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Setup

Link sample:

HOMFLY polynomials g = su(N) for a link (γi : S1 →M3), q = e
2πi
κ+N

P (q, a = qN |{γi, Ri}) =

∫
[DA]

(∏
i

WRi (γi)

)
ei

κ
4π
SCS

During the talk we will be interested mostly in Jones polynomials: N = 2.
Khovanov polynomials: bi-graded Poincaré polynomial.

K (q, t) =
∑
i,j

qitjdim Hi,j

It “refines” (categorifies) Jones polynomials J(q):

K (q,−1) = J(q)

Our goal: to give a QFT description of link homologies



Statements:

1. Link L −→ interface in 2d LG theory I(L)
Hilbert spaces H(F,P) [I(L)] are invariants of link L

2. LG link cohomology LGCoh(L) :=
⊕

(F,P)

H(F,P) [I(L)]

LGCoh(L) is isomorphic to Khovanov link homology KHom(L)

Plan:

1. Origin of cohomology in QFT

2. Interfaces in LG model

3. Instantons in LG models

4. Tangles as interfaces

5. Explicit examples

6. Obstacles (if time permits)

7. WKB analysis of LG models



Cohomology origin in QFT. Complex

Supersymmetric Quantum Mechanics (SQM). [Witten ’82]
In data: Riemannian Y , real height function h : Y → R

L = gIJ q̇
I q̇J − gIJ∂Ih∂Jh+ gIJ χ̄

I∇tχJ − gIJ∇I∇Jh χ̄IχJ −RIJKL χ̄IχJ χ̄KχL

Perturbative ground states: Gaussian fluctuations around h-critical points. These
states span a Morse-Smale-Witten (MSW) complex as a vector space:

E =
⊕

p: dhp=0

C|p〉

h

Ψ

p

Fermion number F (homological grading): Fp = 1
2

(n+(p)− n−(p))



Cohomology origin in QFT. Differential

However Ĥ =
{
Q̄,Q

}
, therefore Q|Ground State〉 = 0, Q2 = 0:

〈p′|Q|p〉 = δFp′ ,Fp+1#(Instantons p→ p′)

Instantons : gradient flows
q̇a = −gab∂bh

Hilbert space of non-perturbative ground states:

H := H∗(E, Q) =
Ker Q

Im Q

For finite-dimensional compact Y H ∼= H∗dR(Y ).



For example...

ψ4

ψ3

ψ1

ψ2

∼=

ϕ2

ϕ1

E(B) = C[1]|ψ1〉 ⊕ C[1]|ψ2〉 ⊕ C[0]|ψ3〉 ⊕ C[−1]|ψ4〉

〈ψ3|Q|ψ1〉 = [⇒] = 1, 〈ψ3|Q|ψ2〉 = [⇒] = 1, 〈ψ4|Q|ψ3〉 = [⇒]− [⇒] = 0

H(B) = H∗(E(B), Q) = C[1]|ψ1 − ψ2〉 ⊕ C[−1]|ψ4〉



LG theory. Setup

2d N = (2, 2) Landau-Ginzburg theory: [Gaiotto-Moore-Witten ’15]
Kähler manifold X: coordinates φI , I = 1, . . . , N .
Holomorphic superotential W : X → C
The potential term: V = |∇W |2 ⇒ Critical points of W – vacua i ∈ V
Any finite energy field configuration approaches vacua at spatial ±∞:

φIi φIj

Central charge of this configuration: Zij = Wj −Wi

Bogomolny-Prasad-Sommerfeld (BPS) bound: Eij ≥ |Zij |
This bound is saturated by solitons.



