
To appear at ACM SACMAT 2002

A Lightweight Approach to Specification and Analysis of
Role-based Access Control Extensions (2)

Andreas Schaad
Department of Computer Science

University of York
York, United Kingdom

andreas@cs.york.ac.uk

Jonathan D. Moffett
Department of Computer Science

University of York
York, United Kingdom

jdm@cs.york.ac.uk

ABSTRACT
Role-based access control is a powerful and policy-neutral
concept for enforcing access control. Many extensions have
been proposed, the most significant of which are the de-
centralised administration of role-based systems and the en-
forcement of constraints. However, the simultaneous inte-
gration of these extensions can cause conflicts in a later
system implementation. We demonstrate how we use the
Alloy language for the specification of a conflict-free role-
based system. This specification provides us at the same
time with a suitable basis for further analysis by the Alloy
constraint analyser.

Keywords
Alloy, constraint analysis, RBAC96, ARBAC97, Separation
of Duties, Delegation of Authority, Decentralisation

1. INTRODUCTION
Role-based access control is a powerful concept and can be

used to enforce a variety of security policies in a system. The
reference model for role-based access control is the RBAC96
model [13], [14]. Two significant extensions to this model
have been proposed, one concentrating on the specification
of constraints [12], the other describing a framework for the
delegation of authority through administrative roles [11].

However, these two extensions create a new range of prob-
lems when integrated simultaneously within a role-based ac-
cess control model. The main concern is that a model which
allows for the delegation of authority through decentralised
administrative actions can conflict with specified separation
of duty constraints. A simple example is that two roles r1
and r2 are declared as mutually exclusive by a chief security
officer. A valid constraint is that a user must not be assigned
to the two exclusive roles at the same time. Assuming that
a user u1 already holds r1, the delegation of r2 to user u1

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’02,June 3-4, 2002, Monterey, California, USA.
Copyright 2002 ACM 1-58113-496-7/02/0006 ...$5.00.

would result in an unintended conflict. While there are al-
ready some mechanisms such as prerequisite conditions in
place to avoid this kind of conflict, we believe that this does
not solve the general problem. What is missing is a frame-
work for the specification and analysis of role-based access
control models and required constraints.

To ensure operational efficiency systems such as described
in [16] require a certain degree of flexibility with respect to
decentralised administration, either through designated lo-
cal administrators or system users with delegation authority.

A trivial but highly realistic example is that of an em-
ployee being ill. On a short-term basis his roles might have
to be temporarily assigned to another employee so that he
can cover his ill colleague for a day. Decentralising adminis-
trative control would allow an assigned branch administra-
tor to perform the required administrative actions, avoiding
the bottleneck of a centralised security administration. This
example also presents us with an environment where the en-
forcement of constraints and implementation of conflict de-
tection mechanisms are of major importance. While there
might be a corporate-wide valid constraint in the form of
a separation of duty requirement, this might not necessar-
ily be conformed to by the designated local administrator.
Mechanisms must be in place to constrain his actions in ac-
cordance with a higher-level policy and resolve any conflicts.

First attempts are now being made to built systems ac-
cording to these models and the established standards. How-
ever, at this stage we encounter problems when trying to
integrate the functionality of several models into one prod-
uct. The complexity of the models demands a structured
approach to analysis and design of such systems. Access
control research only recently started to address this issue
[6, 1]. Using lightweight formal specification techniques such
as Alloy might be a further step in that direction.

2. OUTLINE
We will demonstrate how we use the Alloy language to

specify and analyse the implications of the simultaneous in-
tegration of role-based access control extensions and con-
straints. Having given an initial introduction (Section 1), we
continue with a review of the relevant literature (Section 3).
We then use Alloy to specify an initial RBAC96 model (Sec-
tion 4) followed by a specification of the ARBAC97 model
and its sub-models (Section 5). A set of separation of duty
constraints are defined within this context (Section 6). We
then discuss possible separation of duty conflicts as a result

of administrative actions (Section 7). The paper finishes
with a summary and conclusion (Section 8).

3. RELATED WORK

3.1 Administrative role-based access control
The work on role-based access control systems has pro-

vided us with the RBAC96 model family of access control
models [13], which since then has been subject to a NIST
standard proposal [14]. In the RBAC96 model family, the
central notion is that permissions are associated with roles,
and users are made members of appropriate roles thereby
acquiring the roles’ permissions. The model family consists
of four sub-models, gradually adding functionality to the ba-
sic model which consists of user, role and permission entities
and the relations between them.

The administrative role-based access control model (AR-
BAC97) [11] expresses the idea of using RBAC to manage
RBAC through decentralisation of administrative author-
ity. A distinction is made between regular and administra-
tive roles and permissions (Figure 1). ARBAC97 consists of
three sub-models. These describe the decentralised adminis-
tration through user-role assignment (URA97), permission-
role assignment(PRA97) and role-role assignment (RRA97).
The two central concepts of ARBAC97 are those of the ad-
ministrative range and prerequisite conditions. They reg-
ulate and impose restrictions on the way in which system
objects can be administered.

