees is completed by proving that every such fundamental

group π1(G, Y ) of a graph of groups (G, Y ) acts also on a suitably defined tree. This theorem

contains, in particular, our earlier observations that free groups, amalgamated products, and

HNN extensions act on trees. Now if a group acts without inversion on a tree, so does every

one of its subgroups. This means, e.g., that a subgroup of an amalgamated product or of an

HNN extension is the fundamental group of a graph of groups. Consequently we have obtained

subgroup theorems for amalgamated products and HNN extensions. These subgroup theorems

were first obtained by A. Karrass and D. Solitar: The subgroups of a free product of two

groups with an amalgamated subgroup, Transactions of the American Math. Soc. vol. 150, pp.

227-250 (1970).

We give some important examples of graphs of groups and describe the associated fundamental

groups.

Examples (1) A loop of groups.

Y : (G, Y ) :
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So a loop of groups consists of a group G
P

, a second group Gy and two monomorphisms

of Gy into G
P

:

Gy −→ G
P

,

a 7−→ ay

Gy −→ G
P

a 7−→ ay .

Here the fundamental group π1(G, Y ) turns out to be an HNN extension with one stable

letter, base group G
P

and associated subgroups the two images of Gy.

(2) A segment of groups.

Y : •
P

y •
Q

; •
G
P

Gy •
G
Q

Here π1(G, Y ) = G = {G
P
∗G

Q
;Gy}.

As we have already noted such an amalgamated product G = A?U B acts on a tree T . This

tree is easy enough to describe. We define first V (T ) to be the disjoint union of the set

{gA | g ∈ G} of left cosets of A in G and the set {gB | g ∈ G} of left cosets of B in G.

E+(T ) is then defined to be the set {gU | g ∈ G} of left cosets of U in G, with o(gU) = gA

and t(gU) = gB. G acts on this graph by left multiplication. In order to prove that T is a

tree, we need to prove first that T is connected. The point here is that if f = a1b1 . . . ambm

and g = α1β1 . . . αnβn where ai, αj ∈ A and bi, βj ∈ B then we have the following path in

T from fA to gB.
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A similar argument shows that there is a path connecting any pair of distinct points in T .

In order to verify that T is a tree, we need to prove that there are no closed paths in T of

length n > 0 which do not contain bactrackings. Since T is connected, it suffices to show

that there is no closed path in T of length n > 0 based at A. Such a closed path then takes

the following form, where ai ∈ A and bi ∈ B:

It follows that a1b1 . . . anbn ∈ A and then that a pair of consecutive elements, say aj , bj

belong to the same factor. Assume, for example, that aj ∈ B. Then

which is the desired backtracking.

(3) A tree of groups.

Here, as in (2), π1(G, Y ) turns out to be a generalized free product. We shall only consider

the special case of an infinite path Y , where the graph (G, Y ) and the fundamental group are

given below.

Y : •
P−1

y−1 •
P0

y0 •
P1

•
GP−1

Gy−1 •
GP0

Gy0 •
GP1
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Then π1(G, Y ) is described as being generated by the GPi with the Gyi identified by

the indicated isomorphisms.

4. Trees

Lemma 3 Let X be a graph. Then every tree in X is contained in a maximal tree.

Proof Since an inductive limit of trees is again a tree, Lemma 3 follows immediately from

Zorn’s Lemma.

Lemma 4 Let T be a maximal tree in a connected graph X. Then V (T ) = V (X).

Proof Let v ∈ V (X), v 6∈ V (T ). Let w ∈ V (T ). Then there is a path in X joining v to w.

We may assume v and w are adjacent. Let e be an edge whose extremities are v and w. Since

v 6∈ V (T ), e 6∈ E(T ).

Now adjoin to T the edges e and e and the vertex v. This then defines a graph Y ⊆ X, say.

Notice that Y is connected since T is and every closed path in Y must contain a backtracking.

Example
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The squiggles outline a maximal tree. Notice that there are usually plenty such maximal

trees.

Now suppose G acts without inversion on a connected graph X̃. Then we can form the quotient

graph G\X̃ = X, say. Notice that the map

p : X̃ −→ X

defined by

p(v) = 〈v〉 , p(e) = 〈e〉

where v ∈ V (X̃), e ∈ E(X̃), 〈v〉 = Gv, 〈e〉 = Ge, is a morphism of graphs. Moreover since

X̃ is connected, so is X. Let T be a maximal tree in X. We say T lifts to a tree T̃ in X̃ if

p
T̃ is an isomorphism between T̃ and T .

Lemma 5 T lifts to a tree T̃ in X̃.

Proof Let T̃1 be a tree in X̃ which is maximal subject to p mapping T̃1 injectively into T.

We want to prove that

p
(
T̃1

)
= T .

Suppose the contrary. Then there is a vertex 〈v〉 ∈ V (T ) such that 〈v〉 6∈ V (p(T̃1)). Let

〈w〉 ∈ V (p
(
T̃1

)
). Then there is a path in T from 〈w〉 to 〈v〉. After replacing 〈w〉 and 〈v〉 by

different vertices if necessary, we may assume 〈w〉 and 〈v〉 are adjacent vertices in T . Let 〈e〉
be the edge of T with

o
(
〈e〉
)

= 〈w〉 , t
(
〈e〉
)

= 〈v〉 .

Notice that

〈e〉 = Ge , 〈w〉 = Gw , 〈v〉 = Gv .

In particular since 〈w〉 ∈ p(T̃1) we find that

gw ∈ T̃1 for some g ∈ G .

Consider now the edge

ge ∈ X̃ .
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Then ge 6∈ T̃1 because

p(ge) = 〈e〉 .

