TWO-DIMENSIONAL LANDAU-GINZBURG APPROACH TO
LINK HOMOLOGY

Dmitry Galakhov
Center for Theoretical Physics, University of California, Berkeley

Workshop on quantum fields, knots and integrable systems



Setup

Link sample:

27

HOMFLY polynomials g = su(N) for a link (v; : S — M3), ¢ = e+~

P(q,a = q" |{vi, Ri}) :/[DA} <HWRi(’Yi)> e'n SCs

During the talk we will be interested mostly in Jones polynomials: N = 2.
Khovanov polynomials: bi-graded Poincaré polynomial.

(g, t) = Z ¢t?dim H™J
.3
It “refines” (categorifies) Jones polynomials J(q):
H(q,—1) = J(q)

Our goal: to give a QFT description of link homologies



Statements:

1.

Link L — interface in 2d LG theory J(L)
Hilbert spaces H(F"P) [3(L)] are invariants of link L

. LG link cohomology LGCoh(L) := @@ HF-P)[3(L)]

(F,P)
LGCoh(L) is isomorphic to Khovanov link homology KHom(L)

Plan:

~N O O~ W N

. Origin of cohomology in QFT
. Interfaces in LG model

. Instantons in LG models

. Tangles as interfaces

. Explicit examples

. Obstacles (if time permits)

. WKB analysis of LG models



Cohomology origin in QFT. Complex

Supersymmetric Quantum Mechanics (SQM). [Witten '82]
In data: Riemannian Y/, real height function h: ¥ — R

L=gr5d'd¢7 —g"70rhdsh+ grax’ Vex” — ¢""ViVih x*x7 — Rroxr 3 x7x¥x*

Perturbative ground states: Gaussian fluctuations around h-critical points. These
states span a Morse-Smale-Witten (MSW) complex as a vector space:

Fermion number F (homological grading): F,, = %(n+ (p) —n—(p))



Cohomology origin in QFT. Differential

However H = {Q, Q}, therefore Q|Ground State) = 0, Q% =0

(@'1Qlp) = 6Fp,  Fp+1#(Instantons p — ')

Instantons : gradient flows

i = —g™dh

Hilbert space of non-perturbative ground states:

= H7(€,Q) =

Ker Q
For finite-dimensional compact Y H = Hj (V).

Im Q

N



For example...

1%

E(B) = C[1]|y1) ® C[1][yp2) ® C[0]|¢p3) ® C[—1]|¢)a)
(W3lQY1) = [=] =1, (Y3|Qlv2) = [=] =1, (YalQls) = [=] - [=] =0

H(B) = H*(£(B), Q) = C[1]|¢h1 — p2) & C[—1][¢ha)




LG theory. Setup

2d N = (2,2) Landau-Ginzburg theory: [Gaiotto-Moore-Witten '15]
Kahler manifold X: coordinates ¢/, I =1,...,N.

Holomorphic superotential W : X — C

The potential term: V = [VW|? = Critical points of W — vacua i € V
Any finite energy field configuration approaches vacua at spatial +oo:

Central charge of this configuration: Z;; = W; — W;
Bogomolny-Prasad-Sommerfeld (BPS) bound: E;; > |Z;;|
This bound is saturated by solitons.



LG theory. Solitons
Solitons are solutions to
0u6" = LW,
Jim of(@)=¢i,  lim ¢'(x)=

Where phase (;; =

‘Z ‘ These field configurations preserve ¢-SUSY Q.. , QC
ij ij ! ij

Qi =Q-+¢'Q4, Q=0Q-+(Q+, QI=0Q7=0
Example. Cubic model: W = X\ <— — zd))

Two vacua: ¢+ = :I:z2 Wy = F3 )\zz
Solitons: kinks, quasi-particles, domaln walls of width A

1 1 1 1
¢—4(x) =22 tanh [A||z|2 2, ¢p4—(x) = —22 tanh |||z 2z

T

A~ |02




LG as SQM

To redefine LG model as SQM we consider the target space of SQM to be a field
space of LG model: Y = Map(R; — X). The height functional reads:

h:—/(o—lm [¢~'W] da)

Where o is a 1-form defined locally as do = %glj do! A d&j.
However there is a boundary term preserving only

Q=9 Q=9



Families of theories. Interfaces.

