
Analysing Web Ontology in Alloy: A Military Case Study

Jin Song Dong Jun Sun Hai Wang
School of Computing,

National University of Singapore,
{dongjs,sunjing,wangh}@comp.nus.edu.sg

Chew Hung Lee Hian Beng Lee
Center for Decision Support

Defence Science Organisation, Singapore
{lhianben,lchewhun}@dso.org.sg

Abstract

Correctness is the essential requirement criteria for mil-
itary web ontology based information systems. Reasoning
and consistency checking can be useful at many stages dur-
ing the design, maintenance and deployment of Semantic
Web (SW) ontology. Formal methods can provide automatic
reasoning and consistency checking services for SW. In this
paper, we use military plan ontology as a case study to
demonstrate how Alloy can be applied to check SW ontol-
ogy.
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1 Introduction

For mission planning, military commanders often need
to get timely updates on the composition and strength of
army units. A research team at DSO National Laboratories
in Singapore has recently developed aplan ontology[10]
using Semantic Web (SW) [2] languages.

It is essential that this military web-based ontology is
consistent and correct. Reasoning can be useful at many
stages during the design, maintenance and deployment of
ontology. The software modeling language Alloy [8] is a
first order declarative language based on relations. We be-
lieve SW is a new novel application domain for Alloy as
relationships between web resources are the focus points in
SW. Furthermore, Alloy specifications can be analyzed au-
tomatically using the Alloy Analyzer (AA). Given a finite
scope for a specification, AA translates it into a proposi-
tional formula and uses SAT solving technology to generate
instances that satisfy the properties expressed in the specifi-
cation. We believe that if the semantics of the SW languages
can be encoded into then Alloy can be used to provide auto-
matic reasoning and consistency checking services for SW.
Various reasoning tasks can be supported effectively by AA.
Some of those reasoning tasks are unique for AA, as cur-

rently no other SW reasoning tools can support those tasks.

The remainder of the paper is organized as follows.
Section 2 briefly introduces the Alloy and Semantic Web.
In section 3 semantic domain and functions for the
DAML+OIL Web Ontology Language [12] constructs are
defined in Alloy. Section 4 presents the transformation tech-
niques from DAML+OIL to Alloy with applications to mil-
itary plan ontology. Section 5 demonstrates various reason-
ing and checking tasks using DAML+OIL-Alloy tool. Sec-
tion 6 concludes the paper.

2 Alloy and Semantic Web overview

2.1 Alloy overview

Alloy [8] is a structural modelling language based on
first-order logic, for expressing complex structural con-
straints and behavior. Alloy treats relations as first class
citizens and uses relational composition as a powerful oper-
ator to combine various structured entities. The Alloy Ana-
lyzer (AA) is a tool for analyzing models written in Alloy.
Given a formula and a scope – a bound on the number of
atoms in the universe – AA determines whether there ex-
ists a model of the formula that uses no more atoms than
the scope permits, and if so, return it. It supports two kinds
of automatic analysis: simulation, in which the consistency
of an invariant or operation is demonstrated by generating a
state or transition, and checking, in which a consequence of
the specification is tested by attempting to generate a coun-
terexample.

2.2 Semantic web overview

The Semantic Web is a vision for a new kind of Web with
enhanced functionality which will require semantic-based
representation and processing of Web information. W3C
has proposed a series of technologies that can be applied to
achieve this vision. The Semantic Web extends the current
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Web by giving the web content a well-defined meaning, bet-
ter enabling computers and people to work in cooperation.

Resource Description Framework (RDF) [9] is a founda-
tion for processing metadata; it provides interoperability be-
tween applications that exchange program-understandable
information on the Web. RDF Schema provides the ba-
sic vocabulary to describe RDF documents. Similar to
XML Schema which give specific constraints on the struc-
ture of an XML document, RDF Schema provides informa-
tion about the interpretation of the RDF statements. The
DARPA Agent Markup Language (DAML) [12] is an AI-
inspired description logic-based language. DAML com-
bined with Ontology Interchange Language (OIL) and fea-
tures from other ontology systems is called DAML+OIL
and contains richer modelling primitives than RDF.