Now adjoin to T̃1 the edges ge, g e and the vertex t(ge). Since

p t(ge) = t〈e〉 = 〈v〉,

t(ge) 6∈ T̃1. It follows then, as in the proof of Lemma 4, that T̃2 = T̃1 ∪ {ge, g e, t(ge)} is a

tree and p is injective on T̃2. So p
(
T̃1

)
= T after all.

Definition 12 We sometimes term a lift T̃ of a maximal tree T in G\X̃ a tree of repre-

sentatives (modulo G).

Notice that every vertex of X̃ is in one of the subtrees gT̃ (g ∈ G), where T̃ is a tree of

representatives modulo G. For if v ∈ V (X̃), then 〈v〉 ∈ V (X). So 〈v〉 ∈ V (T ). Hence

〈v〉 = Gv

has a unique preimage gv in T̃ where g ∈ G. Therefore

v ∈ V (g−1T̃ ) .

If 〈e〉 ∈ E(X) and py = 〈e〉 then we sometimes term y a lift of 〈e〉. Notice that

py = Gy = Ge

and hence

y = ge

for some g ∈ G. So the lifts of 〈e〉 are simply the elements in the G-orbit of e. Notice also

that o(〈e〉) ∈ V (T ). Now o(〈e〉) = Go(e) i.e. the lifts of o(〈e〉) comprise the orbit Go(e).

Since o(〈e〉) lifts to a vertex of T̃ it follows that 〈e〉 lifts to an edge of X̃ whose origin is in T̃ .

We shall have need of such lifts later.

5. The fundamental group of a graph of groups
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Let (G, Y ) be a graph of groups. We shall define the fundamental group π1(G, Y ) of (G, Y )

in two ways.

The first way involves a maximal tree T in Y . Suppose y ∈ E(T ). then we have two

monomorphisms

of the edge group Gy into the vertex groups of y. We then define G
T

to be the group generated

by the vertex groups G
P

(P ∈ V (T )) with the two images of the edge group Gy in the adjacent

vertex groups Go(y) and Gt(y) identified according to the prescription

ay = ay (a ∈ Gy),

where here y ranges over all the edges in T . In other words G
T

is simply obtained from the

vertex groups by repeatedly forming amalgamated products where the graph (G, Y ) of groups

determines the subgroups to be amalgamated. The group G
T

can be described in more precise

terms as follows. We choose first a vertex v0 ∈ V (T ) and define

L0(T ) = {v0}.

We term L0(T ) the set of vertices at level 0. We then define Ln+1(T ), the set of vertices of

T at level n+ 1, inductively to consist of those vertices of T which are the terminuses of edges

in T whose origins lin in Ln(T ). It is worth noting that since T is a tree none of the vertices

in Ln(T ) are the extremities of an edge in T . Since T is connected

V (T ) =
∞⋃
n=0

Ln(T ).

We now define GT as follows. First we dfine

G(0) = Gv0 .
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We then define G(n + 1) inductively, assuming that G(n) has already been defined in such a

way that it is generated by all the vertex groups at levels at most n. For each v ∈ Ln+1(T )

there is a unique edge y ∈ E(T ) such that o(y) ∈ Ln(T ) with t(y) = v. We define G(v)

to be the generalised free product of G(n) and Gv with Gy amalgamated according to the

monomorphisms of Gy into the vertex groups at its extremities given by the the graph of groups

(G, Y ). G(n+ 1) is then defined to be the generalised free product of all of these groups G(v)

with G(n) amalgamated. Finally we define

GT =
∞⋃
n=0

Gn.

It follows that GT contains an isomorphic copy of each of the vertex groups Gv (v ∈ V (T )

and that

gp(Go(y), Gt(y)) = Go(y) ∗Gy Gt(y)

for every edge y ∈ E(T ). It is clear on inspecting the obvious presentation for GT that this

description of GT does not depend on the choice of v0. The fundamental group

π1(G, Y, T ) ,

of the graph of groups (G, Y ) at T is then defined to be an HNN extension with possibly

infinitely many stable letters. The base group is G
T

. The choice of the stable letters depends

on an orientation, say

E(Y ) = E+ ∪ E− .

of Y . Then for each edge y ∈ E+, y 6∈ E(T ) we choose a stable letter ty and define

π1(G, Y, T ) = 〈 G
T
{ty
y ∈ E+ − E(T )}

 tyayt−1
y = ay (a ∈ Gy, y ∈ E+ − E(T )) 〉 .

Examples

(1) Y : (G, Y ) :

T = {P} , G
T

= G
P

, E+ = {y}
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π1(G, Y, T ) = 〈 Gt , ty ; ty ay t−1
y = ay 〉

So the fundamental group of a loop of groups is simply an HNN extension with a single

stable letter.

(2) Y : •
P

y •
Q

(G, Y ) :

Here T=Y. So

π1(G, Y, T ) = G
T

= {G
P
∗G

Q
; ay = ay (a ∈ Gy) } .

Suppose now that (G, Y ) is a graph of groups and that T is a maximal tree in Y . Furthermore,

suppose that S is a subtree of T . Then the restriction of G to S gives rise to a graph of

groups, which we denote by (G, S) and in turn to a corresponding group G
S

. Let G(S) be the

subgroup of G
T

generated by its subgroups G(P ), where P ranges over all of the vertices of

S. Then there is a canonical homomorphism of G
S

onto G(S). Our next objective is to prove

that this homomorphism is a monomorphism. This will be accomplished by using a process

which can be termed ‘contraction of subtrees to points ’More precisely, let Y be a graph and

let Z be a subgraph of Y . Suppose that Z is the union of a family of disjoint trees Zi, where

here i ranges over an index set I. We now form a new graph denoted Y/Z, the quotient graph

of Y by Z. The vertices of Y/Z are denoted by [v], where v is a vertex of Y , and are defined

as follows:

[v] = v if v /∈ V (Z); [v] = V (Zi), if v ∈ Zi for some i ∈ I.

