Validating access control policies with Alloy

Waél Hassah Luigi Logrippa-? Mahdi Mankal
!Département d’informatique et ingénierie, Univegsitt Québec en Outaouais
2School of Information Technology and Engineeringivérsity of Ottawa

ABSTRACT. We present two projects that are beingettged in our research group.
The first is on inconsistency detection in XACMLlIlipees. The second one develops a
novel access control paradigm, process-based acoaes®l, and has inconsistency de-
tection as part of its goal. The model analyzeoAls being used in both projects.

1. Background and motivation

The old way of controlling computing systems washiayd-coding all control in mono-
lithic programs. Then the concept of applicationgsam came up pre-packaged with a
number of features. Everybody now knows how tovatd or deactivate features by
checkbox selection. In telephony, the IntelligergtWork architecture allows users to
choose and possibly build their telephony featuwats of prefabricated components.
However when the IN concept was introduced some gsbrcritical threshold was
crossed, because the phenomendieatiure interactiorwas discovered. We had a highly
distributed system that was constructed from inddpat components, each capable of
complex independent behavior. The features compiostiis way can produce behavior
that can contradict thatentionsof coexisting features, or basic system requirdmen

In many cases, more flexibility in customizationdissired than what can be obtained by
checkbox selection, however the full power of agpamming language is not required.
We are then in the area pdlicy languagesFirewalls and routers can be programmed by
using policy languages. Internet telephony can tmgnammed by languages such as
CPL, the Call Processing Language[l]. The polayguages that apply in these areas
are specialized languages, that specify what tee exgpects in various cases. The power
of these languages is usually rather constrainetth im order to simplify programming
and in order to prevent certain behaviors. Howéveractionsare still possible, in fact
they acquire a whole new dimension [3][4].

Many types of interactions can be explained in teghinconsistencies in sets of rules.
Typical examples are the following: one rule le&m$locking a call, another that is si-
multaneously enabled leads to forwarding it; onle allows a certain user to access a
certain document, another rule forbids such acamss;rule in the firewall lets in a cer-
tain packet, another rule blocks it. Therefore, ynature interactions can be detected
by looking for inconsistencies in sets of rules.

In some systems, many policy interactions are talega of by priority mechanisms that
are built in the policy execution system. For exlnm telephony features, the first rule
that matches a condition may be applied and othéowiing rules that match the same
condition are then ignored. However, this does saive the problem for two reasons.
The first reason is the fact that the coexisterfdevo conflicting rules in a system could
be an error and therefore should be brought tattemtion of the user. The second rea-
son is the fact that if the inconsistencies are twueombination of rules that reside in
different locations, then it may be very diffictitt ensure that only one of these rules is

applied, and even if this is possible, it may betry to the intention of one of the par-
ties involved.

In this paper, we propose an approach to poligraation detection that is based on the
use of a logical model checker. The specific toelpwopose is Alloy [5].

2. Access control policies

Access control policies are policies that deternwi®, and under what conditions, can
access certain systems resources, especially elstarces. Firewalls are network level
mechanisms for enforcing access control, and sdntieeoconcepts discussed below ap-
ply to the analysis of firewalls. However we arainly interested in higher level lan-
guages, where access control rules can be speriftedms that are directly related to the
roles and purposes of users. RBAC (role-based aamastrol) [7][9] is a well-known
access control paradigm, and the paradigms welisituss below intend to be more gen-
eral than RBAC, in the sense that the latter caexipeessed in them.

The practical problem here is that access contbtips are often complex, difficult to
understand, and developed incrementally. They bdlladministered by lawyers, clerks,
and other people who won't be necessarily compliterate, so they must be made man-
ageable for these people. Hence, methods anddomlseeded to identify and report se-
mantic errors.

We are pursuing two research areas, where the dectnis more ambitious and longer-
term

1) Analysis of access control policies expressed & @ASIS standard XACML
language

2) Study of new access control methods, namely ‘@E®d&ased’ ones.
2.1 Inconsistencies of policies expressed in the XACML language

XACML, the eXtensible Access Control Markup Langeamtends to be a language for
the expression of a wide range of access conti@dies. It is defined as a set of XML
schemas .[12]

A simple example of rules expressible in XACML e tfollowing (where X is the URL
of a XML file):

* Rulel: A person may read any medical record indimamespace for which he or
she is the designated patient

* Rule2: A person may read any medical record intimamespace for which he or
she is the designated parent or guardian, and fichwthe patient is under 16
years of age

* Rule3: An Administrator shall not be permitted éad or write medical elements
of a patient record in the X namespace.

It is easy to see that when the subject is bothiradirator and patient, both permit and
deny responses are allowed by the rules for Xhdukl be noted that XACML has meth-
ods to take care of such conflicts. These havestieexplaining names of “deny-
overrides”, “permit-overrides”, “first applicablegnd “only-one applicable”. However,

as mentioned, conflicts should be brought to thent&ibn of the user because the user
may be unaware of them, leading to unintended aabessions.