LG theory. Solitons

Solitons are solutions to

∂xφ
I =

ζij

2
∂φIW,

lim
x→−∞

φI(x) = φIi , lim
x→+∞

φI(x) = φIj

Where phase ζij =
Zij
|Zij |

. These field configurations preserve ζ-SUSY Qζij , Q̄ζij

Qζ := Q− + ζ−1Q̄+, Q̄ζ := Q̄− + ζQ+, Q2
ζ = Q̄2

ζ = 0

Example. Cubic model: W = λ
(
φ3

3
− zφ

)
Two vacua: φ± = ±z

1
2 , W± = ∓ 2

3
λz

3
2

Solitons: kinks, quasi-particles, domain walls of width Λ

φ−+(x) = z
1
2 tanh |λ||z|

1
2 x, φ+−(x) = −z

1
2 tanh |λ||z|

1
2 x

x

φ+

φ−

Λ ∼ |∂2W |−1



LG as SQM

To redefine LG model as SQM we consider the target space of SQM to be a field
space of LG model: Y = Map(Rx → X). The height functional reads:

h = −
∫ (

σ − Im
[
ζ−1W

]
dx
)

Where σ is a 1-form defined locally as dσ = i
2
gIJ̄ dφ

I ∧ dφ̄J̄ .
However there is a boundary term preserving only

Q = Qζ , Q̄ = Q̄ζ



Families of theories. Interfaces.

Interfaces: W
(
φI(x)

∣∣ za(x)
)

interpolating between two theories z
(1)
a and z

(2)
a .

W (1) W (2)

x

za(x)

W (φ|z(1)
a )

W (φ|z(2)
a )

Parameter space:

z(1)

z(2)

℘̂

h = −
∫ (

σ − Im
[
ζ−1W

(
φI(x)

∣∣∣ za(x)
)]
dx
)

We expect

H∗
(
Eh,Qζ

)
∼= H∗

(
Eh
′
,Q′ζ

)
, for h

hmtpy∼ h′

1. “Categorified” wall-crossing

2. “Categorified” link invariants



Forced solitons. Hovering solutions

Interface modify soliton equation to a “forced” soliton equation:

δh = 0 : ∂xφ
I(x) = −ζgIJ̄∂JW (φI(x)|za(x))

We would like to consider adiabatic limits:
∣∣∣ dzdx ∣∣∣� Λ−1.

Hovering solutions - are simply described by fields which, at each x are critical points
for W (φ; z(x)) for the same value of x. In equations: if φIi (x) is a critical point:

dW (φI |za(x))
∣∣∣
φIi (x)

= 0

We can denote this solution by a diagram for vacuum i:

i i

Overall solution is a sum over all vacua:

E[Ix1,x2 ]hovering =
⊕
i

i i
x1 x2



Forced solitons. Binding points

An effective x-dependent central charge for a pair of hovering solutions:

Zij(x) := W (φj
I(x)|za(x))−W (φi

I(x)|za(x))

Binding points xc are defined by an equation:

Z1(x)

Z2(x)

Z3(x) ζ

ζ−1Zij(xc) > 0

At these points a soliton solution does not break Qζ and can be bound to the
interface:

E[Ix1,x2 ] =

(⊕
i

i i

)
⊕

xc

i j

∣∣∣∣∣∣∣
 i i i j

0 j j


Composition law: Ex1,xn = Ex1,x2 ⊗ Ex2,x3 ⊗ . . .⊗ Exn−1,xn




i i i j 0

0 j j 0

0 0 k k

⊗

i i 0 0

0 j j j k

0 0 k k

 =

=


i i i j i k

j

0 j j j k

0 0 k k





LG model. Instantons.