The edges of Y/Z are denoted by [e], where e is an edge in Y which is not an edge of Z, and

are defined simply by

[e] = e.
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The map is simply in Y restricted to the edges of Y which are not in Z and

o([e]) = [o(e)], t([e]) = [t(e)].

It is easy to deduce from the definition of Y/Z that Y/Z is a tree if and only if Y is a tree.

The following lemma, where we make use of the notation introduced above, holds.

Lemma 6 Let (G, Y ) be a graph of groups, let T be a maximal tree in Y and let S be a

subtree of T . Then the canonical homomorphism of G
S

into G
T

is a monomorphism.

We contract the subtree S to a point and turn Y/S into a graph of groups by taking the vertex

group at the ‘vertex S ’to be the group G
S

, the vertex groups at the other vertices to be those

given by the graph (G, Y ). Now if [y] is an edge with origin S, then o(y) ∈ V (S) and we

define the monomorphism from G[y] into G
S

to be the monomorphism a 7→ ay followed by

the inclusion of Go(y) into G
S

. The other monomorphisms on the edges which have neither

origin nor terminus in T are then those that are provided by the graph of groups (G, Y ). Now

T/S is a maximal tree in Y/S and so the vertex group G
S

embeds into G
T/S

. If we now

write down the natural presentation of G
T/S

using the natural presentation for G
S

, then the

resultant presentation is simply a presentation for G
T

. But the route whereby this presentation

was obtained reveals that G
S

maps injectively into G
T

with image G(S). this completes the

proof of Lemma 6.

6. The fundamental group of a graph of groups (continued)

The definition of π1(G, Y ) given above seems to depend on the choice of T . There is a

somewhat different approach which reveals that this dependence is illusory. This is our next

objective.

Suppose then that (G, Y ) is a graph of groups. We define now a group F (G, Y ) whose

definition is dictated by the graph of groups (G, Y ). To this end let us choose an orientation

E(Y ) = E+(Y ) ∪E−(Y ) of Y . Then F (G, Y ) is an HNN extension of the free product of all
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of the vertex groups G
P

:

F (G, Y ) = 〈 ( ∗
P∈V (Y )

G
P

) ∪ E(Y ) ; yayy−1 = ay (a ∈ Gy, y ∈ E+(Y )) 〉 .

It follows that we can present F (G, Y ) as follows:

F (G, Y ) = 〈 ( ∗
P∈V (Y )

G
P

) ∪ E(Y ) ; y = y−1 , yayy−1 = ay (a ∈ Gy, y ∈ E(Y )) 〉 .

It is easy to obtain a presentation for

π1(G, Y, T ) ,

where T is a maximal tree in Y , from F (G, Y ). Indeed define

Q(G, Y, T ) = 〈 F (G, Y )
 y = 1 if y ∈ E(T ) 〉 .

In other words we add to F (G, Y ) the relations y = 1 for every edge y of T . So if we denote

the image of y in Q(G, Y, T ) by ty (y ∈ E(T )) then in Q(G, Y, T )

ay = tya
yt−1
y = ay (a ∈ Gy).

Since ty = 1 if y ∈ E(T ), it follows that

ay = ay (a ∈ Gy, y ∈ E(T )).

It follows from these remarks that the image of the subgroup∗P∈V (Y )GP
of the group F (G, Y )

in Q(G, Y, T ) is (isomorphic to) the group G
T

and the ty, with y ranging over the positive

edges not in E(T ) (in some orientation of Y ), are the stable letters in the HNN extension of

G
T

that defines π1(G, Y, T ). In short

Q(G, Y, T ) ∼= π1(G, Y, T ) .

We are actually more interested in a subgroup of F (G, T ), which we will compare with

Q(G, Y, T ). To this end let P0 be a chosen vertex in Y and let c be a path in Y with

origin P0. As usual we think of c as a sequence of edges

y1, . . . , yn .
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Put Pi = t(yi) (i = 1, . . . , n). Notice that o(yi+1) = t(yi) (i = 1, . . . , n− 1).

Definition 13 A word of type c in F (G, Y ) is a pair (c, µ) where

µ = (r0, . . . , rn)

is a sequence of elements

ri ∈ GPi (i = 0, . . . , n)

Definition 14 Let (c, µ) be a word of type c. Then we define

|c, µ| = r0y1r1y2 . . . ynrn
(
∈ F (G, Y )

)
and say that |c, µ| is the element or word in F (G, Y ) associated with (c, µ). Notice that

when n = 0, |c, µ| = r0.

Definition 15 Let

π1(G, Y, P0) = { |c, µ|
 c is a closed path in Y beginning (and ending) at P0 } .

It is clear that π1(G, Y, P0) is a subgroup of F (G, Y ).

Proposition 1 π1(G, Y, P0) ∼= π1(G, Y, T ) .

Proof It suffices, by the remarks above, to prove that

π1(G, Y, P0) ∼= Q(G, Y, T ) .

We first concoct a homomorphism

f : Q(G, Y, T ) −→ π1(G, Y, P0) .
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In order to do so, suppose P ∈ V (Y ). Then there is a unique geodesic c
P

in T joining P0 to

P :

c
P

= y1, . . . , yn .

Put

γ
P

= y1 . . . yn ∈ F (G, Y ) .

Then for each x ∈ G
P

define

x′ = γ
P
x γ−1

P

and for each edge y ∈ E(Y ) define

y′ = γo(y)yγ
−1
t(y) .

Notice that x′, y′ ∈ π1(G, Y, P0).

Now if y ∈ E(T ), then y′ = 1. Furthermore, if y ∈ E(Y ),

y′y′ = γo(y)yγ
−1
t(y) · γo(y)yγ

−1
t(y) = 1 .

