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Let us consider a non-relativistic particle in a confining cosh 
potential, described by the Hamiltonian

Motivation: a simple spectral problem

The corresponding stationary Schroedinger equation is the 
modified Mathieu equation. In addition, this is the Hamiltonian of 

the N=2 periodic Toda lattice. We have an infinite, discrete 
spectrum. How would you calculate it? 

One can try the WKB approximation, which involves the 
spectral curve 
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At leading order, one finds the standard Bohr-Sommerfeld 
quantization condition

This is just the first term in the all-orders WKB method [Dunham]

Another quantization condition for this problem was found 
by Gutzwiller in his study of the quantum Toda lattice. 

However, it is a complicated one. 

However, this is a divergent, asymptotic expansion, which 
requires Borel resummation (and maybe exponentially small 

corrections in    ). ~
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A completely different approach was proposed by Nekrasov and 
Shatashvili (NS). Let us consider the NS limit of the instanton free 

energy of 4d, N=2, SU(2) Yang-Mills theory

FNS(a, ~) = Fp(a, ~) +
X

n�1

Fn(a, ~)⇤4n

This is a well-defined function for any    and sufficiently large a.
Then, the NS exact quantization condition is given by
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supplemented by the “quantum mirror map” a = a(E, ~)

This is in fact a convergent resummation of the all-orders WKB 
expansion!

~



From 4d to 5d

Let us consider now the operator

This is the Hamiltonian of the N=2 relativistic Toda lattice. 
One could think that its spectrum can be solved by the NS 

limit of the instanton free energy for the SU(2), 5d super YM 
theory:

t = t(E, ~)
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quantum mirror 
map [ACDKV]

O = ex + e�x + ey + e�y



FNS(t, ~) = Fp(t, ~) + cot
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Since this resums the perturbative all-orders WKB expansion, 
the cure to this disease has to be non-perturbative in    

[Kallen-M.M. 2013]

~ 2 2⇡QUnfortunately, there is a dense set of poles at 

A problem in 5d

~

What is then the right, exact quantization condition for the 
relativistic Toda lattice? (no analogue of Gutzwiller 

quantization here).

To answer this (and other) questions, we will construct a 
general (spectral) theory of quantum mirror curves for toric CYs



Toric CYs and their mirrors

The simplest yet non-trivial CY threefolds are toric CYs, which 
are noncompact. They can be described by convex lattice 

polygons. Their mirror manifolds reduce to algebraic curves

    Example: the 
canonical bundle over F0

“local      ”F0

(1, 0)(1, 0)(�1, 0)(�1, 0)

(0,�1)(0,�1)

(0, 1)(0, 1)

W
X

(ex, ey) = 0

ex + e�x + ey + e�y +  = 0

given by the Newton polynomial of the polygon.

W
X

(ex, ey) =

inner point of the 
polygon



We will be focus on the (conventional, unrefined) topological 
string on these geometries. Their genus g free energies can be 
put together in a formal (and asymptotically divergent) series

F (t, gs) =
1X

g=0

Fg(t)g
2g�2
s

moduli of the CY
string coupling 

constant

When computed in the so-called large radius frame, the 
genus g free energies          are generating functionals for the 

Gromov-Witten invariants of the CY

Topological strings

Fg(t)



Curve             Operator            Wavefunction          

Quantum curves

There are by now many theories of “quantum curves”. They 
do not really use Hilbert spaces and they focus on formal 

WKB-like solutions. They tend to use fancy math (opers, D-
modules, …). 

Our approach will be different. We will use an old-fashioned 
framework (compact operators on          , Fredholm theory), 
and we will look for actual solutions (spectra, eigenfunctions).

L2(R)



Operators from mirror curves

It was first proposed in [ADKMV]  that mirror curves can be 
“quantized” by promoting x, y to canonically conjugate 

Heisenberg operators

W
X

(ex, ey) ! O
X

[x, y] = i~

For simplicity, we will focus on mirror curves of genus one. 
Weyl quantization of the mirror curve (without the inner 

point) produces a self-adjoint operator on                        

~ 2 R>0

L2(R)

For example, for local      we find F0

O = ex + e�x + ey + e�y



Many examples from local del Pezzo CYs

S O
S

(x, y)

P2 ex + ey + e�x�y

F0 ex + ⇣e�x + ey + e�y

F1 ex + ⇣e�x + ey + e�x�y

F2 ex + ⇣e�x + ey + e�2x�y

B2 ex + ey + e�x�y + ⇣1e�y + ⇣2e�x

B3 ex + ey + e�x�y + ⇣1e�x + ⇣2e�y + ⇣3ex+y

O(KS) ! S

where S is a del Pezzo complex algebraic surface 

Operators from mirror curves

Examples from local surfaces



The operator                           ⇢X = O�1
X

is positive definite and of trace class

Theorem 
[Grassi-Hatsuda-M.M., 

Kashaev-M.M.,                
Laptev-Schimmer-Takhtajan]

on                          L2(R)

e�En , n = 0, 1, · · ·discrete spectrum!

similar to confining potentials in Schrödinger theory 

~ = 2⇡O = ex + e�x + ey + e�y

E0 = 2.881815429926296...