Interfaces: W (¢! ()| za(2)) interpolating between two theories 2V and 22,
w w® Parameter space:
1
[
R A
7’

Z{L(m))] dac)

We expect

h:—/(a—Im [C71W(¢>I($)
H* (" 0c) = 1 (£",Q)), for k2w

1. “"Categorified” wall-crossing

2. “Categorified” link invariants



Forced solitons. Hovering solutions

Interface modify soliton equation to a “forced” soliton equation:

Sh=0: 0.¢'(x) =—Cg",W (¢! (2)]2a(z))

We would like to consider adiabatic limits: Z—; < AL

Hovering solutions - are simply described by fields which, at each x are critical points
for W (@; 2(z)) for the same value of z. In equations: if ¢! (z) is a critical point:

aw (@ za(@))] , =0

We can denote this solution by a diagram for vacuum i:

7 [

Overall solution is a sum over all vacua:

hovering __
8[31‘1’12] _@ €1 T2

7




Forced solitons. Binding points

An effective z-dependent central charge for a pair of hovering solutions:
Zij(x) := W(e;" (@)]za(2)) = W(¢:' (2)]2a(2))

Binding points z. are defined by an equation:
Z3(w) ¢
Z1(z) ¢1Z(ze) >0
Za(x)

At these points a soliton solution does not break Q. and can be bound to the

interface:
) ) i i i J
g[jm,m}:<@ L 4 )@ Z_._] ] )
i T 0 J J

Composition law: €z z, = Exq,20 @ Exoyay Q... ®Expy_1,2n






LG model. Instantons.

Instantons are solution to the descend flow equation:

i’ = —g"0sh = (9: +10;) ¢ (2, 7) = —Cg" O, W ($1 (z, 7)|za(x))

The Euclidean boost acts covariantly on this equation:

) T cosp —sing T i
U“O'(T)'_)(sinup COSL,D)(T)’ Crrere

This introduces migrating binding points: e~1¢¢~ IZ” (z) >0, tanp = ¢~. Or,
re-written,

dr Im [ - }

dr = Re ¢ ( )]

Straight and curved ij-domain walls:

T




Simple example: Airy (cubic) model
As an illustrative example we will consider Airy model with superpotential

3
W—%*Z(b

1 3
There are two vacua ¢+ = +22 with values of the superpotential W1 = :F%zi. On
the parameter space z € C there are three BPS chambers:

CTI(Wy —Wo)>0

CTHW- =W4) >0

YWy —W_)>0

Consider two homotopic paths ¢ and ¢’ representing interfaces:

£l =0 C } > ﬁ:> -

7(z) =70+ 2 >—“logsin [W“g g]




Link as a tangle interface

WYanngang = ZIOg(Za - (bl) -2 Z 10g(¢1 - ¢J) + CZ¢I

a,I I<J I

Ms —

22 \%3

We consider a link as a tangle embedded in M3 = C x R;. x is evolution direction. A
link can be encoded in link strand trajectories z, (z).