And if a ∈ Gy,

y′(ay)′y′−1 = γo(y)yγ
−1
t(y) · γt(y)a

yγ−1
t(y) · γt(y)y

−1γ−1
o(y)

= γo(y)ya
yy−1γ−1

o(y)

= γo(y)a
yγ−1
o(y)

=
(
ay
)′
.

We now map a set of generators of π1(G, Y, T ) to π1(G, Y, P0) as follows

x 7−→ x′ (x ∈ G
P
, P ∈ V (Y ))

ty 7−→ y′
(
y ∈ E+ − E(T )

) .

Notice that the images under this mapping satisfy a set of defining relations of π1(G, Y, T ).

So, by von Dyck’s Lemma, the given mapping defines a homomorphism

h : π1(G, Y, T ) −→ π1(G, Y, P0) .

Consequently using the canonical isomorphism between π1(G, Y, T ) and Q(G, Y, T ) we have

defined a homomorphism

f : Q(G, Y, T ) −→ π1(G, Y, P0) .
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Let now p be the canonical projection of F (G, Y ) onto Q(G, Y, T ) and let i be the restriction

of p to π1(G, Y, P0):

i = p
π1(G, Y, P0) .

Observe that if y ∈ E(T ), then

i(y) = 1 .

Hence

i(γ
P

) = 1 for all P ∈ V (Y ) .

Consequently

i(x′) = x (x ∈ GP , P ∈ V (Y )), i(y′) = y (y ∈ E+ − E(T )).

Thus

i ◦ f = 1 . (1)

In order to complete the proof of the proposition it suffices to prove that

f ◦ i = 1 . (2)

Suppose then that c is a closed path with origin P0, (c, µ) a word of type c and that

|c, µ| = r0y1r1 . . . ynrn .

Now

r′i = γ
Pi
riγ
−1
Pi

(i = 0, . . . , n), y′i = γ
Pi−1

yiγ
−1
Pi

(i = 1, . . . , n).

Therefore

r′0y
′
1r
′
1 . . . y

′
nr
′
n = γ

P0
(r0y1r1 . . . ynrn)γ−1

P0
.

Since γ
P0

= 1 by definition,

r′0y
′
1r
′
1y
′
nr
′
n = r0y1r1 . . . ynrn

i.e. (2) holds. This completes the proof.

Corollary 1 The groups π1(G, Y, T ), π1(G, Y, P0) are all isomorphic, hence independent of

either the choice of T or P0.
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Proof Let P0, P 0 be arbitrarily chosen and fix T . Then

π1(G, Y, P0) ∼= π1(G, Y, T ) ∼= π(G, Y, P 0) .

(In fact π1(G, Y, P0) and π1(G, Y, P 0) are conjugate in F (G, Y )). But if T is now any other

maximal tree in Y we again find that

π1(G, Y, P0) ∼= π1(G, Y, T ) .

This completes the proof.

One more remark before we move on to determine some graphs of groups.

Suppose (G, Y ) is a graph of groups, y ∈ E(Y ). Then we denote the image of Gy in Gt(y)

under the map

a 7−→ ay (a ∈ Gy)

by Gyy.

Definition 16 Let (c, µ) be a word of type c where c is a closed path in Y beginning at P0

with edges y1, . . . , yn. Suppose that

µ = (r0, . . . , rn) .

Then we term (c, µ) a reduced word if

(i) r0 6= 1 if n = 0;

(ii) ri 6∈ Gyiyi whenever yi+1 = yi (i = 1, . . . , n− 1) .

Now F (G, Y ) is an HNN extension of the free product of the groups GP . It follows immediately

from Britton’s Lemma that

Proposition 2 If (c, µ) is a reduced word, then |c, µ| 6= 1.
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7. Group actions and graphs of groups

Let G be a group acting without inversion on a connected graph Ỹ . The key to understanding

the structure of a group acting without inversion on a tree is the fact that we can associate

to this action of G on Ỹ , a graph (G, Y ) of groups, where Y = G\Ỹ . To this end, let T be a

maximal tree in Y, T̃ a lift of T in Ỹ . Let

p : Ỹ −→ Y

be the canonical projection. Then p−1
T is an isomorphism from T to T̃ . Our objective is to

extend this isomorphism to a map

q : Y −→ Ỹ .

it is important to note that q need not be a morphism of graphs, even though p−1
T is such

a morphism.

Now q is already defined on T , hence on all the vertices of Y . We need to define q on the

edges y of Y . If y ∈ E(T ), then qy has already been defined. We are left with the edges

y 6∈ E(T ). Choose an orientation E(Y ) = E+(Y ) ∪ E−(Y ) of Y . We will define q on the

positive edges y not in T and extend q to the negative edges by defining q y = (qy). So let y

be a positive edge not in T . Then there exists an edge ỹ ∈ E(Ỹ ) which is a lift of y such that

o (ỹ) ∈ V (T̃ ) .

Define

qy = ỹ .

This completes the definition of q. Notice that

q y = (qy) for all y ∈ E(Y ).

Let us now put

e(y) =
{

0 if y ∈ E+;
1 if y /∈ E+.

Notice that

p t (ỹ) = t(y) .
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So t (ỹ) and q t(y) are both lifts of t(y). Hence there exists an element gy ∈ G such that

t (ỹ) = gy q t(y) .

Furthermore, we define

gy = g−1
y if y ∈ E−, gy = 1 if y ∈ E(T ).

It follows that

gy = g−1
y (y ∈ E(Y )) and gy = 1 if y ∈ E(T ).

It follows that for each y ∈ E(Y )

o(qy) = g−e(y)
y qo(y)

t(qy) = g1−e(y)
y qt(y).