Although a very simple example had to be seleabedhiis brief paper, clearly the use of
automatic methods will enable the discovery of mowre involved inconsistencies, as
are possible in sets of policies containing hunsliidules.

We have defined the semantics of XACML in termshaf Alloy notation, and shown the
feasibility of the approach. We are completing Wk by implementing an automatic
translator from XACML to the Alloy notation. Aslgy-product of this research, we have
also developed a translator from XACML notatiorpiat more user-friendly natural lan-
guage notation that can be used in a user inteffaggenerating XACML scripts.

2.2 Process-based access control and inconsistency detection

This second project goes well beyond validation iatehds to first develop a new access
control paradigm. The latter is based on modeknoérprise processes.

Using high level policies, enterprise control syséewill soon be self managing [2][6].
High level policies will be decoupled from entegaristructural elements, such as roles,
and applied to processes. While policies deliver ghrpose required by a designer, the
governance model, thus created, is prone to antgigtomplexity, and interactions. In
this project we will show how to help enforce p@i reduce complexity, and detect
interactions in enterprise privacy management syste

In the past, several methods have been used toreagtterprise requirements. ebXML,
XACML [12], and EPAL [8] are good examples of pglianguages that implement en-
terprise policies. RBAC helped reduce complexitydegoupling users from permissions
and grouping them into roles [7][9]. RBAC has semted in representing hierarchical
organizations that are divided by function (examfifance, accounting, manufacturing);
however, it is less successful at capturing orgdrns that are based on service, prod-
uct, or activity. (Ex: Loan Application), which ménclude several people from different
departments. All these techniques are restrictddrictional enterprises and not process
(Activity) based organizations. None of thesghteéques or languages address the issue
of policy interactions.

We propose the use of process-based access-comtbbds in the specification of pri-
vacy systems. A process has a target usuallyjsabbken into discrete steps. Each of
the steps can be assigned to a role with an acigggs We show that a process-based
model, including roles, actions, and permissioas, @orrectly represent policy intent and
hence enable enforceability of privacy policies.e ¥how how such a model can be de-
scribed in UML and then we show how policy interaes in the model can be detected
by using an analyzer such as Alloy.

Our philosophy: By grouping business activitiepmocesses, we can specify how roles
and resources relate in a business context. Adwpiling the set of processes, we attach
one or more policies to each process. A policycifies access rights of roles participat-
ing in processes. After analysis, a semi-formallUModel is created. The model is
translated into Alloy and interactions and incotesisies are detected.

In order to address requirements of the evolvingrgnise, one that is focused on busi-
ness activities rather than structure, the pragebtoken down into three stages: Our first
goal is to find a meta-model that captures entegpspecifications. In stage two, we cre-
ate a model following the methodology, this shotdduce complexity. In stage three,
we translate the model into a formal language tofwé, and to identify conflicts that
can then be removed.

This technique has already been demonstrated oa sorall examples, and we are now
exploring its applicability in a more general s&iti Issues to be addressed are delegation
and separation of concerns. Delegation occurs vehaser assigns his role to another
person, separation of concerns occurs when a sisienied access to two resources at the
same time.

The concept of separation of concerns is imporitahe banking industry. One of its
applications is that a principal is not allowedttimbine access to specific functionalities.
Should these capabilities be combined, a violatiba policy may occur. For example,
an employee cannot have access to customer adav@ésgedit card information. Such a
rule is general and applies to the Credit Card gssing process. However, one of the
tasks of accepting a new card includes the maibihthe credit card to the consumer.
Such a process violates the conditions set by theegs. In this scenario, a local policy
violates a more general policy. The Verify Addression, which is a part of the Mail
Card process, violates the condition set forthigy@redit Card process.

The concept oprocess ontologyas an important role in our approach. It defities
organization as a tree of processes. Ontologa@mally described as the structure of the
domain, define concepts and relationships. Eacbgss is a group of transactions; how-
ever granular, transactions (actions) follow aaiarivorkflow and have a specific pur-
pose. Process ontology is an alternative to icadit Role Based structure. In our enter-
prise mapping to processes, roles participateangsses and policies govern processes.

The ontology provides us the structure that defthesorganization. It offers us the abil-
ity to localize policies by presenting scope. 8imcpolicy is attached to a process, its
scope is defined by the process and its sub prese#s second advantage of an ontology
is that it can decouple organizational structuemfrworkflow structure. The gap be-
tween both is important because when we allow Adespen file F as a part of his organ-
izational role structure, Alex will have accesdile F at all times, and can use it regard-
less of her job function. However, if she was @gssd file F as a part of process Loan
Application, then the permission is only availabiging the sequence of operations lead-
ing to a Loan Application, therefore flow has béelfowed and context is achieved.