3 DAML+OIL semantic encoding

DAML+OIL has a well-defined semantics which has
been described in a set of axioms [6]. In this section based
on the semantics of DAML+OIL, we define the semantic
functions for some important DAML+OIL primitives in Al-
loy. The complete DAML+OIL semantic encoding can be
found in [5].

3.1 Basic concepts

The semantic models for DAML+OIL are encoded in the
moduleDAMLOIL. Users only need to import this module
to reason DAML+OIL ontology in Alloy. All the things
described in Semantic web context are called resources. A
basic typeResource is defined as:

module DAMLOIL
sig Resource {}

All other concepts defined later are extended from the
Resource .

The class corresponds to the generic concept of type or
category of resource. EachClass maps a set of resources
via the relationinstances , which contains all the in-
stance resources. The keyworddisj is used to indicate
theClass andProperty are disjoint.

disj sig Class extends Resource
{instances: set Resource}

3.2 Class elements

ThesubClassOf is a relation between classes. The in-
stances in a subclass are also in the superclasses. A param-
eterized formula (a function in Alloy) is used to represent
this concept.

fun subClassOf(csup, csub: Class)
{csub.instances in csup.instances}

3.3 Property restrictions

A toClass function states that all instances of the class
c1 have the values of propertyP all belonging to the class
c2 .

fun toClass (p: Property, c1: Class, c2: Class)
{all r1, r2: Resource |

r1 in c1.instances <=>
r2 in r1.(p.sub_val) =>r2 in c2.instances}

3.4 Property elements

The subPropertyOf function states thatpsub is a
subproperty of the propertypsup . This means that every
pair (subject,value) that is inpsup is in thepsub .

fun subPropertyOf (psup, psub: Property)
{psub.sub_val in psup.sub_val}

4 DAML+OIL to Alloy Transformation

In the previous section we defined the semantic
model for the DAML+OIL constructs, so that analyzing
DAML+OIL ontology in Alloy can be easily and effec-
tively achieved. We also developed a Java program for the
automatic transformation from DAML+OIL file into Alloy
model. The details of the Java program and other informa-
tion on this project can be found at:
http://nt-appn.comp.nus.edu.sg/fm/alloy/.

A set of transformation rules transforming from
DAML+OIL ontology to Alloy program are developed. For
example, the following rule showDAML+ OIL class trans-
formation.

C ∈ DAML class

static disj sig C extends Class{}

A DAML classC will be transferred into a scalarC, con-
strained to be an element of the signatureClass .

4.1 Application to the military web ontology

A research team at DSO National Laboratories (Singa-
pore) has developed a ontology in DAML+OIL for repre-
senting plans [10]. The purpose of this ontology is to build
a description of the military units used in planning. It con-
tains semantically linked information on the capability of
military units and the command/control relationships be-
tween the units.

The partial military ontology will be used to illustrate
how the transformation and analysis could be achieved.

The following DAML+OIL ontology defines a class
ModernMilitaryUnit [1] which represents all the
functionally independent military forces. Most large



modern militaries are traditionally broken into sev-
eral branches of groups. E.g. thenavy unit
and air force units . The two disjoint classes
NavalUnit and AirForceUnit are the subclasses of
ModernMilitaryUnit . A military task is an
independent entity that is assigned to a particular unit
to execute. A unit can execute a military task. The
airForceTask and navalTask is a military task as-
signed to air force and navy respectively.