We are now in a position to define the graph (G, Y ) of groups. The edge and vertex groups of

(G, Y ) are the stabilizers of the images of vertices and edges of Y under q. In detail, then, we

define the vertex and edge groups of (G, Y ) as follows:

G(P ) = G
qP

= { g ∈ G
 g(qP ) = qP } def= G

P

(
P ∈ V (Y )

)
;

G(y) = Gqy = { g ∈ G
 g(qy) = qy } def= Gy

(
y ∈ E(Y )

)
.

We now define the edge monomorphisms

a 7−→ ay (a ∈ Gy, y ∈ E(Y ))

by putting

ay = ge(y)−1
y ag1−e(y)

y (y ∈ E(Y )).

The verification that the above prescription does define a graph of groups is straightforward.

We have two things to check. First we have

Gy = Gqy = Gqy = Gqy = Gy.
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Second we have to make sure that the mapping a 7−→ ay is a monomorphism from Gy into

Gt(y), i.e. from Gqy into Gqt(y). Now qt(y) = ge(y)−1t(qy) and Gqy ≤ Gt(qy). Consequently

g
e(y)−1
y ag

1−e(y)
y ∈ Gqt(y). It follows immediately that the mapping a 7−→ ay is indeed a

monomorphism from Gy into Gt(y), as desired.

Since T plays a role here in the definition of (G, Y ) we sometimes denote (G, Y ) by (G, Y, T )

and refer to (G, Y, T ) as the graph of groups (G, Y ) at T .

We are now in a position to formulate the

Theorem 2 Let G be a group acting without inversion on a tree Ỹ . Then

π1(G, Y, T ) ∼= G

where Y = G\T̃ and (G, Y, T ) is the graph of groups associated to the action of G on Y at

the maximal tree T of Y .

The connection between π1(G, Y, T ) and G is not hard to fathom in view of the very definition

of (G, Y ). To begin with we want to concoct a homomorphism from π1(G, Y, T ) onto G. Now

π1(G, Y, T ) is made up from the vertex groups of Y together with a whole bunch of stable

letters ty, one for each positive edge y 6∈ E(T ) and each vertex group is simply a subgroup

of G, namely the stabilizer G
qP

of a vertex qP in T̃ . Indeed there is a canonical map from

π1(G, Y, T ) to G which is the identity on the G
qP

and maps ty to gy. This map defines a

homomorphism

Θ : π1(G, Y, T ) −→ G

because we have arranged that the relations defining π1(G, Y, T ) mimic those that hold between

the various subgroups of G. Our first step then in the proof of Theorem 2 is to prove Θ is

onto. This is taken care of by the following

Lemma 7 Let G be a group acting without inversion on a connected graph X, U a tree of

representatives of X modulo G and Z a subgraph of X such that

(i) if z ∈ E(Z) then either o(z) ∈ V (U) or t(z) ∈ V (U);

(ii) GZ = X ;
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(iii) for each z ∈ E(Z) with o(z) ∈ V (U) let gz ∈ G be such that g−1
z t(z) ∈ V (U).

Then

G = gp
({
G
P

P ∈ V (U)
}
∪
{
gz
 z ∈ E(Z) , o(z) ∈ V (U)

})
(3)

where as usual

G
P

= { g ∈ G
 gP = P } .

To see how Lemma 7 implies that Θ is onto, we take X = Ỹ , U = T̃ , Y = G\Ỹ , Z = qY

and the gz to be the gy.

Proof of Lemma 7. Let us denote the right-hand-side of (3) by H. Our objective then is to

prove H = G.

Let p : X −→ G\X be the canonical projection. By definition pU is a maximal tree in G\X
and hence contains all of the vertices of G\X. So, as we have already noted previously,

V (X) = V (GU) .

Suppose that V (HU) = V (GU). Let g ∈ G, P ∈ V (U). Then gP ∈ V (HU). So there exists

Q ∈ V (U), h ∈ H such that gP = hQ. Since p is injective on U , this implies Q = P . Hence

h−1g ∈ G
P
.

So by the very definition of H, h−1g ∈ H and hence so does h·h−1g = g. It suffices, therefore,

for the proof of Lemma 7, to prove that V (HU) = V (X). Suppose the contrary. This means

that there is a vertex Q of X which is not in any of the subtrees hU (h ∈ H). Let Q be chosen

to be as ”close” to one of these subtrees as possible, Q 6∈ V (HU). Since X is connected, we

can assume that there is an edge y ∈ E(X) such that

P = o(y) ∈ V (HU) , t(y) = Q .

On replacing y by hy, where h is a suitably chosen element of H, we can assume that P ∈
V (U). Now

GZ = X .
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So there exists f ∈ G such that

z = fy ∈ E(Z) .

We then have two possibilities.

(1) o(z) ∈ V (U). Notice that o(z) = fP and P ∈ V (U). Again using the injectivity of p we

deduce that fP = P i.e. f ∈ G
P
≤ H. By (iii) of the hypothesis,(

g−1
z f

)
Q ∈ V (U) ,

where gz ∈ H. Hence Q ∈ V (HU) after all.

(2) t(z) ∈ V (U). There exists again gz such that

g−1
z o(z) ∈ V (U) .

Now o(z) = fP . So g−1
z fP ∈ V (U). Since P ∈ V (U) this implies as before that g−1

z f ∈
G
P
≤ H. This means f ∈ H. But

t(z) = fQ ∈ V (U) .

Therefore

Q ∈ V (HU)

once again.

We have proved the surjectivity of Θ. In order to complete the proof of Theorem 2 we need

to find a ‘model ’of X. This is the objective of our next section.