E1 = 4.25459152858199...

E2 = 5.28819530714418...

Example: with

Trace class operators



Spectral theory of trace class operators

The spectral information of these operators can be collected in 
various ways.  We have the spectral traces 

and the Fredholm (or spectral) determinant

“fermionic” 
spectral traces

⌅X() = det(1 + ⇢X) = exp
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Z` = Tr ⇢`X =
X

n�0

e�`En , ` = 1, 2, · · ·



Once the Fredholm determinant is known, the spectrum can 
be in principle obtained by looking at its zeros

⌅X

�
 = �eEn

�
= 0

This can be interpreted in terms of the StatMech of non-
interacting fermions:

⌅X()
grand canonical 

partition function

ZX(N, ~)
canonical partition function for 
a Fermi gas of N particles with 

one-particle density matrix ⇢X

 = eµ fugacity



Extracting the invariants
  How do we extract geometric information from spectral 
theory? Let us consider the following ’t Hooft limit for the 

fermionic spectral traces

N ! 1
~ ! 1

N

~ = � fixed

ZX(N, ~)

We conjecture that the asymptotic expansion of the 
fermionic spectral traces, in the above ’t Hooft limit, is the 

genus expansion of the topological string (in the conifold or 
“magnetic” frame):

FX(N, ~) = logZX(N, ~) ⇠
X

g�0

Fg(�)~2�2g



This is a falsifiable statement which has been tested in massive 
detail in the last two years. No counterexamples found.

gs =
4⇡2

~

Note that the conventional topological string coupling 
constant is related to the Planck constant by

This result provides in particular a non-perturbative completion 
of the topological string in terms of a one-dimensional 

quantum mechanical model. 



⇢XThe integral kernel of the operator       can be written 
explicitly, for many geometries, in terms of Faddeev’s 
quantum dilogarithm [Kashaev-M.M.]. This leads to analytic 

computations of the (fermionic) spectral traces in many cases - 
a rare luxury in Quantum Mechanics!

A matrix model realization

ZX(N, ~) = 1

N !

Z
dx1 · · · dxN deti,j⇢X(xi, xj)[Fredholm, 

1903]

We can write the fermionic spectral traces as explicit 
matrix integrals 

This can be used to extract their large N asymptotics and 
verify our conjecture [M.M.-Zakany,Kashaev-M.M.-Zakany]



We have a stronger conjecture which gives an exact formula 
for the Fredholm determinant itself. We first introduce the 

“grand potential” of the toric CY

A conjecture for the Fredholm determinant

FGV(t, gs) =
X
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Gopakumar-Vafa 
invariants

resummation of 
WKB, calculable 
from NS limit

non-perturbative in  ~

JX(µ, ~) = JWKB(µ, ~)| {z }+FGV
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 can be calculated systematically, as an expansion at
large radius, by using BPS invariants of the toric CY.

This type of Zak transform has been ubiquitous in topological 
strings/gauge theory [Nekrasov-Okounkov, ADKMV, DHSV, Eynard-M.M.]

JX

Conjecture: The Fredholm determinant is a Zak transform of the 
“grand potential” of X:

⌅X() =
X

n2Z
eJX(µ+2⇡in)

Many, many analytic and numerical tests of this conjecture. 
Numerical tests typically with precision

10�40 � 10�500



The spectral determinant is an entire function of  

Therefore, we have constructed an entire function on the 
moduli space of the CY. In the ’t Hooft limit

Is this the “wavefunction on CY moduli space" conjectured 
by Witten in 1993?

⌅() ⇠ exp

�
F0(t)/~2

�

~ ! 1
µ ! 1

µ

~ = t fixed

has the asymptotics
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We can now use the zeros of the spectral determinant to 
obtain an exact quantization condition for the spectrum 

[Grassi-Hatsuda-M.M.]
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       GV: Non-perturbative corrections 
which cancel the poles! 

 WKB
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In fact, the non-perturbative corrections can be written in 
closed form as [Wang-Zhang-Huang, Grassi-Gu] 

There is an “almost” modular duality in the theory

~ ! 4⇡2

~

This is related to the modular double structure typical of 
Weyl (exponentiated) operators in QM [Faddeev].