<daml:Class rdf:ID="ModernMilitaryUnit">
<rdfs:label>ModernMilitaryUnit</rdfs:label> </daml:Class>

<daml:Class rdf:ID="NavalUnit">
<rdfs:label>NavalUnit</rdfs:label>

<rdfs:subClassOf rdf:resource="#ModernMilitaryUnit"/>
</daml:Class>

<daml:Class rdf:ID="AirForceUnit">
<rdfs:label>AirForceUnit</rdfs:label>
<rdfs:subClassOf rdf:resource="#ModernMilitaryUnit"/>
<daml:disjointWith rdf:resource="#NavalUnit"/>
</daml:Class>

<daml:ObjectProperty rdf:about="assignTo">
<rdfs:label>assignTo</rdfs:label> </daml:ObjectProperty>

<daml:ObjectProperty rdf:about="execute">
<rdfs:label>execute</rdfs:label>
<daml:inverseOf rdf:resource="#assignTo"/>
</daml:ObjectProperty>

<daml:Class rdf:ID="militaryTask">
<rdfs:label>militaryTask</rdfs:label> </daml:Class>

<daml:Class rdf:ID="airForceTask">
<rdfs:label>airForceTask</rdfs:label>

<rdfs:subClassOf rdf:resource="#militaryTask"/>
<rdfs:subClassOf> <daml:Restriction>

<daml:onProperty rdf:resource="#assignTo"/>
<daml:toClass rdf:resource="#AirForceUnit"/>

</daml:Restriction> </rdfs:subClassOf></daml:Class>
<daml:Class rdf:ID="navalTask">

<rdfs:label>navalTask</rdfs:label>
<rdfs:subClassOf rdf:resource="#militaryTask"/>
<rdfs:subClassOf><daml:Restriction>

<daml:onProperty rdf:resource="#assignTo"/>
<daml:toClass rdf:resource="#NavalUnit"/>

</daml:Restriction> </rdfs:subClassOf></daml:Class>

This DAML+OIL ontology will be transferred into Alloy
as follow,

module military
/*import the library module we defined*/
open DAMLOIL
/* ModernMilitaryUnit is transferred to a class instance,
the key word static is used to a signature contains
exactly one element. */
static disj sig ModernMilitaryUnit extends Class {}
/* NavalUnit and AirForceUnit are transfer to

two class instance */
static disj sig AirForceUnit, NavalUnit extends Class {}
/* The disjoin and subclass element was

transferred into fact in Alloy */
fact {disjointWith(AirForceUnit, NavalUnit)}
fact {subClassOf(ModernMilitaryUnit, AirForceUnit)}
fact {subClassOf(ModernMilitaryUnit, NavalUnit)}
/*assignTo, execute are transfer to instances*/
static disj sig execute, assignTo extends Property {}
fact {inverseOf(execute, assignTo)}
static disj sig militaryTask,airForceTask,

navalTask extends Class{}
fact{subClassOf(militaryTask, airForceTask)}
fact{subClassOf(militaryTask, navalTask)}
fact{toClass(assignTo, navalTask, NavalUnit)

&& toClass(assignTo, airForceTask,AirForceUnit)}

We can check the consistency of the DAML+OIL ontol-
ogy and do some reasoning readily.

5 Analyze DAML+OIL ontology

Reasoning is one of the key tasks for semantic web. It
can be useful at many stages during the design, maintenance
and deployment of ontology.

There are two different levels of checking and reasoning,
the conceptual level and the instance level. At the concep-
tual level, we can reason about class properties and subclass
relationships. At the instance level, we can do the member-
ship checking (instantiation) and instance property reason-
ing. The DAML+OIL reasoning tool, i.e. FaCT [7], can
only provide conceptual level reasoning, while AA can per-
form both. The Fact system originally is designed to be a
terminological classifer (TBox) which concerns only about
the concepts, roles and attributes, not instances. The se-
mantic web reasoner based on the Fact, like OILED, dose
not support instance level reasoning well.

5.1 Class property checking

It is essential that the ontology shared among au-
tonomous software agents is conceptually consistent. Rea-
soning with inconsistent ontology may lead to erroneous
conclusions. In this section we give some examples of
inconsistent ontology that can arise in ontology develop-
ment, and demonstrate how these inconsistencies can be
detected by the Alloy analyzer. For example, we define
another classsubmarineUnit which is a subclass of
NavalUnit and executed thebombTask which is a sub-
class ofairForceTask . There is an inconsistency since
by the ontology definition airForceTask can only be as-
signed to AirForceUnit. The NavalUnit and AirForceUnit
are disjoint.