The administrative range reflects the set of roles over
which an administrator has authority. Depending on the
context he can assign and revoke users to or from a role,
alter role hierarchies, and assign or revoke permissions. In
case of a user-role assignment, a prerequisite condition could
be used, e.g. to express that any user to be assigned to a
role r1 must already be assigned to another role r2.

3.2 Separation of Duties
The separation of duties property expresses that a critical

process cannot be performed through a single subject. Al-
though the principle of separation of duties has been applied
for a long time in the area of accountancy, Clark and Wilson
were the first to describe it as one of the main mechanisms to
control fraud and error in the context of an automated sys-
tem [2]. This idea was later taken up by Nash and Poland,
describing the static and dynamic separation of duty [10].

The work on role-based systems gave a new impetus to
the description of static and dynamic separation of duty
constraints. Kuhn addresses the mutual exclusion of roles
to implement separation of duty in a role-based access con-
trol system [7]. Simon and Zurko show further variations of
the separation of duty [17]. A later formalisation of separa-
tion of duty properties is presented by Gligor et al. in [3].
Ahn describes a framework for specifying separation of duty
and conflict of interest policies in role-based systems. A for-
mal language is introduced to express separation of duties
properties [1].

3.3 The Alloy specification language
The Alloy language is designed for the specification of ob-

ject models through graphical and textual structures [4]. It
is a state-based language and invariants constrain the re-
lationships between objects. Alloy is supported by a con-
straint analysis facility [5] which allows us to analyse speci-

fications in order to detect any over- and under-constraints.
As we make extensive use of the Alloy language we sum-
marise some relevant parts of the syntax in the following.

Each state component is either a set, a binary relation, or
an indexed relation (whose values are indexed collections of
relations). The two main logical connectors are and (&&)
and or (||). For sets, there are the usual set-theoretic oper-
ators, in ASCII form:

s + t union of s and t
s & t intersection of s and t
s - t difference: s with elements of t removed

For relations, we have the following operators:

∼r the transpose of r
+r the transitive closure of r
*r the reflexive transitive closure of r

There are no set constants in Alloy. Instead, we have:

some s s is non-empty
no s s is empty
sole s s has at most one element
one s s has exactly one element

Elementary formulas in Alloy are made by comparing sets:

s = t equality: s and t have the same elements
s in t subset: every element of s is an element of t
s !in t subset: every element of s is not an element of t

An important operator in Alloy is the relational image
’.’. The expression s.r denotes the set of objects that the
set s maps to in the relation r. This kind of expression is
often called a ”navigation expression” because we can think
of it as a navigation from s along the relation r. Applying
the image operator again yields a longer navigation. Sup-
pose, for example, that we have the sets Users, Roles and
Permissions denoting the components of a role-based sys-
tem. The relations ureg assignment and regp assignment

map the sets of users to roles and roles to permissions re-
spectively. Then for a single user u1, u1.ureg assignment

will be the set of roles that the user holds and the evaluation
of the expression u1.ureg assignemnt.regp assignment re-
sults in the set of permissions he holds through all his roles.
If we take a specific permission p1 from this set and write
p1.∼regp assignment.∼ureg assignment, we will obtain
the set of users who can execute permission p1. In case of
a role hierarchy marked by a relation reg rr hierarchy be-
tween two sets of Roles, we could read r1.+reg rr hierarchy

as ”take a role r1 and follow reg rr hierarchy one or more
times” and r1.*reg rr hierarchy as ”take a role r1 and fol-
low reg rr hierarchy zero or more times”. In other words,
we would obtain the set of roles inferior to r1, which ex-
cludes and includes r1, respectively.

For the rest of this paper we will gradually introduce fur-
ther concepts of Alloy where needed.

4. SPECIFYING RBAC96 IN ALLOY
We give an example of the use of Alloy by specifying

RBAC96 model properties which will be the underlying ba-
sis for the later analysis of RBAC extensions.

The initial structure of the RBAC96 model can be eas-
ily specified in Alloy. The domain paragraph describes the
objects we make use of, with the fixed keyword indicating

that they are drawn from a specified pool of objects. The
state paragraph then describes the relations between our
objects. Where it is not specified the cardinality of the rela-
tion is automatically assumed to be zero or more, otherwise
the ! and + symbols indicate cardinalities of one and one or
more respectively.

Specification 1

model RBAC96{

domain {fixed User, fixed RegRole,

fixed Session, fixed Permission}

state {

ureg_assignment: User -> RegRole

regp_assignment: RegRole -> Permission

us_assignment: User! -> Session

sr_assignment: Session -> RegRole+

reg_rr_hierarchy: RegRole -> RegRole

}}

We can now use the the constraint analysis facilities of
Alloy in order to find a model that satisfies our formulae
(Figure 1). A graphical representation helps in detecting
any under- or overconstraint or other undesired model prop-
erties. For better readability, we chose to represent users as
boxes, roles as circles, permissions as diamonds and sessions
as triangles. This graphical model is also supported by a tex-
tual output to which we only refer when necessary. We can
immediately see some undesired properties in our resulting
graphical model (Figure 2).