Instantons are solution to the descend flow equation:

q̇I = −gIJ∂Jh =⇒ (∂x + i∂τ )φI(x, τ) = −ζgIJ̄∂JW (φI(x, τ)|za(x))

The Euclidean boost acts covariantly on this equation:

Uϕ :

(
x
τ

)
7→
(

cosϕ − sinϕ
sinϕ cosϕ

)(
x
τ

)
, ζ 7→ eiϕζ

This introduces migrating binding points: e−iϕζ−1Zij(x) > 0, tanϕ = dτ
dx

. Or,
re-written,

dx

dτ
= −

Im
[
ζ−1Zij(x)

]
Re [ζ−1Zij(x)]

Straight and curved ij-domain walls:

ϕij

x

τ

i j

x

τ

x0

ϕij(x0)j

i



Simple example: Airy (cubic) model

As an illustrative example we will consider Airy model with superpotential

W =
φ3

3
− zφ

There are two vacua φ± = ±z
1
2 with values of the superpotential W± = ∓ 2

3
z

3
2 . On

the parameter space z ∈ C there are three BPS chambers:

ζ−1(W− −W+) > 0

ζ−1(W+ −W−) > 0

ζ−1(W+ −W−) > 0

℘̂′

℘̂

Consider two homotopic paths ℘̂ and ℘̂′ representing interfaces:

E [℘̂] = E [℘̂′]⊕ C

∣∣∣∣∣∣∣
− 〉

⊕ C

∣∣∣∣∣∣∣
− −+ 〉

τ(x) = τ0 + b−a
π

log sin
[
π x−a
b−a

] , Q ∼
+

−

a b

τ0



Link as a tangle interface

WYang−Yang =
∑
a,I

log(za − φI)− 2
∑
I<J

log(φI − φJ ) + c
∑
I

φI

z1 z2 z3 z4
C

M3
x

We consider a link as a tangle embedded in M3 = C× Rx. x is evolution direction. A
link can be encoded in link strand trajectories za(x).
Elementary interfaces:

, , ,



Vacua

Vacuum equations ≈ Bethe ansatz equations:

∂φIW = 0 :
∑
a

1

φI − za
− 2

∑
J 6=I

1

φI − φJ
+ c = 0, ∀I

Critical points are φI = za(I) − 1
c

+O
(

1
c2

)
.

+

+

∼ za ,

−

−
∼ za

For example,
z1

z2

z3

z4

z5

7→

+ − + + −
1 2 3 4 5



Brading interfaces and grading I

Im
[
ζ−1∂φW (φ(s))φ̇(s)

]
= 0

filled vacuum

vacant vacuum

z-plane

x

z-plane

x

�: “+” vacuum, �: “−” vacuum



Braiding interfaces and grading II

Two emerging soliton solutions: [G.-Moore ’16]

za zb

All the states weighted with qPtF.
P = 1

πi
∆W , F – fermion number (η-invariant)

E


 = q

1
2

+ +

+ +

⊕ q
1
2

− −

− −

⊕ q−
1
2

− +

+ −

⊕

⊕q−
1
2

+ −

− +

⊕ q
1
2

+ −

+ −

⊕ q−
3
2 t

+ −

+ −



Cap/cup interfaces and unknot

The Euler characteristic reduce to the R-matrix for SUq(2), �⊗ �:

χ [E(R)] = q
H⊗H

2
(
1 +

(
q − q−1

)
E ⊗ F

)
Similarly we have:

E
( )

= q
1
2

−

−

+

+

⊕ q−
1
2 t

+

−

−

+

E
( )

= q
1
2 t−1

+

−

−

+

⊕ q−
1
2

+

+

−

−

The unknot is the easiest calculation. Using our rules we get the following MSW
complex:

E
( )

= qt−1

+

−

−

+

︸ ︷︷ ︸
C[Ψ1]

⊕ q−1t

+

−

−

+

︸ ︷︷ ︸
C[Ψ2]



Unknot (continuation)

E
( )

= qt−1

+

−

−

+

︸ ︷︷ ︸
Z[Ψ1]

⊕ q−1t

+

−

−

+

︸ ︷︷ ︸
Z[Ψ2]

The q-grading splits this complex in two one-dimensional subcomplexes

E1 = 0
Qζ→ Z[Ψ1]

Qζ→ 0, E−1 = 0
Qζ→ Z[Ψ2]

Qζ→ 0,

and in each of them the differential acts trivially. The fermion numbers are

F(Ψ1) = −1, F(Ψ2) = +1.