<daml:Class rdf:ID="bombTask">
<rdfs:label>bombTask</rdfs:label>
<rdfs:subClassOf rdf:resource="#airForceTask"/>

</daml:Class>
<daml:Class rdf:ID="submarineUnit">

<rdfs:label>submarineUnit</rdfs:label>
<rdfs:subClassOf rdf:resource="#NavalUnit"/>
<rdfs:subClassOf><daml:Restriction>

<daml:onProperty rdf:resource="#execute"/>
<daml:hasValue rdf:resource="#bombTask"/>

</daml:Restriction></rdfs:subClassOf></daml:Class>

We transform the ontology into an Alloy program, add
some facts to remove the trivial models (like everything type
is empty set) and load the program into the Alloy Analyzer.
The Alloy Analyzer will automatically check the consis-
tency. We conclude that there is an inconsistency in the
military ontology since Alloy cannot find any solution sat-
isfying all facts within the scope (Figure 1). Note that when
Alloy can’t find a solution, it may also be due to the scope
being too small. The AA performs the analysis within cer-
tain scope which constrains the number of items each basic
type have. By picking a large enough scope, “no solution
found” is very likely to mean that an inconsistency has oc-
curred.



Figure 1. Inconsistence example Figure 2. Subsumption example

5.2 Subsumption reasoning

The task of subsumption reasoning is to infer a
DAML+OIL class is the subclass of another DAML+OIL
class. For example, in the military ontology a property
power is defined. AnuclearPoweredVesselUnit
class is a subclass of theNavalUnit which uses nuclear-
powered vessels as their equipment.

<daml:ObjectProperty rdf:ID="power"/>
<daml:Class rdf:ID="nuclear">

<rdfs:label>nuclear</rdfs:label></daml:Class>
<daml:Class rdf:ID="nuclearPoweredVesselUnit">

<rdfs:label>nuclearPoweredVesselUnit</rdfs:label>
<rdfs:subClassOf rdf:resource="#NavalUnit"/>

<rdfs:subClassOf>
<daml:Restriction>

<daml:onProperty rdf:resource="#power"/>
<daml:toClass rdf:resource="#nuclear"/>

</daml:Restriction></rdfs:subClassOf></daml:Class>

We also define a classSSBN (ballistic missile
nuclear-powered (SSBN) submarines), a subclass of
submarineUnit which usenuclear reactor to supply
the power.

<daml:Class rdf:ID="SSBN">
<rdfs:label>SSBN</rdfs:label>
<rdfs:subClassOf rdf:resource="#submarineUnit"/>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#power"/>

<daml:toClass rdf:resource="#nuclear"/>
</daml:Restriction></rdfs:subClassOf>

</daml:Class>

Several of the classes were upgraded to being defined
when their definitions constituted both necessary and suffi-
cient conditions for class membership, e.g., aNavalUnit
unit is a nuclearPoweredVesselUnit if and only
if it use nuclear reactor to supply the power. Addi-
tional subclass relationships can be inferred i.e. theSSBN
is also a subclass ofnuclearPoweredVesselUnit .
We transfer this ontology into an Alloy program and
make an assertion that theSSBN is the subclass of
nuclearPoweredVesselUnit . The Alloy analyzer
will check the correctness of this assertion automatically
(Figure 2). The Alloy Analyzer checks whether an asser-
tion holds by trying to find a counterexample. Note that “no

solution” means no counterexamples is found, in this case,
it indicates that the assertion is sound.

5.3 Instantiation

Instance level reasoning is one of the main contribu-
tions for reasoning over DAML+OIL ontology using Al-
loy. Nowadays many successful DAML+OIL reasoners like
FaCT are based on description logics (DL), which lacks
support for instances. In Alloy every expression denotes a
relation. The scalars will be represented by singleton unary
relations - that is, relations with one column and one row.
The instance level reasoning can be supported readily in Al-
loy.
Instantiation is a reasoning task which tries to check if
an individual is an instance of a class. For example,
we define a resourceaDeepSeaPatrol as an instance
of militaryTask which is assigned to the submarine
SSN17. People may want to check ifaDeepSeaPatrol
is anavalTask .