8. Universal covers

Let (G, Y ) be a graph of groups, T a maximal tree in Y and

G = π1(G, Y, T ) .
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Suppose that Ỹ is a tree, that G acts on Ỹ , that

G\Ỹ ∼−→ Y

and that the graph of groups that we can associate to this action of G on Ỹ is (isomorphic in

the obvious sense) to G(Y, T ) . This means that we can concoct a map, as before, q : Y −→ Ỹ

which is an injective morphism on T . Now GV (qT ) = V
(
Ỹ
)

and G
qP

= G
P

; this implies

that V
(
Ỹ
)

can be identified with the disjoint union of all of the left cosets G/G
P

(
P ∈ V (Y )

)
.

Furthermore GqE(Y ) = E
(
Ỹ
)

and Gqy = Gy . So E
(
Ỹ
)

can be identified with the disjoint

union of the set of all the left cosets G/Gy
(
y ∈ E(Y )

)
.

The rest of the graph of groups can also be reconstructed in a similar way, as we have already

detailed before.

Our objective here , given a graph (G, Y ) of groups, T a maximal tree in Y and G =

π1(G, Y, T ) , the fundamental group of this graph of groups, is to reverse the process described

above. That is, to construct a graph Ỹ = Ỹ (G, Y, T ) and an action of G on Ỹ so that the

graph of groups associated to this action is (isomorphic to) (G, Y ).

To this end, let E(Y ) = E+(Y )∪E−(Y ) be an orientation of Y . For each y ∈ E+(Y ), define

G(y) = Gyy (≤ Gt(y) = Go(y)).

We now define Ỹ as follows :

(i) V
(
Ỹ
)

=
⋃

P∈V (Y )

· G/G
P

(
G/G

P
=
{
gG

P

 g ∈ G}) .

(ii) E+

(
Ỹ
)

=
⋃

y∈E+(Y )

· G/Gy
(
G/G(y) =

{
gGy

 g ∈ G}) .
(Notice that E−(Y ) is then automatically taken to be the set of ‘inverse ’edges of the edges

in E+(Ỹ ).)
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(iii) If y ∈ E+(Y ) then

o (gG(y)) = gGo(y) , t (gG(y)) = g ty Go(y) .

We need to verify that these definitions are unambiguous, i.e. do not depend on the choice of

the representatives of the cosets gG(y). November 18 Ỹ is a graph, by definition. We term Ỹ

the universal covering of Y relative to the graph of groups (G, Y ) at T .

Notice that G acts without inversion on Ỹ in the obvious way, by left multiplication. Notice

also that

V
(
G\Ỹ

)
=
{
〈G

P
〉
P ∈ V (Y )

}
E+

(
G\Ỹ

)
=
{
〈Gy〉

 y ∈ E+(Y )
}

Thus the maps

〈G
P
〉 7−→ P , 〈Gy〉 −→ y

define a morphism of graphs – indeed an isomorphism

G\Ỹ ∼−→ Y !

The point of this construction is contained in the following

Theorem 3 Ỹ is a tree.

There are two steps in the proof. The first is that Ỹ is connected. This follows from the fact

that G is generated by the G
P

together with the ty. The second step in the proof is to show

that every closed path in Ỹ of length n > 0 contains a backtracking. But every such closed

path corresponds to a word w in the elements of the G
P

and the ty with w = 1. It follows

from Britton’s Lemma and the normal form theorem for amalgamated products that w has

a special form which implies that the given path does indeed have the desired backtracking.

Alternatively we can deduce that Ỹ has no circuits from Proposition 2.

Examples (1) (G, Y ) a loop of groups.
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G = π1(G, Y, T ) = 〈 G
P
, ty ; ty ay t−1

y = ay 〉 .

V
(
Ỹ
)

= G/G
P

=
{
gG

P

 g ∈ G}
E+

(
Ỹ
)

= G/Gy =
{
gGy

 g ∈ G} .

Thus the positive edges of Ỹ all have the form

•
gG

P

gGy •
g ty GP

.

It is instructive to try to see why Ỹ is connected. The thing to notice is that if g ∈ G, then

g = g0 t
ε1
y g1 . . . t

εn
y gn

where

gi ∈ G
P

(i = 0, . . . , n) , εi = ±1 (i = 1, . . . , n) .

One wants to find a path e.g. from

G
P

to gG
P
.

Let’s look at the case n = 1, ε1 = 1, which is nice and easy but instructive: we have the

edge
•
G
P

•
g0 ty g1 GP

‖ ‖
g0GP g0 ty GP

(2) (G, Y ) a segment of groups.
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We have already described the universal covering Ỹ of this segment of groups at the maximal

tree T in Y which here is the graph Y itself. We remind the reader that if

Y : •
P

y •
Q

then

V
(
Ỹ
)

= G/G
P

⋃
· G/G

Q

E+

(
Ỹ
)

= G/Gy

and the positive edges of Ỹ all take the form

Y : •
gG

P

gGy •
gG

Q

9. The proof of Theorem 2

The easiest way to prove Theorem 2 is to make use of the existence of a universal covering.

Suppose then that G acts without inversion on a tree X and let Y = G\X. Form the

corresponding graph of groups (G, Y ) associated to this action of G on X relative to the

choice of a maximal tree T in Y . Now form

H = π1(G, Y, T ) .

As we noted before there is an epimorphism

Θ : H −→ G .

Let Ỹ be the universal covering of Y corresponding to this graph of groups (G, Y ) relative to

T . Now the definition of (G, Y ) involves the use of a map

q : Y −→ X .

As we have already observed before

V (X) =
{
g q(P )

 g ∈ G , P ∈ V (Y )
}
.
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Define a map ϕ on V
(
Ỹ
)

by

ϕ : hG
P
7−→ Θ(h) q(P ) (h ∈ H) .

(Notice that since we are using H to denote π1(G, Y, T ) the G
P

are subgroups of H now.) It

is clear that ϕ is surjective. Similarly notice that

E+(X) =
{
g q(y)

 g ∈ G , y ∈ E+(Y )
}
.