3. The Alloy system and its use for the detection of inconsistencies

As mentioned, the logic engine being used in oojgats is MIT’'s Alloy[5]. Alloy is a
‘model’ or ‘constraint’ analyser. It allows to exgss systems as sets of logical constraints
in a logical language based on standard first-ol@tgc. As well, when creating a model
the size the system must be specified (for exanmol&, many users, how many subjects).
Alloy then compiles a large Boolean matrix for tenstraints, and it can be asked to
check if a model exists, or if there are countengias.

The advantage of Alloy with respect to a theoreover is that the latter usually requires
human interaction and direction in order to spetifgorems to be proved and to com-
plete the proofs. Alloy instead is fully automaéind in all the examples we have tried
has always terminated with a result. It is truat the problem of satisfaction of Boolean
tables is NP-complete. However, on the one hanthyAlses many optimizations and
heuristics; on the other hand, the complexity ofddihplete problems depends on the
number of variables, and in this area there arallysiew.

One of the main questions in policy systems isgyotiompliance. This is important in
the privacy domain, because an organization neegsowve that its operations are com-
pliant with a set of policies. A prerequisite fmnapliance to a set of policies, is having a
system that is void of interactions. Alloy canused to construct the model, and verify
its logical consistency. In order to prove compdi@ to the set of policies, they need to
be bundled in a module, the module is asserted Aflog will produce a result specify-
ing whether the module is compliant to the systesscdbed.

The first step in using Alloy is to define the datantainers. This is equivalent to defin-
ing classes in an object oriented model. The skstep is to create relationships. Rela-
tionships can be used to specify membership. kameple one can specify that each set
of employees has exactly one manager, and therafomne can be left without a man-
ager. By using relationships it is possible torespnt the ontology of an organization
and access rights. For our separation of conaguestion, for example, the following
statement:

(no enpl oyee->processA & enpl oyee->ProcessB)

suffices to stipulate that no one employee whodtagss to Processes A can have B con-
currently.

The third step is to group the privacy statemetitias that need be verified in a module.
The user can then issue the statement

(assert Modul e_My_Policies, nmanager 3, enployee 4, and printer 6).

Such a statement will populate a world with theotxaumber of entities and a random set
of relationships. Alloy can come back with thewaesthat the module satisfies the sys-
tem or it may come back with a counter-example rilgisg a case in which these poli-
cies fail. It is important to note however thatoyd may not be able to return a counter-
example, because it is constrained to a specifithau of instances of each entity.

The examples discussed in this paper, and of caursember of others, were success-
fully run under Alloy.

4. Conclusion

Access-control governance of enterprise using gslicequires a methodology for speci-
fication and verification. Our process control rabdan capture privacy requirements
and deliver user intent by setting context (theotmgy). Alloy can verify system integ-
rity and can detect interactions in a constraimete. Future work requires the creation
of a policy language set that can be translatedAtiby, in addition to formal refinement
methodology using our enterprise meta-model.

We are also planning to assess other tools besidg. A

References

[1] J. Lennox, X. Wu , H. Schulzrinne, Call Processirajmguage (CPL): A lan-
guage for User Control of Internet Telephony SexsjdETF RFC3880, October
2004.

[2] J. Kephart, D. Chess, The vision of Autonomous Qaimg, Computer Journal,
IEEE computer society, 41-50, January, 2003.

[3] S. Reiff-Marganiec and K. Turner. A Policy Architere for Enhancing and
Controlling Features, Proc. Feature InteractionBalecommunication Net-
works VII, 239-246, I0S Press, Amsterdam, June 2003

[4] P.Dini, A.Clemm, T.Gray, F.J. Lin, L. Logrippo, Beiff-Marganiec. Policy-
enabled Mechanisms for Feature Interactions: Re&ipectations, Challenges.
Computer Networks, 45 (5), 2004, 585 - 603.

[5] D.Jackson. Alloy: a lightweight object modellingtatton. ACM Transactions
on Software Engineering and Methodology (TOSEM)2.2002) 256 - 290

[6] V. Thurner, A formally founded description technegior business processes,
Technical Report, Technical University of Municheit@any, 1997.

[7] D. Ferraiolo, D. Kuhn, R. Chandramouli, Role-Bagedess Control, Artech
House Publishers, April 2003.

[8] M. Schunter Ed., Enterprise Privacy Authorizatimnguage (EPAL 1.1),
http://www.zurich.ibm.com/security/enterprise-pityéepal, Accessed Jan.
2004.

[9] Q. He, Privacy Enforcement with an Extended Roled8lAccess Control
Model, Report North Carolina State University, A2003.

[10] G. Karjoth and M. Schunter, A Privacy Policy Modi@ Enterprises ,5th IEEE
Computer Security Foundations Workshop, pp.271-B8&2E, 2002.

[11] N. Zhang, M. Ryan, D. P. Guelev, Synthesising \fedifAccess Control Sys-
tems in XACML, FMSE’04, October 29, 2004, Washingt®C, USA.

[12] XACML specification, OASIS, http://www.oasis-
open.org/specs/index.php#xacmlv1.0, Accessed 2004.