<submarineUnit rdf:ID="SSN17">
<rdfs:label>SSN17</rdfs:label></submarineUnit>

<militaryTask rdf:ID="aDeepSeaPatrol">
<rdfs:label>aDeepSeaPatrol</rdfs:label>
<assignTo rdf:resource="SSN17"/></militaryTask>

We transfer the ontology into an Alloy program and
make an assertion as following:

static disj sig SSN17,
aDeepSeaPatrol extends Resource{}

fact {SSN17 in submarineUnit.instances &&
aDeepSeaPatrol in militaryTask.instances}

fact {(aDeepSeaPatrol->SSN17) in assignTo.sub_val}
assert isDeepSeaPatrolnavalTask
{(aDeepSeaPatrol in navalTask.instances)}
check isDeepSeaPatrolnavalTask for 14

AA concludes that this assertion is correct.

5.4 Instance property reasoning

Instance property reasoning (often regarded as knowl-
edge querying) is important in Semantic Web applications.
Since one of the promising strengths of Semantic Web tech-
nology is that it gives the agents the capability to do more



accurate and more meaningful searches. The agent can an-
swer some questions for which the answer is not explicitly
stored in the knowledge base.

For example, the subordinateTo and
controlOver are two properties, which are inverse
to each other. Military unitA subordinateTo B if B
has administrative, logistics and command control over
the A. subordinateTo is transitive. Three military
unit aCompany, aBattalion and aBrigade are de-
fined. aCompany subordinateTo aBattalion and
aBattalion subordinateTo aBrigade . One pos-
sible question people may ask is that whetheraBrigade
is controlOver aCompany . With the assistance of
Alloy reasoner, agents can answer such questions.

fact
{TransitiveProperty(subordinateTo)}

static disj sig aCompany, aBattalion,
aBrigade extends Resource{}

fact {aCompany in ModernMilitaryUnit.instances
&& aBattalion in ModernMilitaryUnit.instances
&& aBrigade in ModernMilitaryUnit.instances}

fact {(aCompany->aBattalion) in subordinateTo.sub_val}
fact {(aBattalion->aBrigade) in subordinateTo.sub_val}
assert hum {(aBrigade->aCompany) in controlOver.sub_val}
check hum for 14

6 Conclusion

Reliability of web-based military information system re-
quires techniques and tools for reasoning about military
web ontology. In this paper, we have constructed the se-
mantic models for DAML+OIL language constructs in Al-
loy and developed the systematic transformation rules and a
Java program which can translate DAML+OIL ontology to
Alloy automatically. With the assistance of Alloy Analyzer
(AA), we also demonstrated that the consistency of the mili-
tary web-based plan ontology can be checked automatically
and different kinds of reasoning tasks can be supported1.

As Alloy is based on a relational logic, where relations
between web resources are the central points in DAML, we
believe reasoning web ontology is a new novel application
domain for Alloy.

Recently, XML environment for formal design tech-
niques has been developed, e,g. [11]. RDF and DAML+OIL
has also been used to construct a Semantic Web envi-
ronment for supporting, extending and integrating vari-
ous specification languages [3]. However there has not
been much work done on the application of formal design
technique/tools for Semantic Web (SW). In our previous
work [4], we tried to extract DAML+OIL web ontology
from Z requirement models, which is a very different ap-
proach from the techniques demonstrated in this paper –
checking and reasoning web ontology by encoding the se-
mantics of DAML+OIL into the Alloy system. We believe
the DAML+OIL-Alloy transformation techniques and tool

1The technique/tool developed here can be used for checking not only
military domain but also other domains.

can complement the existing Web ontology reasoning tools,
i.e. FaCT.
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