Accordingly the link homology is rank 2 and may be denoted

H∗,∗(Unknot) =
(
qt−1

)
C⊕

(
q−1t

)
C

We will generally summarize this kind of data by specifying the Poincaré polynomial:

P(q, t|Unknot) =
q

t
+
t

q
.



Example: twisted unknot

E
( )

= q−
1
2



− +

+ −
xs∪

xs∩

⊕

− +

+ −

⊕ t

xs∩

x1

− +

+ −

⊕q
− 5

2 t2

xs∩

x2

− +

+ −

We denote generators by C[Ψα], α = 1, . . . , 4, reading from left to right.

E− 1
2

= (0→ (C[Ψ1]⊕ C[Ψ2])→ C[Ψ3]→ 0) , E− 5
2

= (0→ C[Ψ4]→ 0)

We will draw explicit curved webs with a single time-translation modulus:

〈Ψ3|Qζ |Ψ1〉 = 1 ∼

xs∩

xs∩

xs∪

x1

τ0

τ

x

, 〈Ψ3|Qζ |Ψ2〉 = 1 ∼

x1 xs∩

τ0

τ

x

Thus, in the basis Ψα, the differential Qζ takes the form

Qζ =

(
1
1

)
, H0(E− 1

2
,Qζ) = C[Ψ1 −Ψ2]



Twisted Unknot (continuation) and Figure-eight Knot

H∗,∗
( )

=
(
q−

1
2 t−1

)
C⊕

(
q−

5
2 t2
)
C

Thus the Poincaré polynomial is

P
(
q, t
∣∣∣ )

= q−
3
2 t

(
q

t
+
t

q

)
For figure-eight knot (41)

calculation is more involved, however the result is in agreement with Khovanov’s
Poincaré 41 polynomial Kh(q, t) :

P(q, t|41) = q−5t3 + q−1(1 + t) + q(1 + t−1) + q5t−3

Kh(q, t|L) = P(qt, t|L)



Khovanov vs LG

z0

z1

℘̂

Claim: There is a distinguished path P̂Kh such that LG link homology complex is
isomorphic to Khovanov homology complex:

ẼKh

[ ]
= ẼKh

[ ]
⊕ qt ẼKh

[ ]
ẼKh

[ ]
= q C⊕ q−1 C

,
→

→

In terms of Poincaré polynomials we have:

Kh(q, t|L) = P(qt, t|L)



WKB analysis of LG instantons

Null WKB webs:
∮
γ λ = 0 [G. ’17]
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WKB analysis of LG instantons: soliton scattering

1 3

2
-0.4 -0.2 0.2 0.4

0.7

0.8

0.9

1.0

1.1

1.2

1

2

3 Scattering
1 + 2→ 3



Do not go deep into IR!

j

i k

E(℘̂1, ζ)

E(℘̂2, ζ)

R2
X

i k

j

(a) (b)

but

= q
3
2 t−1 ⊕


+ −

− +

⊕
xs∪

x1

+ −

− +
 ,

τ

x
xs∪ x1x0

x
xs∪ x0 x1

� 	φx1

φxs∪

x0

z1

z2

x0 + ε

z2

z1

x0 − ε

� – Yang-Yang, � – Monopole moduli space



Conclusion

• Supersymmetric quantum mechanics provides a simple physical construction of
cohomology

• Hilbert spaces of grond states of interfaces in 2d Landau-Ginzburg model on the
moduli space of monopoles are naturally bi-graded and are link invariants

• Homotopic interfaces give quasi-isomorphic families of complexes

• Landau-Ginzurg link homology is equivalent to Khovanov link homology

• One can use asymptotic analysis to count critical field configurations and
instantons in LG models

• One can easily describe invariants for higher rank groups and representations



Thank you for your attention!