Figure 1: Unconstrained RBAC Model

To begin with we can observe that a user U0 can have
access to a role R0 through a session S1, although he is not
assigned to that role. Additionally, we have two roles R1 and
R0 which have a cycle in their role hierarchy. To mitigate
the above effects we have to specify some invariants that
must always hold in our model. To begin with we intro-
duce an invariant on the role hierarchy. Any cycles within
the role hierarchy as defined by the reg rr hierarchy rela-
tion are ruled out. The star symbol (*) in the clause r !in

r.*reg rr hierarchy represents a reflexive transitive clo-
sure operator. Here we test for the presence of role r in the
set of roles which are inferior to r. The ! symbol negates
set membership.

Invariant 1:

all r:RegRole | r !in r.*reg_rr_hierarchy

The other problem is that of a user having access to a
role through a session although he is not assigned to that
role. We can similarly rule this out. A user can only acti-
vate his assigned roles through a currently open session (r
in u.us assignment.sr assignment) if he is assigned to it
(r in u.ureg assignment).

Invariant 2:

all u:User | all r:Regrole |

r in u.us_assignment.sr_assignment ->

r in u.ureg_assignment

Figure 2: Constrained RBAC Model

A valid model can be seen in figure 2. However, the gener-
ation of some (graphical) models is not good enough. To ob-
tain further assurance about the properties of our model we
made use of Alloy’s assertions and conditions, represented
by the keywords assert and cond. With the first we can ask
questions of the kind ”Is it true that...?”, the latter would
allow us to ask ”Find me a model with the following prop-
erties...!”. Depending on the way in which we formulate our
questions, the Alloy constraint analyser will either gener-
ate a valid example, a counterexample, or respond that no
example/counterexample was found.

5. SPECIFYING ARBAC97 IN ALLOY
So far we have only made use of static invariants to con-

strain our model. ARBAC97 requires us to define a set of
specific administrative operations. Execution of these oper-
ations must result in a valid state before and after they are
carried out.

5.1 General ARBAC97 properties
The administrative access control model ARBAC97 re-

quires us to add some new state components to our existing
Alloy specification.

We now have to make a distinction between regular and
administrative roles. One way we could have specified these
in Alloy would have been using the Alloy concept of par-
titioning. However, this would have required us to change

our existing model and its invariants significantly. We de-
cided to simply add a new object with the type AdmRole to
the domain paragraph. Administrative roles have author-
ity over a set of regular roles (RegRole). In ARBAC97 this
is expressed using the mathematical concept of the range
notation. We do not have this available in Alloy and thus
we simply introduce a new binary relation. The keyword
static specifies that the administrative range relation does
not change during an operation.

admin_range: static AdmRole -> static RegRole

One ARBAC97 constraint on the authority range is that
authority ranges must not overlap. The question is how far
this can be seen as a policy neutral constraint. We decided
to use it in our Alloy specification as it contributes to the
overall legibility of the generated models.

Invariant 3:

inv admin_range{all adm_role1,adm_role2:AdmRole |

all r:RegRole |

//Authority ranges must not overlap

r in adm_role1.admin_range ->

r !in adm_role2.admin_range}

One could imagine altering this constraint, allowing the
sets of roles within different administrative ranges to overlap
as long as the users assigned to the respective administrative
roles are different. This however, is again a policy question
outside the scope of this paper.

Having specified the concept of an administrative range
we can continue to specify the three sub-models into which
the ARBAC97 model is split. They describe the decen-
tralised system administration through user-role assignment
(URA97), permission-role assignment (PRA97) and role-
role assignment (RRA97).

5.2 User-Role Assignment (URA97)
The URA97 model describes the decentralised adminis-

tration of user-role assignments. The two operations we
observe within the context of our analysis are the assign-
ment (assign) and revocation (revoke) of a user from a
role. In general, ARBAC97 does not use explicit operations
but defines administrative actions in terms of authorisation
relations. While we try to stay as close as possible to the
semantics of these relations, using Alloy operations we de-
fine what actually happens in terms of the before and after
states.

As a general principle we tried to keep our specifications
of operations as policy neutral as possible. This explains
why certain phenomena, such as an administrator assigning
a role to himself, are not explicitly ruled out.

5.2.1 User-Role Assignment Operation
The assign operation is simple to define in Alloy. As

in other sequential specification languages, the before state
is left unmarked while the after state is indicated by the
primed symbol (’). The argument list of the operation
assign defines the variables upon which the operation is
carried out. As an initial definition we might write:

Operation 1a:

op assign (reg_role:RegRole, reg_role_member:User){

//the receiving user must hold the role

//after the execution of operation

reg_role in reg_role_member.ureg_assignment’}

This however has some problems. We have to ensure that
this operation can only be carried out by an administrator
if authorised. Authorisation would mean that there exists
a user who is assigned to an administrative role which in
turn has the regular role to be assigned in its administra-
tive range. We could off course add an invariant of the form
reg role in adm role.admin range to express this. How-
ever, from a security point of view we also have to allow the
operation to fail in case the role to be assigned is not part of
the administrative range. In this case simply nothing would
happen and the before and after state are identical. In Alloy
terms this would be expressed as

reg_role !in adm_role.admin_range ->

reg_role_member.ureg_assignment’ =

reg_role_member.ureg_assignment

Thus the according assign operation incorporating this
and some further invariants is defined as follows:

Operation 1b:

op assign (adm_role:AdmRole, reg_role:RegRole,

reg_role_member:User){

//Can adm_role assign role? - Yes!

reg_role in adm_role.admin_range ->

reg_role in reg_role_member.ureg_assignment’

//Can adm_role assign role? - No!

reg_role !in adm_role.admin_range ->

reg_role_member.ureg_assignment’ =

reg_role_member.ureg_assignment

//the receiving user must not have

//previously had the role

reg_role !in reg_role_member.ureg_assignment

//At least one person (not the reg_role_member)

//must hold the adm. role

some u : User - reg_role_member |

adm_role in u.uadm_assignment}

Using Alloy’s assertion mechanism, we can clearly observe
the two possible effects of this operation in Figures 3 and 4.
Either a new relation between a regular role and a user is
created or not. So we can observe that in case of a success-
ful assignment (Figure 3), user U1 was assigned with the
regular role R0 (depicted as an ellipse) through U0 in his
administrative role A0 (depicted as a circle).

In the case of an unsuccessful assignment we can clearly
observe the absence of the regular role R1 in the adminis-
trative range of the administrating role A0. Thus, user U1
was not assigned with role R1.

5.2.2 User-Role Revocation Operation
With respect to the revoke operation, ARBAC97 makes a

distinction between strong and weak revocation. This is due
to the possibility of a senior role R1 inheriting permissions
from a junior role R2. If a user is assigned to two such
roles, the weak revocation of R2 would result in only that

Figure 3: Successful assign

Figure 4: Failed assign

role being revoked. Strong revocation would additionally
result in the user being revoked from R1 as well, since R1 is
senior to R2. Weak revocation can be easily achieved and
the corresponding Alloy operation is almost the same as the
previous assign relation. Strong revocation on the other
hand is not so easy to specify. We first have to make a
distinction between implicit and explicit role membership.
Implicit role membership occurs with a user being explicitly
assigned to a role R1 which is superior to some other role
R2. He then is explicit member of R1 and implicit member
of R2. ARBAC97 also allows a role to be implicitly and
explicitly assigned to a user at the same time. We therefore
introduce two new relations for regular roles:

reg_explicit : User -> RegRole

reg_implicit : User -> RegRole

In addition we had to specify some more invariants on
these two new relations such as to make sure that a relation
reg explicit only occurs when there is a corresponding as-
signment ureg assignment. So the strong revocation oper-
ation is defined as follows in Alloy:

Operation 2:

op strong_revoke(adm_role:AdmRole, reg_role:RegRole,

reg_role_member:User) {

//This operation is only valid on implicit roles

reg_role !in reg_role_member.reg_implicit ->

reg_role_member.ureg_assignment’ =

reg_role_member.ureg_assignment

//The role to be revoked and its seniors must be

//in the administrative range or operation fails

reg_role.~*reg_rr_hierarchy !in

adm_role.admin_range ->

reg_role_member.ureg_assignment’ =

reg_role_member.ureg_assignment

//If it is in the administrative range

//then delete assignment

reg_role.~*reg_rr_hierarchy in

adm_role.admin_range ->

reg_role !in reg_role_member.reg_implicit’

//If it is in the administrative range and

//there is another direct assignment then

//delete that also

reg_role.~*reg_rr_hierarchy in

adm_role.admin_range &&

reg_role in reg_role_member.ureg_assignment ->

reg_role !in reg_role_member.ureg_assignment’

//At least one person (not reg_role_member)

//must hold the adm. role

some u : User - reg_role_member |

adm_role in u.uadm_assignment}

The cautious reader will wonder where we check for any
role hierarchies and subsequent upward revocation of ex-
plicit roles. Indeed this is not part of the operation itself,
but results out of other, not described invariants, that must
hold on the reg explicit relationship. In this case we spec-
ified that if a user is explicitly assigned to a role, and this
role is senior to some other roles, then he must be implicitly
assigned to the junior ones. Thus, a deletion of an implicit
assignment will cause any explicit senior assignment to be
removed as well.

Whilst a possible corresponding graphical model for the
weak revocation looks just the opposite of figure 3, a model
representing a strong revocation operation looks somewhat
different. For a better readability we do not present before
and after states in one figure. Instead, we can observe the
before state in figure 5 and the after state in figure 6. Also
we chose only to represent a successful operation for reasons
of space.

Figure 5: Strong revoke (before state)

In this case we also need to make use of the analyser’s
textual output to see what happened. Alloy will tell us that
user U1 was declared as reg role member and role R1 as the
role to be revoked (reg role). Since U1 was a explicitly as-
signed to role R0 and R0 was superior to R1, U1 is implicitly
assigned to R1. Subsequently his implicit assignment to R1
and explicit assignment to R0 were revoked.