Define a map, again denoted ϕ, on E+

(
Ỹ
)

by

ϕ : hGy 7−→ Θ(h)q(y) .

Again ϕ is surjective. It is not hard to check that ϕ is a morphism of graphs. Our objective is

to show that ϕ is an isomorphism. There are two main steps. The first is to show that

Θ
gp (G

P

P ∈ V (Y )
)
−→ G

is an isomorphism. In this instance, working inside G now, if we set

J = gp
(
G
P

P ∈ V (Y )
)

and if we take

W = the connected graph generated by qT

then J acts on W and

J\W ∼= T .

This allows us to prove that J ∼= G
T

i.e. that

Θ
gp (G

P

P ∈ V (Y )
)
−→ J

is an isomorphism.

The second step, which is more graph-theoretical, involves the use of the fact that X is a tree

and leads to the conclusion that ϕ is an isomorphism of graphs and that G ∼= H .

10. Some consequences of Theorems 2 and 3
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Let G = π1(G, Y ) be the fundamental group of a graph of groups (G, Y ). Then G acts on a

tree Ỹ . So if H ≤ G, H acts also on Ỹ . Hence

H = π1(H, X)

is again a fundamental group of a graph of groups. This simple observation constitutes, in

essence, a rather remarkable subgroup theorem, as one sees from the remarks that follow.

We need a definition.

Definition 17 A group G is said to act freely on a tree if it acts without inversion and

only the identity element leaves either a vertex or an edge invariant.

Then we have the

Theorem 4 Let G act freely on a tree. Then G is free.

Proof As usual

G ∼= π1(G, Y, T ) .

Now

G = 〈 G
T
, ty (y ∈ E+(Y )− E(T )) ; ty ay t−1

y = ay (a ∈ Gy, y ∈ E+(Y )− E(T )) 〉

is therefore an HNN extension with base G
T

. But G
T

is generated by the stabilizers of the

vertices of a lift of T . Since G acts freely, these stabilizers are all trivial. Hence G
T

= 1 and

so the ay are also all 1. Hence

G = 〈 ty (y ∈ E+(Y )− E(T )) 〉

is free on the ty !

Now we have already noted that the Cayley graph of a free group, relative to a free set of

generators, is a tree. And the free group then acts freely on this tree. Hence so does every one

of its subgroups. It follows then from Theorem 4 that subgroups of free groups are free.
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For our next examples we need some extra information.

Lemma 8 Let G be a group acting on a set X. Then

Ggx = gGxg
−1 (g ∈ G, x ∈ X) .

Here Gz denotes the stabilizer of z ∈ X.

The proof is easy and is left to the reader.

Lemma 9 Let G be a group, A ≤ G and let

X =
{
gA
 g ∈ G}

be the set of all left cosets of A in G. Let H now be a second subgroup of G. Then if we let

H act on X by left multiplication then

H
gA

= gAg−1 ∩H .

Again the proof is straightforward and is left to the listener.

We come now to our second illustration.

Theorem 5 (A.G. Kurosh) Let

G = A ∗B

be the free product of its subgroups A and B and let H ≤ G. Then H is a tree product of

conjugates of subgroups of A and B and a free group.

Proof We note first that G acts on a tree X. Recall
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(1) V (X) =
{
gA
 g ∈ G} ∪ { gB  g ∈ G} .

(2) E+(X) =
{
g
 g ∈ G} (the set of all elements of G since it is only the trivial subgroup

that is amalgamated). So a typical positive edge takes the form

•
gA

g •
gB

.

Now H acts also on X. So

H = π1(H, Y, T )

where

Y = H\X

and T is a maximal tree in Y . So

H = 〈 H
T
, ty (y ∈ E+(Y )− E(T )) ; ty ay t−1

y = ay (a ∈ Hy , y ∈ E+(Y )− E(T )) 〉 .

These edge groups Hy are easy to determine. They are simply all of the form

Hy = Hqy = Hg =
{
h
hg = g

}
= 1 .

So the edge groups are all trivial.

Next we need to know the vertex groups H
P

(P ∈ V (Y )). But as before we find either

H
P

= H
qP

= H
gA

= gAg−1 ∩H

or

H
P

= H
qP

= H
gB

= gBg−1 ∩H .

so H
T

is a free product of conjugates of subgroups of A and B (since the edge groups are all

trivial) and hence H is a free product of the free group on the ty and H
T

, as claimed.

Similarly we can deduce

Theorem 6 (Hanna Neumann, A. Karrass and D. Solitar) Suppose

G = A ∗
C
B
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is an amalgamated product. then every subgroup H of G is an HNN extension of a tree

product (i.e. an H
T
, T a maximal tree in a graph Y) in which the vertex groups are

conjugates of subgroups of either A or B and the edge groups are conjugates of subgroups of

C. The associated subgroups involved in the HNN extension are also conjugates of subgroups

of C.

We need only recall that G acts on a tree X whose edges are all of the form

•
gA

gC •
gB

.

One can then deduce the following

Theorem 7 (Karrass and Solitar) Let

G = A ∗
C

B

where A and B are free and C is cyclic. Then every finitely generated subgroup of G is

finitely presented.

11. The tree of SL2

Our next objective is to show that if F is a field with a discrete valuation then there is a tree

X upon which SL2(F) acts. Let me begin by recalling some definitions and facts.

Definition 18 Let F be a commutative field, F∗ = F−{0} viewed as a multiplicative group.

