Méthodes mathématiques de l'informatique

Série 3

à remettre jusqu'au Lundi 19.03.2012 $12^{15}\,$

Exercice Nº 1

In how many ways can one distribute 24 toys to 6 children

- a) without any restriction
- b) such that each child receives 4 toys
- c) such that 3 of the children receive 5 toys each, and the other 3 children receive 3 toys each?

Exercice N^{o} 2

Show that $p_2(k) = \lfloor \frac{k}{2} \rfloor + 1$ and $p_3(k) = \lfloor \frac{(k+3)^2}{12} \rfloor$ by using the generating function of $p_n(k)$ we have seen in class.

Exercice Nº 3

We consider

$$f(z) = \frac{1}{(1+3z)^2}.$$

- a) Expand f(z) into a formal serie $f(z) = \sum a_k z^k$.
- b) Give a recurrence relation with initial conditions that define the sequence $(a_k)_{k>0}$.

The Pigeonhole Principle

The so-called *Pigeonhole Principle* is the following obvious fact: if n objects are put in m boxes and n > m, then at least one box contains two or more of the objects.

Exercice Nº 4

Suppose $A \subset \{1, 2, ..., 2n\}$ with |A| = n + 1. Show that there are two numbers in A such that one divides the other.

Hint: think of any number $a \in A$ as a product $a = 2^k m$ where $k \in \mathbb{N}$ and $m \in \{1, ..., 2n - 1\}$ is odd.

Exercice Nº 5

Given five points inside a square whose sides have length 2, prove that two are within $\sqrt{2}$ of each other.