5.3 Permission-Role Assignment (PRA97)
As pointed out in the ARBAC97 model [11], users and

permissions have a similar character from the perspective of
a role. Thus, PRA97 is a simple dual of URA97. We found

Figure 6: Strong revoke (after state)

this to be true when specifying the relevant operations and
as a result we do not provide any detailed specification here.
What needs to be noted however is that, unlike in a strong
user-role revocation, a strong permission-role revocation cas-
cades down a role hierarchy and not upwards.

5.4 Role-Role Assignment (RRA97)
The specification of the RRA97 model and its operations

is not as straightforward as the earlier specifications of the
URA97 and PRA97 sub-models. We see two main reasons
for this. On the one hand the administration of role-role as-
signments almost always requires policy decisions. On the
other hand, the ARBAC97 concept of a range of roles can-
not be modeled satisfactorily in terms of Alloy. As already
described in section 5.1 we do not have this at hand in Al-
loy but chose to use the simple binary relation admin range

to show which regular roles can be administered. Accord-
ingly, many of the constraints on the administrative range
as defined in ARBAC97 cannot be directly expressed (e.g.
no partially overlapping ranges).

Four administrative actions are specified in the role-role
assignment model: Role Creation; Role Deletion; Edge In-
sertion; and Edge Deletion. ARBAC97 requires some spe-
cific constraints to be enforced for each of these operations.
Creation of a role requires the specification of its immediate
parent and child in the existing hierarchy. Deletion of a role
will cause any existing edges to be deleted. Edge insertion
is only meaningful between incomparable roles, whilst edge
deletion is only meaningful if that edge is not transitively
implied by other edges.

5.4.1 Create Role Operation
ARBAC97 requires that with the creation of a role we

specify its immediate parent and child in the existing hier-
archy. Only the chief security officer can create roles outside
the authority range or without a parent or child. We only
specify a role creation operation with respect to a decen-
tralised administration, however removing some constraints
would show the general creation of roles.

Operation 3:

op create_role (new_role:RegRole’!, sup:RegRole!,

inf:RegRole!, adm_role:AdmRole!)

{

//There is only one new_role created

no (new_role & RegRole)

RegRole’ = RegRole + new_role

//Place new_role into hierarchy

new_role in sup.reg_rr_hierarchy’

inf in new_role.reg_rr_hierarchy’

//Make sure roles are in the admin_range

(inf + sup) in adm_role.admin_range

(inf + sup + new_role) in adm_role.admin_range’

//Remove transitive edges

inf in sup.reg_rr_hierarchy ->

inf !in sup.reg_rr_hierarchy’

//The new role must have no other

//relations apart from sup and inf

no (new_role.reg_rr_hierarchy - inf)

no (new_role.~reg_rr_hierarchy - sup)

//inf must be inferior to sup in unprimed

inf in sup.reg_rr_hierarchy}

While most parts of the operation are very similar to what
we have specified before we can observe that a new role is
part of the operation signature new role:RegRole’. This
role is now placed between a superior (sup) and inferior role
(inf), at the same time ensuring that any transitive edges
are removed.

A valid model for the role creation operation can be seen
in figure 7. Here we can observe that role R2 is the newly
created role which is placed in between the hierarchy of R0
and R1. The previous edge R0→R1 is replaced by the two
primed edges R0→R2 and R2→R1.

Figure 7: Creating a role

5.4.2 Delete Role Operation
Deleting a role is the natural counterpart to role creation

but needs to consider several issues. Permissions associated
with a role are inherited upwards in a role hierarchy. Delet-
ing a role with associated permissions can thus have serious
effects on a role hierarchy. ARBAC97 suggest three ways to
mitigate this. By deactivating a role the semantics of the
hierarchy remain intact, at the same time prohibiting any
assignments to the role. Complete deletion of a role can only

be performed if there are either no permissions and users as-
sociated with that role, or if all its permissions are assigned
to the next senior role and all users are assigned to the next
junior role. For reasons of space we only show the relevant
excerpts to achieve the later two options. Apart from these,
the entire operation is almost identical to the create role

operation. Thus, an empty role would be specified as:

no del_role.ureg_assignemnt

no del_role.regp_assignment

In case any users or permissions are assigned to the role
to be deleted, their re-allocation is specified as follows:

sup.regp_assignment’ =

sup.regp_assignment + del_role.regp_assignment

inf.~ureg_assignment’ =

inf.~ureg_assignment + del_role.~ureg_assignment

In this case sup and inf are the respective superior and
inferior roles, while del role is the role to be deleted. The
effects of such a shift can be observed in figure 8.

Figure 8: Deleting a role

Here we see that role R2 is the role that will be deleted
from the hierarchy. Thus, the existing edges between R0→R2
and R2→R1 cease to exist and a new edge R0→R1 is intro-
duced. The permission P1 assigned to R2 is re-assigned to
R0, and the user U1 is re-assigned to R1.

5.4.3 Insert Edge Operation
The insertion and deletion of a single edge between two

roles is again very simple to define as an operation. In terms
of the ARBAC97 model further constraints have to be en-
forced. We chose to only specify that the roles between
which an edge is created must lie within the same author-
ity range. Additionally, the insertion of transitive edges is
avoided by demanding that the roles between which an edge
is created must be incomparable.