Then a surjective map

v : F −→ Z ∪ {∞}

is called a discrete valuation if

(i) v(0) =∞ where a+∞ =∞ =∞+ a for every a ∈ F;
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(ii) v : F∗ −→ Z is a surjective homomorphism from the multiplicative group F∗ to the

additive group Z i.e.

v(xy) = v(x) + v(y) (x, y ∈ F∗) ;

(iii) v(x+y) ≥ min{ v(x) , v(y) } [where a+∞ =∞ =∞+a, ∞ ≥ a for every a ∈ F ]

.

We form

O =
{
x ∈ F

 v(x) ≥ 0
}

the valuation ring of F. Of course O is a subring of F. It has the additional property that if

a ∈ F, a 6= 0 then either a ∈ O or a−1 ∈ O.

We gather together some properties of O.

Lemma 10 (i) The non-units of O form a maximal ideal M.

(ii) O is a principal ideal domain.

Proof (i) Notice first that if a ∈ O and v(a) = 0, then v(a−1) = −v(a) = 0. So a−1 ∈ O.

Thus the set M of non-units of O consists of the elements a ∈ O with v(a) > 0. This is

clearly an ideal by the properties of v. Moreover M is maximal since the elements outside M
are invertible i.e. O/M is a field.

(ii) Let I 6= O be a non-zero ideal of O and let π ∈ O be chosen so that

v(π) = 1 .

(π is sometimes called a uniformizer.) Now if

m = min
{
v(a)

 a ∈ I}
we claim that I is the ideal (πm) generated by πm. To see this first note that if a ∈ I, v(a) = m

then

v(aπ−m) = 0 .

Hence aπ−m ∈ O and is invertible in O; thus
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πm = au ∈ I (u a unit in O) .

So

a ∈ (πm) .

That the other elements of I are also contained in (πm) requires the use of the Euclidean

algarithm and uses the minimality of m.

Incidentally it follows from this argument that π generates M.

Now suppose that V is a 2-dimensional left vector space over F. We can also think of V as a

left O-module.

Definition 19 An O-lattice L of V is any O-submodule of the form

L = Ox + Oy (xy ∈ V)

where x and y are linearly independent over F.

Now the group F∗ acts on the set of all such O-lattices L of V by left multiplication:

aL = Oax + Oay .

The orbit of such a lattice L under this action is called its class and will be denoted cl(L).

Two O-lattices are termed equivalent if they lie in the same class. We denote by X the set

of all these classes of O-lattices. Our claim is that X can be thought of as a tree. This will

follow in due course.

Now suppose L and L′ are O-lattices in V. Then (L + L′)/L′ is a finitely generated torsion

O-module. Now a submodule of a free module over a principal ideal domain is again free.

This leads to the conclusion that a finitely generated module over a principal ideal domain is

a direct sum of cyclic modules. It follows that

((L + L′)/L′ ∼= ) L′/(L ∩ L′ ∼= O/πcO ⊕ O/πdO (c, d ≥ 0) .

It follows that
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πeL′ ≤ L for some e ≥ 0 .

Now again the “basis theorem” for submodules of finitely generated free modules over principal

ideal domains allows us to choose a basis x, y for L such that{
πfx , πgy

}
is a basis for πeL′ .

Hence

L′ has a basis
{
πix , πjy

}
.

We claim that

|i− j| = |c− d|

depends only on cl(L) and cl(L′). To see this consider instead the O-lattices aL and bL′ (a, b ∈
F∗). Then aL has a basis {ax, ay} and bL′ a basis {bπix, bπjy}. Notice now that if v(ba−1) =

n, then ba−1 = uπn (u a unit in O). So

b = auπn .

Hence bL′ has an O-basis
{
πi+n(ax) , πj+n(ay)

}
and once again

|(i+ n)− (j + n)| = |c− d|

as claimed.

If we now denote cl(L) by Λ and cl(L′) by Λ′ then we define

d(Λ,Λ′) = |c− d|

and term d(Λ,Λ′) the distance between Λ and Λ′.

We now term Λ and Λ′ adjacent if

d(Λ,Λ′) = 1 .

This allows us to turn X, the set of all such equivalence classes Λ of O-lattices in V, into a

graph. Here

V (X) =
{

Λ
 Λ = cl(L), L an O − lattice in V

}
.
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We then define

E(X) =
{

(Λ,Λ′)
 Λ,Λ′ adjacent

}
.

For each such edge (Λ,Λ′) we define

o
(
(Λ,Λ′)

)
= Λ , t

(
(Λ,Λ′)

)
= Λ′ .

Finally we define

(Λ,Λ′) = (Λ,Λ′) .

What we have left then is to prove the

Theorem 8 X is a tree.

The proof is not hard, once one figures out what has to be proved. It can be found on page

70 of Serre’s book cited at the beginning of this chapter

Now GL(V) acts on X in the obvious way and so SL(V) does as well. Unfortunately GL(V)

acts on X with inversion, but SL(V) acts without inversion. So our structure theorems apply

to SL(V). Indeed one can e.g. deduce

Theorem 9 (Ihara) SL2(F) is an amalgamated product:

SL2(F) = SL2(O)∗
Γ

SL2(O)

where here Γ is the subgroup of SL2(O) consisting of the matrices(
a b
c d

)
c ≡ 0 ( modπ ) .

Now suppose that G is a group and that there exist representations of G in SL(V). Such

representations provide us with an action of G on the tree X of SL(V) that we discussed

above and as a consequence yields a description of G as the fundamental group of a graph of

groups:

G ∼= π1(G, Y ) .
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Unravelling stabilizers of edges and vertices is the next task if this description is to be useful. In

the event that one is able to find the right kind of representations of G, the task of geometric

representation theory, then this approach does turn out to be useful. This point of view was

introduced by Culler and Shalen in their fundamental paper on the fundamental groups of three

manifolds. Similar techniques apply also to groups given by generators and defining relations

and yield, in particular, a proof of Theorem 8 of Chapter V.