Elementary interfaces:
K- X-MN-U



Vacua

Vacuum equations = Bethe ansatz equations:

Dyt W =0: Z¢1 22 —+c=0, VI

J;u

Critical points are ¢! = z,(;) — % +0 (c%)

+ —_
X O | @)
~ Za ~ Za
+ _
For example,
% Oz21
O z2
X O=z3 —
X 021 .
0 25 1 2 3 4 5



Brading interfaces and grading |

Im [¢10,W (6(5))(s)] = 0
filled vacuum ——% 0

vacant vacuum ——e O

~ o

MW “+" vacuum, B: “—" vacuum




Braiding interfaces and grading Il

Two emerging soliton solutions: [G.-Moore '16]
o
\_/ 2y

All the states weighted with ¢FtF.
P= %AW, F — fermion number (n-invariant)

(R H R
e e



Cap/cup interfaces and unknot

The Euler characteristic reduce to the R-matrix for SUg(2), O® O:

XER)=q¢" 5" (14 (¢—q ) EQF)

Similarly we have:

g(m):q% -I_:f ®q ot ;_l__:—f

5<U):q%t‘1 l:i’: ®q 3 Ji_[_

The unknot is the easiest calculation. Using our rules we get the following MSW

complex:
- + - +
£(O)=a H e H
+ - + -
——

Cl¥q] C[w2]



Unknot (continuation)

-+ - +
==
+ - + -
Z[¥q] Z[¥2]

The g-grading splits this complex in two one-dimensional subcomplexes

g=0B 7w B0, e.1=0%zw,) %o,
and in each of them the differential acts trivially. The fermion numbers are
F(U1)=-1, F(¥2)=+1.
Accordingly the link homology is rank 2 and may be denoted
H**(Unknot) = (¢t™')C® (¢"'t) C

We will generally summarize this kind of data by specifying the Poincaré polynomial:

+

P(q,t|Unknot) = %

Q|+



Example: twisted unknot

- + - + - + - +
zh ) zf
1 5
ad
+ - + - + - + -
We denote generators by C[¥,], o = 1,...,4, reading from left to right.
57% = (0 = (C[¥1] ® C[W2]) — C[¥3] — 0), 57% = (0 = C[¥y] — 0)
We will draw explicit curved webs with a single time-translation modulus:
T 1 TH - z TS
(U3|Q¢|W1) =1~ TO*/ v (U3|QcWa) =1~ To»———:
s : S 4

Thus, in the basis ¥, the differential Q. takes the form

Q¢ = ( } )7 Ho(g,%ng) =C[¥; — ¥3]



Twisted Unknot (continuation) and Figure-eight Knot

I ( Z ) — (q*%t—l) Co (q*%ﬁ) C

Thus the Poincaré polynomial is

(o B )i+

For figure-eight knot (41)

calculation is more involved, however the result is in agreement with Khovanov's
Poincaré 4, polynomial Kh(g, ) :

Plq,tl41) = ¢ 3 + ¢ ' A+t +qQ +t7) +¢°t73

Kh(g, t|L) = P(qt, t|L)



Khovanov vs LG

Claim: There is a distinguished path Pkn such that LG link homology complex is
isomorphic to Khovanov homology complex:

Ekn [\]—&(h [) (]GBqt SKh O O OO
ATCEARSE s Mot

In terms of Poincaré polynomials we have:

Kh(q, t|L) = P(qt, t|L)



WKB analysis of LG instantons
Null WKB webs: § X\ =0 [G. '17]

PO

< w(=1) -
N




WKB analysis of LG instantons: soliton scattering

! >§'x Scattering
1+2—3




Do not go deep into IR!

T
b
z x
S
g 0 T1
E 2
¢ ’
O é ¢:c1 O D) 22 0 22
+ + + X
xg x0 x1 xro — € xo xo + €

B - Yang-Yang, B — Monopole moduli space



Conclusion

e Supersymmetric quantum mechanics provides a simple physical construction of
cohomology

o Hilbert spaces of grond states of interfaces in 2d Landau-Ginzburg model on the
moduli space of monopoles are naturally bi-graded and are link invariants

o Homotopic interfaces give quasi-isomorphic families of complexes
e Landau-Ginzurg link homology is equivalent to Khovanov link homology

e One can use asymptotic analysis to count critical field configurations and
instantons in LG models

e One can easily describe invariants for higher rank groups and representations



Thank you for your attention!