We can avoid transitive edges by specifying that the in-
ferior role must not already lie within the transitive closure
of the superior role (inf !in sup.+reg rr hierarchy) and
that in the after state the inferior role is directly related to
the superior role (inf in sup.reg rr hierarchy’).

We can see in figure 9 how an edge was inserted between
the roles R4 and R3 according to these invariants.

5.4.4 Delete Edge Operation
As described in ARBAC97, deletion of transitive edges is

meaningless. If a non-transitive edge is deleted we will have
to create new edges to maintain the semantics of the role
hierarchy. In this case if the edge between a senior role sup

Figure 9: Inserting an edge

and a junior role inf is deleted, we have to create an edge
between inf and the role senior to sup and vice versa. Within
our specification we specify the deletion of an edge as

inf in sup.reg_rr_hierarchy

inf !in sup.reg_rr_hierarchy’

while the creation of new edges would be done for the roles
sup and inf as described in the previous section 5.4.

The result of this can be observed in figure 10. Here the
edge between role R4(sup) and R3(inf) is deleted. As a
consequence the new edges R4→R0 and R2→R3 are created.

Figure 10: Deleting an edge

6. SPECIFYING SEPARATION OF DUTY
PROPERTIES IN ALLOY

The separation of duties is one of the best understood
constraints in role-based models so far. However, many dif-
ferent ways of specifying and enforcing separation of duties
constraints exist. We chose to use the taxonomy proposed
by Simon and Zurko [17], enforced through the concept of
mutually exclusive roles [7]. For reasons of space we only
present a subset of the constraints we specified.

The Static Separation of Duty (SSoD) constraint defines
that if roles are strongly exclusive, no person is ever allowed
to hold both of them at the same time. Two exclusive roles
have thus no common assigned user. The dynamic Sepa-
ration of Duty constraints we implemented are the Simple

Dynamic Separation of Duty (SDSoD) and the Operational
Separation of Duty (OpSoD). SDSoD requires that any two
exclusive roles must not be activated at the same time by
the same user. Preserving OpSoD means that all permis-
sions a user has through his exclusive roles should not allow
him to perform all the actions required for the completion
of a critical workflow.

To enforce these constraints we need to expand our spec-
ification by adding the following two new relations:

regr_exclusive: Regrole -> Regrole

wf_requires: Workflow -> Permission+

The first defines the relation in which regular roles are
exclusive to each other, the second the set of permissions
required by a workflow (We also have to add Workflow as
fixed to our domain paragraph). This is all the information
we need to specify our separation of duty constraints. As
suggested in [7], we ask for the set intersection (&) of users
assigned to pairs of mutually exclusive roles to be empty
(no). Accordingly the SSoD and DSoD invariants express
that for all pairs of mutually exclusive roles, these pairs
must not have a common assigned user or a common ses-
sion respectively.

SSoD Invariant:

inv static_sod {all r1, r2:Regrole |

r1 in r2.regr_exclusive ->

no(r1.~ureg_assignment & r2.~ureg_assignment)}

SDSoD Invariant:

inv dynamic_sod {all r1, r2:Regrole |

r1 in r2.regr_exclusive ->

no(r1.~sr_assignment & r2.~sr_assignment)}

For preserving operational separation of duties we only
have to check that the set of permissions that every user
holds through his roles does not contain all permissions
needed for a critical operation. We express this by requir-
ing the difference set (-) of the required permissions for a
workflow and the permissions a user user holds through his
roles to be non-empty (some). In this case we only specified
this constraint for a static operational separation of duties,
however, this could be easily extended to a more relaxed
dynamic invariant.

OpSoD Invariant:

inv operational_sod {all u:User | all wf:Workflow |

some(wf.wf_requires -

u.ureg_assignment.regp_assignment) }

When checking the specified invariants we can see an im-
mediate problem. The role hierarchies might enable a user to
be implicitly assigned to an exclusive role and subsequently
break our intended separation of duty properties [9]. An
example for breaking a static separation of duties property
can be seen in figure 11, however all other separation con-
straints could be broken in a similar way. In this case, the
roles R2 and R0 are exclusive to each other. Although not
being directly assigned to R0, user U0 nevertheless breaks a
static separation of duty constraint as his role R1 is senior
to R0.

Figure 11: SoD violation through role hierarchy

To mitigate this situation we have to change our spec-
ification to check for mutually exclusive roles within role
hierarchies. Below we give an example of how to do this for
the simple static separation of duties, in a similar manner
this would have to be done for the other separation prop-
erties. We use the reflexive transitive closure operator * to
traverse eventual role hierarchies upwards (~).

Ext. SSoD Invariant:

inv static_sod_hierarchy {all r1, r2:RegRole |

r1 in r2.regr_exclusive ->

no(r1.~*reg_rr_hierarchy.~ureg_assignment &

r2.~*reg_reg_rr_hierarchy.~ureg_assignment)}

7. CONFLICT ANALYSIS
To summarise, we have specified an RBAC96 model in

section 4, described the delegation of authority through a
decentralised user-role, role-permission and role-role admin-
istration in section 5 and defined a set of separation of duty
constraints in section 6.