Modular duality



The self-dual point

~ = 2⇡

⌅()

⇠ / t@2
t F0 � @tF0

Example:

In particular, the theory simplifies enormously at the self-dual 
or “maximally supersymmetric” point

Here, the theory is in a sense semiclassical, or one-loop 
exact. Everything can be written down in terms of      

F0(t), F1(t), F
NS
1 (t)

In general, we have a “quantum” theta function

= exp
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A 4d corollary with a proof

Interestingly, our 5d results have new consequences in 4d [Bonelli-

Grassi-Tanzini]: the (unrefined!) Nekrasov-Okounkov dual partition 
function for SU(2) SYM  

ZNO(a,⇤) =
X

n2Z
Z(a+ n,⇤)

is in fact the Fredholm determinant of the following trace class 
operator

⇢(x

1

, x

2

) =

e

�4⇤

2
(cosh(x1)+cosh(x2))

cosh

�
x1�x2

2

�

This can be proved by using a common connection to 
Painleve III



Wavefunctions
What about wavefunctions? In the context of quantum curves/

topological recursion, one can construct a “canonical” 
wavefunction, which in the case of mirror curves encodes open 

GW invariants

 

top

(x, t, ~) = exp
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This is not a solution (even formal) of the difference equation

(OX + ) (x) = 0

It agrees with the formal WKB solution                       at 
leading order, but the subleading orders are different

 WKB(x, t, ~)



We have conjectured recently that the exact wavefunctions of 
the trace class operators are given by

 

exact

(x, µ, ~) =
X

�=±

X

n2Z
 �(x, µ+ 2⇡in, ~)

 �(x, µ, ~) =  

�
WKB

(x, t(µ), ~) �
top
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� labels the two sheets of the Riemann surface

The resulting function is entire on the x-plane and belongs to 
      when  = �eEnL2(R)

A conjecture for the wavefunctions



In the self-dual case, the exact wavefunction is closely 
related to a Baker-Akhiezer function on the mirror curve. 

Once evaluated at the physical energies, it is very similar to 
a (one-loop) WKB wavefunction

Abel-Jacobi 
map

 

exact

(x, = �e

E

, 2⇡) =

1

�(x)

1/2

X

�=±
exp


i�

2⇡

✓Z
x

x

0
dy(x

0
)� t(E)u(x)

◆�

discriminant 
of the curve

but has no singularities at turning points! 

Wavefunctions in the self-dual case
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The higher genus case

A higher genus mirror curve has       moduli      1, · · · ,g⌃

We can always write the curve as     

O(0) +
g⌃X

i=1

iPi = 0

O(0)

 
1 +

g⌃X

i=1

iAi

!
Weyl quantization

⌅(1, · · · ,g⌃) = det
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g⌃X

i=1

iAi

!
Generalized 
Fredholm 

determinant    

g⌃

A1, · · · ,Ag⌃

trace class 
operators



⌅(1, · · · ,g⌃) =
X

Ni�0

Z(N1, · · · , Ng⌃)
N1
1 · · ·Ng⌃

g⌃

logZ(N1, · · · , Ng) ⇠
X

g�0

Fg(�1, · · · ,�g)~2�2g

~ ! 1
Ni ! 1 Ni

~ = �iin the ’t Hooft limit

fermionic traces

The generalized Fredholm determinant can be determined from 
the BPS invariants of the toric CY. In addition, the fermionic 
traces reconstruct the topological string genus expansion:



A higher genus example

A1 =
�
ex + ey + e�3x�y

��1
e�x

A2 =
�
ex + ey + e�3x�y

��1

C3/Z5Resolved orbifold
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Cluster integrable systems

The previous quantization scheme produces      trace class 
operators on           . We reconstruct the topological string 

from their spectral traces.
L2(R)

However, the same CY geometry leads to a GK or cluster 
integrable system with      mutually commuting Hamiltonians 

[Goncharov-Kenyon], corresponding to the moduli 
1, · · · ,g⌃

g⌃

g⌃

The eigenvalues of the Hamiltonians form a discrete set in 
moduli space (associated to      integer quantum numbers)    g⌃

When the CY engineers a 5d U(N) gauge theory, the cluster 
integrable system is the relativistic Toda lattice of N particles. 



One can write down exact quantization condition for these 
eigenvalues, generalizing the results for genus one [Franco-Hatsuda-

M.M.].This solves (conjecturally) the spectrum of cluster 
integrable systems. 
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Conclusions

The spectral theory of quantum mirror curves solves two 
problems simultaneously. On one hand, it uses spectral theory 

to provide a well-defined non-perturbative completion of 
topological strings on arbitrary toric CYs. On the other hand, it 
uses topological string theory to solve a new, infinite family of 

trace class operators associated to mirror curves. 

As a bonus, we obtain exact (and explicit) quantization 
conditions for cluster integrable systems.  

Many open problems, in particular concerning the 
eigenfunctions.

Obvious open problem: Prove all this!  