Our initial motivation was to demonstrate that role-based
extensions such as decentralised administrative actions can
conflict with separation of duty constraints. We have spec-
ified a conflict free system, and to illustrate the conflicts
we encountered during that process we have to ’switch off’
the separation of duty constraints. We will further use Al-
loy assertions to prompt the Alloy constraint analyser to
generate separation of duty conflicts as we expect them to
happen when performing an administrative action [15]. We
are going to analyse this with respect to the three ARBAC97
models in more detail.

7.1 URA97 vs. SoD
In case of a simple user-role assignment operation and an

existing pair of exclusive roles we might expect a possible
conflict. We now ask Alloy to verify some intended proper-
ties of the assign operation. This property is identical to the
static separation of duty invariant as specified in section 6.

assert SSoD {all adm_role : AdmRole |

all reg_role, excl : RegRole |

all reg_role_member : User |

assign(adm_role, reg_role, reg_role_member) &&

no(reg_role.~ureg_assignment’&

excl.~ureg_assignment’)}

However, as expected, a counterexample is found which
can be seen in figure 12. Here user U1 was already assigned

Figure 12: SoD violation/URA97 Assign

to one exclusive role R1 before the operation and is now also
assigned to the second exclusive role R0, thus breaking the
static separation of duty property.

If we now ’switch’ our static separation of duty invariant
on we can observe that no counterexample will be found
within our specification.

We could now specify an assertion to check for violation
of our dynamic separation of duty properties. However, the
way we specified our administrative operations is that they
are atomic. Thus the only change of state that occurs is that
of a user-role assignment. So even if two roles are exclusive
and one of them was already held and activated by some
regular user, the possible assignment of the second exclusive
role would not lead to a conflict with respect to the after
state of the operation.

The third possibility for a conflict due to a user-role as-
signment is that of violating operational separation of duty
properties. However, we do not have the space to follow this
through here.

Obviously, considering the revocation of user-role assign-
ments we do not have to check for any conflicting situations.

7.2 PRA97 vs. SoD
Considering the decentralised assignment of permissions

to roles we would expect a conflict with operational sepa-
ration of duty constraints as they are the only ones which
take permissions into consideration. Using assertions we can
again instruct the constraint analyser to look for a possible
breach of an operational separation of duty invariant. As
we can see in figure 13, workflow W0 requires two permis-
sions P1, P2. While the regular role R1 was only assigned
with one of these before the execution of the operation, it is
assigned with both of them in the after state, giving rise to
a possible conflict.

What can also be considered is the degree to which per-
missions are shared by exclusive and non-exclusive roles.
This was suggested as a separation property in [7]. We have
specified these properties below but do not further analyse
them in this paper.

1. Disjoint/Disjoint (DD): If two roles are exclusive, then
each permission is assigned to only one of them.

inv DD {all r1, r2:Regrole| all p:Permission |

r1 in r2.regr_exclusive ->

no(r1.regp_assignment&r2.regp_assignment)&&

(no(p.~regp_assignment - r1) ||

no(p.~regp_assignment - r2))}

2. Disjoint/Shared (DS): As DD, but a permission can
also be assigned to non-exclusive roles.

inv DS {all r1, r2 : Regrole|

r1 in r2.regr_exclusive ->

no (r1.regp_assignment & r2.regp_assignment)}

3. Shared/Disjoint (SD): Exclusive roles may share per-
missions, but each role must have at least one permis-
sion not available to the other.

inv SD {all r1, r2 : Regrole|

r1 in r2.regr_exclusive ->

some(r1.regp_assignment-r2.regp_assignment)&&

some(r2.regp_assignment-r1.regp_assignment)}

4. Shared/Shared (SS): As SD, but again a permission
can also be assigned to non-exclusive roles.

inv SS {all r1, r2 : Regrole|

r1 in r2.regr_exclusive ->

no(r1.regp_assignment & r2.regp_assignment)}

7.3 RRA97 vs. SoD
So far we have only shown what possible conflicts could

arise out of administrative actions with respect to user/role
and role/permission relationships. For the sake of simplic-
ity we have only shown direct conflicts. However, indirect
conflicts as they might occur due to possible role hierarchies
can equally well occur in all three administrative models.
We already showed that separation of duty invariants can
be easily modified to handle hierarchies (Section 6).

When creating a new role or generating a new edge within
an existing role hierarchy permissions are inherited upwards
the hierarchy. Again, it is not difficult to imagine how an
operational separation of duty constraint can be broken in
such a way. Interestingly, according to our specification, any
static or dynamic separation of duty constraints on a pair
of exclusive roles could not be broken. This is due to the
invariants placing constraints on roles only, neglecting the
associated permissions. We have observed this phenomenon
in the previous section with respect to permission-role as-
signments as well as in one of our earlier papers [15]. But
clearly, if we imagine two exclusive roles r1 and r2, assigned
with permission p1 and p2 respectively, a direct or indirect
assignment of p1 to r2 should be prohibited. We require
that for each pair of exclusive roles neither set of assigned
permissions is a subset of the other. This can be easily in-
cluded into our Alloy specification:

all r1,r2 : RegRole | r1 in r2.regr_exclusive ->

r1.regp_assignment !in r2.regp_assignment &&

r2.regp_assignment !in r1.regp_assignment

To deal with any hierarchies each navigation will have
to be extended using the reflexive transitive closure op-
erator. For example, r1.regp assignment would become
r1.*reg rr hierarchy.regp assignment.

8. SUMMARY AND CONCLUSION
Using the Alloy specification language and its analysis

facilities, we have shown how to specify a RBAC96-style
model, ARBAC97-style extensions and a set of separation

Figure 13: OPSoD violation/PRA97 Assign

of duty properties. We analysed and discussed possible con-
flicts that could arise out of decentralised administrative ac-
tions with respect to the separation constraints. This ap-
proach also showed that it is difficult to keep the specifica-
tion policy neutral.

We believe that we have demonstrated the general suit-
ability of the Alloy language for specification and analysis of
role-based systems. The simultaneous integration of decen-
tralised administration mechanisms and separation of duty
controls is highly desirable with respect to real-world ap-
plications. However, to find the optimum balance between
operational efficiency and operational control is nearly im-
possible. Yet, we hope that our approach can help system
developers to gain a deeper understanding of this problem.
We also believe that the delegation of authority through
decentralised administration and the specification of sepa-
ration of duty constraints are part of a much wider set of
organisational controls [8]. The specification and analysis of
these controls will be part of our future work. We have ex-
perimented with the Prolog language as an executable spec-
ification language to enforce control [15], and will continue
to investigate the relationships between Alloy and Prolog.

While an exhaustive analysis of conflicts is not possible
within such limited scope, we nevertheless hope that our
approach has conveyed the general idea and problem of in-
tegrating role-based extensions.

9. ACKNOWLEDGEMENTS
The author is sponsored by the Engineering and Physics

Research Council under award number 99311141. We thank
Daniel Jackson and Mandana Vaziri at the Software Design
Group (MIT) for clarifying questions regarding Alloy.

10. REFERENCES
[1] G. Ahn. RCL 2000. Phd dissertation, George Mason

University, 2000. Good literature review with respect
to separation of duties. Lots of quotes and pointers to
separation of duties.

[2] D. Clark and D. Wilson. A comparison of commercial
and military security policies. In I. C. S. Press, editor,
IEEE Symposium on Security and Privacy, pages
184–194, Oakland, California, 1987.

[3] V. Gligor, S. Gavrila, and D. Ferraiolo. On the formal
definition of separation-of-duty policies and their
composition. In I. C. S. Press, editor, IEEE
Symposium on Security and Privacy, pages 172–185,
Oakland, CA, 1998.

[4] D. Jackson. Alloy: A leightweight object modelling
notation. Technical Report 797, MIT Laboratory for
Computer Science, 2000. In Folder.

[5] D. Jackson, I. Schechter, and I. Shlyakhter. Alcoa: the
alloy constraint analyzer. In Proc. International
Conference on Software Engineering, Limerick,
Ireland, 2000.

[6] T. Jaeger and J. Tidswell. Practical safety in flexible
access control models. ACM Transactions on
Information and System Security (TISSEC), 4(2),
2001.

[7] R. Kuhn. Mutual exclusion of roles as a means of
implementing separation of duty in role-based access
control systems. In Proceedings of the second ACM
workshop on Role-based access control, pages 23–30,
1997.

[8] J. Moffett. Control principles and role hierarchies. In
3rd ACM Workshop on Role Based Access Control
(RBAC), pages 63–72, George Mason University,
Fairfax, VA, 1998.

[9] J. Moffett and E. Lupu. The uses of role hierarchies in
access control. In 4th ACM Workshop on Role-Based
Access Control, pages 153–160, Fairfax, Virginia, 1999.

[10] M. Nash and K. Poland. Some conundrums concerning
separation of duty. In I. C. S. Press, editor, IEEE
Symposium on Security and Privacy, pages 201–209,
Oakland, CA, 1990.

[11] R. Sandhu, V. Bhamidipati, and Q. Munawer. The
arbac97 model for role-based administration of roles.
ACM Transactions. Inf. Syst. Security, 2(1):105 – 135,
1999.

[12] R. Sandhu and F. Chen. Constraints for role-based
access control. In Proceedings of the first ACM
Workshop on Role-based access control, 1996.

[13] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman.
Role-based access control models. IEEE Computer,
29(2):38–47, 1996.

[14] R. Sandhu, D. Ferraiolo, and R. Kuhn. The nist model
for role-based access control: Towards a unified
standard. In 5th ACM RBAC, Berlin, Germany, 2000.

[15] A. Schaad. Conflict detection in a role-based
delegation model. In Annual Computer Security
Applications Conference, New Orleans, 2001.

[16] A. Schaad, J. Moffett, and J. Jacob. The access
control system of a european bank - a case study. In
6th ACM Symposium on Access Control Models and
Technologies (SACMAT), Chantilly, VA, USA, 2001.

[17] R. Simon and M. Zurko. Separation of duty in
role-based environments. In Computer Security
Foundations Workshop X, Rockport, MA, 1997.

